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Abstract: In this paper, we study the geometry data associated with disparity map or depth
map images in order to extract easy to compress polynomial surface models at different bitrates,
proposing an efficient mining strategy for geometry information. The segmentation, or partition
of the image pixels, is viewed as a model structure selection problem, where the decisions are
based on the implementable codelength of the model, akin to minimum description length for lossy
representations. The intended usage of the extracted disparity map is to provide to the decoder
the geometry information at a very small fraction from what is required for a lossless compressed
version, and secondly, to convey to the decoder a segmentation describing the contours of the objects
from the scene. We propose first an algorithm for constructing a hierarchical segmentation based on
the persistency of the contours of regions in an iterative re-estimation algorithm. Then, we propose
a second algorithm for constructing a new sequence of segmentations, by selecting the order in
which the persistent contours are included in the model, driven by decisions based on the descriptive
codelength. We consider real disparity datasets which have the geometry information at a high
precision, in floating point format, but for which encoding of the raw information, in about 32 bits
per pixels, is too expensive, and we then demonstrate good approximations preserving the object
structure of the scene, achieved for rates below 0.2 bits per pixels.

Keywords: lossy disparity map compression; image segmentation; mining the geometry of scenes

1. Introduction

1.1. Motivation

One of the most important types of information handled in modern imaging applications is the
geometry of the scene and of the objects present in the scene. The depth maps convey the geometry
of the scene and are needed as such as a separate data, to be explicitly encoded and transmitted in
some application areas like industrial computer vision or robotics. In other applications, depth data
might not be needed explicitly by the user, but it is still used as an intermediate variable helping in
removing the redundancy in stereo and multiview image encoding. The disparity map for a stereo
pair is proportional to the reciprocal depth map of the scene for an ideal fronto-parallel stereo optical
system [1], and modeling the geometry based on depth or on disparity information satisfies the same
goal of extracting relevant geometry information, hence, the algorithms that we present can be applied
to both types of data. We consider here two aspects that are usually considered separately: the first is
the compression of the geometry data, and the second is the mining of the geometry data for finding
the relevant objects and parts of objects.

From the compression perspective, we consider in this paper high precision disparity data
occurring in immersive media, which is under standardization in JPEG and MPEG working groups [2,3].
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In the following, we give examples where this task is relevant. One example is the standardization
of point cloud compression (PCC) with voxelized point clouds having very high precision, from 10
to 30 bits per coordinate. In one encoding methodology, using 2D projections of the point clouds to
several planes, one gets high precision depth images that need to be encoded [3]. Another example
in the light field compression standardized by JPEG Pleno Light Field [2] is that one needs to extract
a simplified model of the disparity map from the known disparity map which might be available in
floating point precision for the synthetic imagery. The cost of lossless encoding of the disparity map
at the full precision may be justified only at very high overall bitrates. For lower bitrates, one needs
to reduce the cost of disparity map data, either using a standard lossy encoder of the initial disparity
map data, or by using a model based encoding of the disparity information, as we propose in this
paper. For the encoding of synthetic images, which occurs in the gaming industry, the image content is
generated using models from which the depth information is available at a high precision for all the
points in the scene.

1.2. Related Work

Our paper considers two aspects that are extremely well studied separately, but which are seldom
tackled together. The first one is a model-based disparity map compression, investigated in the
image compression literature, and the second is depth image segmentation, which is investigated
thoroughly in the pattern recognition literature, but usually without considering the performance
of the implementable algorithms for compressing the segmentation. Related papers can be found
in the literature dealing with information theory-based segmentation or with model-based depth
map compression.

1.2.1. Methods for Disparity Map Compression

We consider in this paper the compression of high precision depth or disparity data, represented
in floating point format or high precision integer format. There is work on the lossless compression of
such data [4] but most depth compression papers were concerned with the early datasets of 8 bits per
pixel raw formats, or on datasets where depth did not have enough precision to justify polynomial
approximations beyond planar models. With high precision depth, one can get significantly better
approximations by quadratic surface models, as we do here in this paper, where all polynomial models
are quadratic surfaces; we show that very precise detection of the contours of the objects is obtained.

While there is a very rich literature on using polynomial models in the image compression
standardization related literature, many of them deal with block-based processing of the image,
where the segmentations are represented by using quadtree partitions and, hence, the boundaries
of objects are not followed at pixel level. We are interested in region based compression, where the
arbitrary-shaped contours in the segmentation are encoded explicitly. We use for arbitrary shape region
coding the method dubbed crack-edge-region-value (CERV) in [5], which is a context based method
for encoding the contours of arbitrary regions, given in the form of crack-edges (elementary contour
element between any two neighbor pixels). In [5], the constant disparity values inside each region are
also encoded by a context-based algorithm, resulting in an overall lossless compression of the disparity
image. A lossy method for disparity maps using arbitrary-shaped regions and planar models inside
each region was proposed in [6], with a further refinement in [7] to include a selection of the best
model between a planar model and a constant model, inside each region. In [8], the planar models and
the underlying segmentation are obtained through Markov random field modeling, by optimizing an
energy function, where the number of planar models is an important parameter, and where examples
are shown for up to 50 planar models. A wavelet transform approach to depth modeling and coding
is presented in [9], where the contours of the regions and the planar variations in each region are
modeled using a flexible model.

The most recent JPEG activity for disparity map compression deals with the compression of
breakpoints for improving the compressibility of images having high discontinuities, along the lines



Entropy 2019, 21, 1113 3 of 21

of the breakpoint adaptive discrete wavelet transform [10], which was illustrated in [11] for the
compression of light field images.

1.2.2. Methods for Image Segmentation and Edge Detection

Edge (or contour) detection has a long history [12,13] and is an essential part in modern computer
vision systems. Edges provide useful structural information about a color or depth image. Recent
works on edge detection [14–16] demonstrate that the field of research underwent a rapid development
during the last decade.

A classical and perhaps the most well-known method for edge detection is the Canny Edge
Detector [13] which applies numerical optimization relying on a general mathematical formulation
of detection and localization criteria. Recent approaches are based on machine learning models.
Dollar and Zitnick [14] train structured random decision forests for edge detection. DeepContour [17]
utilizes a basic CNN architecture and learns to classify input image patches into different contour
shape classes. Xie and Tu [15] formulate edge detection as an image-to-image prediction problem
and solve it using fully convolutional neural networks in their “Holistically-Nested Edge Detection”
framework. More recently, Liu et al. [16] designed a multiscale network architecture to generate rich
hierarchical representations.

Superpixels are perceptually meaningful regions in an image. In several computer vision tasks,
superpixels are found to be useful, e.g., for object recognition [18,19], scene labeling [20] and object
localization [21]. Selective Search [18] starts with an over-segmentation of an input image generated
by the graph-based segmentation in [22]. According to certain similarity measures defined over color,
shape and texture of regions, neighbors are iteratively merged into larger regions. A state of the
art method for objects proposal is multiscale combinatorial grouping (MCG) [19], which performs
grouping of multiscale regions and relies on a fast normalized cut algorithm, and was shown to
perform very well on the benchmarks for color image segmentation.

A superpixel has to be confined within a single object, therefore, superpixel segmentation has to
be loyal to object boundaries. Unlike semantic segmentation, which aims to segment only the objects
from a predefined set of classes (leaving some parts of the image unlabeled), superpixel segmentation
aims to include every single pixel in one of the segments. This coincides well with our goals because
we aim to interpret and compress the entire image. Moreover, by combining the individual superpixels
into larger superpixels, it is possible to obtain a segmentation hierarchy.

Superpixel segmentation and edge detection are related in the sense that they both attempt to
capture the edge information in an image. On the other hand, it should be noted that edge detection
does not necessarily lead to closed contours and, therefore, it is not always easy to recover regions
from an edge map. Arbelaez et al. [23] provide a unified approach to these two problems, which we
use in the experimental section.

1.2.3. Methods Combining Image Compression and Image Segmentation

Image compression provides the most efficient description of an image, and therefore, it is the
essential tool for making inference based on description length. The minimum description length
(MDL) for image segmentation was used in [24], where an image partitioning problem is presented
in terms of finding the minimum description of an image according to a descriptive language. The
connections between the MDL approach, the region growing and the snakes was studied in [25].
Other image segmentation under MDL approach include: [26], where the regions are constrained to
be connected components; [27] proposing learning of Gaussian Mixture Models using description
codelength criteria; and [28] where a recursive MDL criterion is used in the framework of graph-cuts,
and where similar structures in the images are represented by already described similar structures. All
the above papers dealt with segmentation of color images, not of disparity map images, but used the
same principle of obtaining a segmentation by minimizing the description length of a certain model,
which is in final terms expressed as the codelength of a certain program for reconstructing the image.
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For applications on more complex data, the MDL-based segmentation of depth maps was studied
in [29] for the lossless compression of light fields.

The MDL principle applied to lossy compression in the form of minimizing the description length
for a given distortion can be thought of as another facet of the Kolmogorov structure function [30,31].

Another information theoretic approach for model selection is intersection of confidence intervals
ICI. Linear Polynomial Approximations combined with ICI(LPA-ICI). Ref. [32] are state-of-the-art for
processing images with noise, being extremely efficient especially with impulsive or speckle noise. In
the case of our high resolution disparity images, this noise component is not present, but certainly
the use of LPA-ICI and similar techniques are worth pursuing in future research. As some interesting
related references, segmentation of ultrasonic images was investigated using ICI selection in [33] and
by MDL selection in [34].

1.3. Contribution

This paper has a dual goal: to provide good overall segmentations of the scene, and to achieve
efficient lossy compression at low bitrates. Figure 1 shows the main contribution of the paper: obtaining
segmentations with very precise contours from disparity images, and using them for model-based
lossy compression of disparity maps.

Figure 1. The goal of the paper is to encode disparity images using piece-wise polynomial surface
models over the regions of the segmentation. Left: one segmentation image obtained using a disparity
map; Right: The boundaries of segmentation’s regions are overdrawn on the RGB image, showing a
very precise match.

Instead of directly transmitting the raw information, we propose to extract polynomial surface
models for the regions belonging to suitable selected partitions of the disparity image. The most
challenging task is to obtain a good segmentation of the disparity image, which is achieved from
a competition between several possible segmentations. We propose an algorithm belonging to the
parametric approach for lossy disparity coding, in which the cost of the models involved will be
evaluated in bits, and the task is to seek for the best compromise between the precision of the model
and its cost, which has different solutions at different target bitrates.

An important goal for the developed algorithm is to obtain such models of the depth image data
that convey information about the objects in the scene. Fitting the polynomial models to the depth data
will provide segmentations that capture the most important contours in the image, and will also be able
to delineate the objects of interest. We compare the boundaries of the regions in the segmentations that
we obtain with our algorithm to the edges obtained from the color images representing the same scene,
and we find a high degree of correspondence, which we quantify using the established benchmarking
techniques from the segmentation literature.
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The main contributions are two segmentation algorithms which produce partitions having simple
regions, easy to be transmitted at different desired bitrates to the decoder. During the stage of creating
the regions, several models compete for the most efficient image splitting into regions, while ensures a
good approximation quality in a procedure based on information theoretic model selection decisions.
We analyze the obtained algorithms from the perspective of lossy image compression and from the
precision-recall properties of the obtained segmentations.

2. Proposed Methods

2.1. Definitions and Statement of the Problem

2.1.1. Image Partition into Regions

We introduce first notations and definitions for presenting in a formal way the proposed
algorithms. We consider depth or disparities images G ∈ Rnr×nc having nr rows and nc columns. The
set of pixels of the image is denoted Ω0 = {1, . . . , nr} × {1, . . . , nc}. Two pixels (i, j) and (i′, j′) are
connected in connectivity 4 if (i, j)− (i′, j′) ∈ {(−1, 0), (1, 0), (0,−1), (0, 1)} and in connectivity 8 if
(i, j)− (i′, j′) ∈ {−1, 0, 1}2 (unless otherwise specified we assume in the paper that connectivity level
is 4). A label image, X ∈ Nnr×nc , specifies a label X(i, j) for each pixel (i, j) ∈ Ω0. A region Ω` ⊂ Ω0

is a subset of Ω0 and is specified in the label image X by the equivalence (i, j) ∈ Ω` ⇔ X(i, j) = `.
The region is said to be a connected component if for any pixel (i, j) ∈ Ω` there is at least one pixel
(i′, j′) ∈ Ω`, which is connected in connectivity 4 to the pixel (i, j). A partition of the image into regions
is denoted as a set as P = {Ω1, . . . , ΩL} and can be unequivocally described by a label image with L
labels, which we denote X(P).

2.1.2. Representing the Region’s Contours

The contour, or boundary, of any region is formed of horizontal and vertical crack edges: a
horizontal crack edge image HX ∈ {0, 1}nr×nc specifies by HX(i, j) = 1 that X(i − 1, j) 6= X(i, j)
and similarly the vertical crack edge image VX ∈ {0, 1}nr×nc specifies by VX(i, j) = 1 that X(i, j−
1) 6= X(i, j) and we define the contour matrix for the label matrix X to be the concatenated matrix
CX =

[
HX VX

]
. A crack edge is also named contour element. A label image X has associated

a unique contour matrix CX =
[
HX VX

]
. Conversely, a contour image C can be processed by a

region labeling routine, X = RegLab(C), to construct a label image X where each connected component
has a distinct label, (see, e.g., the BSD benchmarking software [35]). We note that for any label matrix
X where each region is a connected component, it holds that X′ = RegLab(CX) differs from X only by
a permutation of the labels. The set of contour elements set to one in CX that form the outside border
of a region Ω is denoted Γ(Ω).

2.1.3. Representing a Hierarchical Segmentation

In the literature dealing with hierarchical segmentations, the representation of a sequence of
segmentations is given by the ultrametric contour map (UCM) which can be formally defined as a
contour matrix U ∈ Rnr×2nc having real entries, as opposed to the contour matrix C, which has binary
elements. It is usual to normalize the real value of the contour element U (i, j) to the range [0; 1] and
then consider the value as the probability that a contour element separates two adjacent pixels having
different labels. However we keep the UCM matrix to be integer-valued, with the elements specifying
a persistency level. By thresholding the elements of the UCM matrix U at a threshold τ` one obtains a
binary matrix C`. Using a decreasing sequence of thresholds one obtains a sequence of binary contour
images C1, . . . , CL, corresponding to nested segmentations X1, . . . , XL of the image G, which together
form a hierarchical segmentation.

Considering two consecutive nested segmentations X` and X`+1, and two neighbor regions, Ω`1

and Ω`2 , in X`+1 that were obtained by splitting a single region Ω`1,2 in X`. The split is obtained by
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setting to one the contour elements from the set ∆Γ = Γ(Ω`1) ∩ Γ(Ω`2). The cost of the split in terms
of bitrate, L(∆Γ), can be approximated to be proportional to the number of contour elements in the set
∆Γ, hence L(∆Γ) = c|∆Γ|, as is done in most papers using MDL merging-splitting optimization [7,24].

2.1.4. Polynomial Surface for Approximating the Disparity Map over a Region

We consider the following two dimensional polynomials: P0(i, j) = θ0, P1(i, j) = θ0 + θ1i + θ2 j,
and

P2(i, j) = θ0 + θ1i + θ2 j + θ3ij + θ4i2 + θ5 j2 (1)

and denote generically Pθ(i, j) = ϕk(i, j)Tθ where the elements of the regression vector ϕk(i, j) are
monomials in the variables i and j. The main model considered in this paper is the reconstruction
S(Θ,P) ∈ Rnr×nc of the image G, as a function of a partition P = {Ω1, . . . , ΩL} and a set of
polynomial parameter vectors Θ = {θ1, . . . , θL}, where the reconstruction surface S for a pixel
(i, j) belonging to region Ω` is obtained with the parameters θ`, as Si,j = Pθ`(i, j).

Finally, we denote the code length necessary for representing the parameters as L(Θ) =

∑L
`=1 L(θ`), where we assume that the elements of θ` are quantized to a finite precision and are

encoded by Golomb–Rice coding (hence assuming a geometric distribution of the parameters). The
image of contours CX is encoded by the CERV algorithm [5] and the resulting codelength is denoted
LC(CX), or for short L(X).

The goal of this paper is to start from a given disparity map image G and to find a sequence of
partitions P1, . . . ,PN (or equivalently a sequence of label images X1, . . . XN) and the corresponding
polynomial models Θ1, . . . , ΘN satisfying two desiderata:

1. the rate-distortion description (Rn, Dn), with Rn = LC(Cn) + L(Θn) and Dn = ‖G− S(Θn)‖2,
should be competitive with the rate-distortion of lossy compression algorithms, at very low
bitrates. The wish is to extract relevant information from G, to encode it efficiently, and use it for
obtaining a reconstruction with a small distortion, as in the lossy compression tasks, but with the
next additional wish on the relevance of the segmentation for the objects in the image.

2. The sequence of partitions P1, . . . ,PN should compare favorably with the hierarchical partitions
obtained from the color information of the same scene, having the diagram (recall, precision)
competitive with the existing state of the art boundary detection or segmentation algorithms for
finding general structure in images.

2.1.5. Statement of the Problem

We start by defining the disparity map model, consisting of a partition of the image pixels into
regions, and of a polynomial surface inside each region. Then we describe the iterative process for
obtaining a partition of the image into regions, with a polynomial surface model for reconstructing
the depth inside each region, where the optimality criterion is the overall codelength for encoding
(describing) the partition and the polynomial models for all regions, subject to a given allowed
distortion over each region.

Given the disparity map image G we define a partition P = {Ω`; ` = 1, . . . , L} of the image
support, Ω0, into L disjoint regions Ω`; ` = 1, . . . , L , such that

⋃L
`=1 Ω` = Ω0.

The minimum description length criterion consists of the cost L(P) of transmitting a
segmentation Pn, evaluated by the implementable codelength obtained by context based coding
of the segmentation [5], and of the cost L(Θn) of encoding the parameters of all polynomial models.
The precise cost of encoding any segment of the contour can be extracted during the coding process,
and we will denote L(Γ) the codelength of encoding the contour segment Γ. We denote Γ(Ω) the outer
contour of a connected region Ω.
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For any given distortion D one needs to solve the optimization problem

min
P ,{θ`}

RATE = L(P) + ∑
Ω`∈P

L(θ`)

subject to MSE =
1

nrnc
∑

Ω`∈P
∑

(i,j)∈Ω`

(G(i, j)− Sθ`(i, j, θ`))
2 ≤ D. (2)

2.2. Algorithm for Hierarchical Segmentation based on Persistency of Contours of the Segmentations Generated
by Iterative Piece-Wise Polynomial Modeling

The two components of the model are the following: (a) the segmentation and (b) the set of
polynomial models, one for each region of the segmentation. Estimating the model that gives directly
the minimum solution to the optimization problem (2) for a given D is approached by finding first a
set of good “optimal” segmentations, and then checking what is the distortion corresponding to each
segmentation, building thus a RD plot of solutions of (2).

The segmentation problem is sometimes seen as the estimation of a latent variable, defined for
each pixel, and we introduced the label image notation X for this latent variable.

A simple attempt to finding a good model (including the segmentation X and the polynomial
models) will be in the spirit of K-means iterative algorithm, rephrased as a K-models algorithm: fix
a desired number of regions Nreg in the segmentation and initialize a partition of the image into
Nreg regions. In a first stage, fit the best polynomial model over each region and in the second stage
re-partition the image into Nreg regions, so that each pixel (i, j) is associated with the model that gives
the smallest reconstruction error of G(i, j). A true K-means or K-models would iterate the two stages
until convergence, if that ever occur. However we are taking a different route: we operate with a
large Nreg, in a very “over-segmented” regime, with Nreg larger several times than the final intended
maximum number of regions, and we are not interested in iterating until stabilization of the Nreg

regions. Instead we are interested in exploring as much variability in the region boundaries. Since the
re-estimation will make the region to change their boundaries, we track during the process for each
contour element, sayH(i, j), the number of times in which it was part of regions boundaries during
the process. We call counts(H(i, j)) the persistency degree of the contour element, and we are building
our segmentations by considering progressively the contour elements in the decreasing order of their
degree of persistency.

There are a few problems with the simple K-models approach, and we discuss them and introduce
at the same time our algorithmic steps that are correcting the problems.

We introduce several regularization options to this algorithm, resulting in the Algorithm 3. Even
with the introduced change we notice that the iterative re-estimation has a high variability of the region
contours decided at consecutive iterations. In Figure 2, we show on middle row on panels 1 and 2 one
detail of the image Adirondack. The panels 1 to 3 in the top row show consecutive segmentations
obtained during re-estimation. Since there are very many models initially (one for each (11× 11)
patch), on the long board which is the arm-rest of the chair there are several patches, with similar
almost planar models, which are competing with each other during the re-estimation, and one sees
the high variability of the contours of these models within the arm-rest in panels 1 to 3. However,
the outline of the arm-rest remains as a clear part of region boundaries in all iterations. The main
feature of our algorithm is to let many fitting polynomial surfaces to compete during the re-estimation
iterations, resulting in many contour pixels that are changing from one iteration to the other, but also
resulting in contour elements that remain “persistent” from one iteration to the next. We are keeping
track of the persistency of all contour elements in the image, and after a number of iteration (niter = 40
in all experiments) we check the persistency of each contour element and we use the most persistent
elements for obtain contours that are true outlines of distinct objects or object parts. Just to show the
final result of both Algorithms 1 and 2, we show in Figure 2, middle row, panel 3, that after selecting
carefully the contour elements in Algorithm 2, using a rate-distortion marking of the regions, we are
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obtaining a segmentation very relevant for the object parts (the presented segmentation is obtained in
Algorithm 2 after including persistent contours resulting in 243 regions in the segmentation image).
In there, one can see that the collected persistent contours were successful in providing meaningful
image features, resulting in a convincing segmentation.

Figure 2. (Top row) Consecutive segmentations in the iterative re-estimation algorithm: Panels 1 to
3: First three consecutive segmentations in the iterative re-estimation algorithm over the disparity
data; (Middle row) Panel 1: Detail of the RGB image; Panel 2: Detail of disparity image; Panel 3:
The segmentation provided by the Algorithm 2, when including 234 regions for the entire image;
The (200× 300) pixels zoomed region is from Adirondack image of Middleburry dataset. (Bottom row)
Plots with evolution over iterations of the variables in Algorithm 1.
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Algorithm 1 Hierarchical segmentations based on persistency of contours generated by iterative
piece-wise polynomial modeling

Input: The input disparity map G.
Stage 1. Find persistent contours in the image G: Iterate finding the best fitting models for the current

image partition, and then finding the best image partition for the current set of polynomial models.
At each iteration mark the boundaries of the partition’s regions and add the binary edge matrix to
the overall contour persistency matrix;

1.0 Initialize the partition P0 as being formed of d nr
Ls
e × d nc

Ls
e disjoint square regions (Ls × Ls).

The corresponding label image is denoted X0. The overall contour persistency matrix is
set to U = 0 ∈ Rnr×2nc ;

1.1 For n = 1, . . . , niter // Iterate a re-estimation algorithm niter times

1.1.1 // Re-estimation iteration for finding a new set of models Θ′ = {θ`|, ` = 1, . . . , n′cc} and their
number n′cc1.1.1.1 Decompose the image Xn−1 into connected components, denote ncc their number,

and denote Pn−1 the partition into the regions Ω1, . . . , Ωncc so that Ω` =
{(i, j)|Xn−1(i, j) = `}.

1.1.1.2 For each region Ω` ∈ Pn−1
1.1.1.2.1 If the cardinality of |Ω`| is larger than NS, estimate the parameters

θ` of the polynomial surface model by minimizing ∑(i,j)∈Ω`
(G(i, j)−

Pθ`(i, j))2. Otherwise set the model θ` to empty set.
1.1.1.3 Denote n0

cc the number of non-empty models estimated in previous step. Process
the set of parameter vectors {θ`|, ` = 1, . . . , ncc} to select a subset
Θ′ = {θ′`|, ` = 1, . . . , n′cc} of n′cc ≤ Ncc models- If n0

cc > Ncc, then group similar
models together to obtain n′cc ≤ Ncc models.

1.1.2 // Re-estimation iteration for finding a new partition Pn
1.1.2.1 Initialization for the new Pn: number of regions rn = 0; reconstruction image Rn = 0 and

labels image Xn = 0, with 0 the all zeros (nr × nc) matrix.
1.1.2.2 // Use the competition of the models of Θ′ for defining the new partition

For ` = 1, . . . , n′cc
1.1.2.2.1 Consider the model θ′`
1.1.2.2.2 Initialize the winning binary image B = 0 ∈ {0, 1}nr×nc , and then go over all

pixels, for all (i, j) ∈ Ω0 and set B(i, j) = 1 if |Pθ`(i, j)− G(i, j)| < |Rn(i, j)−
G(i, j)|. Find all connected components of B and denote Ω∗ the largest of them

1.1.2.2.3 If the cardinality of Ω∗ is larger than a given size, NS, then a new region is
declared, r ← r + 1 and Ωr = Ω∗

1.1.2.2.4 Include the new region Ωr in the partition Pn, by updating the label image
Xn(i, j) = r and the corresponding reconstruction Rn(i, j) = S`(i, j), for each
(i, j) ∈ Ωr.

1.1.2.3 Construct the contour image Cn for Xn and add it to the overall UCM matrix U ←
U + Cn.
Stage 2. Construct a hierarchical segmentation from the persistency contours matrix U ′, filtering out
small regions

2.1 For ip = niter, niter − 1, . . . , nmin ( Iterate the persistency level from highest to smallest)

2.1.1 Construct a current contours image, C having C(i, j) = 1 if U (i, j) ≥ ip.
2.1.2 Find the labels image X corresponding to C, and if ip = niter set Xip = X and continue to

ip = niter − 1
2.1.3 Find all connected components of the labels image X
2.1.4 Initialize Xip = Xip+1 (the labels of the previous partition)
2.1.5 For all connected components of the labels image X larger than N2

2.1.5.1 If the connected component Ω` has holes, fill each hole that is smaller than NH pixels
and then copy the filled Ω` to Xip as a new region

2.1.5 Construct the contour map matrix Cip corresponding to label image Xip larger than
NS and update the UCM matrix, U ′ ← U ′ + Cip2.1 Rename the sequence Xniter , . . . , Xnmin as X1, . . . , XN

Output: The ultrametric contour map matrix U ′, and the sequence of segmentations X1, . . . , XN ,

dubbed Hierarchical segmentations A.
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Algorithm 2 Hierarchical partition based on (description length - distortion) optimization

Input: The sequence of segmentations X1, . . . , XN from Algorithm 1.
Stage 1. Extract a catalog O of large regions (possible objects) from X1, . . . , XN

Each entry Op in the catalog corresponds to a large connected component region, Ωp,
and is stored as a set of pixels OS

p = Ωp
1.1 For r = 1, . . . , N ( Iterate from coarsest segmentation X1 to finest segmentation XN)

1.1.1 Find Ω1, . . . , Ωm, all connected components of the labels image Xr
1.1.2 For q = 1, . . . , m (go over Ω1, . . . , Ωm)

1.1.2.1 If the size of Ωq is smaller than 0.95 of the size of the parent region in Xr−1, but the
cardinality |Ωq| is larger than NS, then the connected component is included in the
catalog as a new region: p← p + 1 and stored as OS

p = Ωp.
1.1.2.2 Estimate the polynomial model parameters θp.

Stage 2. Construct a new sequence of segmentations X′1, . . . , X′N based on the (description length-distortion)
optimization

2.1 Initialize the current reconstruction image R = 0 and the current label image X′0 = 0
2.2 For n = 1, . . . , N (Add to X′n−1 a new region to form X′n )

2.2.1 For p = 1, . . . , P (for all large regions from the catalog O that were not yet chosen)
2.2.1.1 Evaluate the candidate region Op: find all regions Ω1, . . . , Ωm from X′n−1 overlapped

(partially) by Op.
2.2.1.2 For q = 1, . . . , m (go over Ω1, . . . , Ωm)

2.2.1.2.1 If the MSE of the current reconstruction R = 0 over the Ωq is better than the MSE
over Ωq of the surface generated by θp, then carve out the set Ωq from the candidate
object: OS

p ← OS
p \Ωq

2.2.1.3 If the remaining size of the region Op is larger than NS, denote r the largest label of
X′n and set in X′n the pixels form OS

p as a new region with label r + 1.
2.2.1.4 Fit a new polynomial model θp over OS

p , and find ∆MSE, the improvement in the
MSE over OS

p of the new polynomial surface, compared to the current reconstruction
R

2.2.1.5 Find the description codelength for specifying the better reconstruction, i.e., the
description length of the polynomial L(θp) and the description length L(Γ) of the
additional contour for specifying OS

p . Construct the ratio λp = ∆MSE
L(θp)+L(Γ) .

2.2.2 Pick from all candidate regions the one with the highest λp and call the winning candidate

index p∗.
2.3 If λc∗ is smaller than a threshold λ0, stop adding regions and exit, else add the new region, by

modifying Rn and Xn accounting for OS
p∗ .

Output: The sequence of segmentationsX′1, . . . , X′N dubbed Hierarchical segmentation B.

Now we present the main particularities of running Algorithm 1 followed by Algorithm 2, as cures
to the K-means clustering. First, we do not know a priori a suitable number of regions, corresponding
to a given distortion level D. For that reason we are letting the number of regions Nreg = ncc to change
during the re-estimation iterations, and Nreg will be decided implicitly by the selection decisions
at each step. We initialize the algorithm with square partitions for simplicity, with the square side
11 pixels. This is similar to the initialization of the segmentation algorithms based on super-pixels.
The initial Nreg is in the order of thousands, resulting in a heavy over-segmentation of the image.

A major problem of the partition re-estimation is that when distributing each pixel (i, j) to the
model that achieves the smallest reconstruction error of G(i, j), there might be very many good models
that represent well the other pixels within a neighborhood of (i, j), and then in the neighborhood of
(i, j) there may be many different labels of winning models. A certain model might result in many
winning patches distributed over the image, with each patch having many holes due to the many
similar competitors.

To tackle this problem we adopt several changes to the simple K-models structure of the algorithm.
We enforce that during the nth re-estimation of the partition, a given model has associated only one
connected component (the largest one) out of all possible connected components where the model was
winning over the best current reconstruction. We go over the models in such an order that first we treat
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the models having a smaller winning patch, and we sequentially mark the winning patches in a label
image Xn, overwriting the labels created by earlier patches. At the end of this marking process the
label image Xn will remain with the labels of the models having large winning patches. This process
is described in Algorithm 1 at the Step 1.1.2.2 Use the competition of the models of Θ′ for defining the
new partition. The label image Xn can remain with many undecided pixels, since we restricted the
marking of the winning patches to be only (large) connected components. All pixels with label 0 will
be considered again in the decomposition of Xn into connected components, at next run of the Step
1.1.1.1., and hence the number of models considered again in Step 1.1. may grow again larger than Ncc.

The number of models n0
cc that are re-estimated based on the new partition might be too large,

exceeding our desired level Ncc. We use a very simple reduction of their number, by grouping together
the “similar” models in the following way: we quantize each model with decreasing precision, by
quantizing Q(θ`,r) = bθ`,r2nbe for nb = 10, 9, . . . ,−10 and for each nb we check how many quantized
models are distinct in the sequence of parameter vectors Q(θ1), . . . , Q(θncc), picking the nb as the first
number for which ncc remains below Ncc. This is the process described at the Step 1.1.1.3.

At each iteration of the re-estimation process we pick the contours elements set to 1 in CXn and
increment the contour matrix U at the corresponding locations. The contour matrix is a (nr × 2nc)

matrix, where the first half block U (1 : nr, 1 : nc) specifies that the labels at X(i− 1, j) and X(i, j− 1)
are different (horizontal edge) and the second half U (1 : nr, (nc + 1) : 2nc) specifies that the labels at
X(i, j− 1) and X(i, j) are different (vertical edge).

When the re-estimation iterations of Stage 1 are finished, we pass to Stage 2, to analyze the
persistency levels marked in the matrix U , with the maximum possible value of niter. At each
persistency level ip we create the contour matrix and then find the associated label matrix Xip . We want
to avoid too small regions in Xip , and for that we decompose the image into connected components, fill
for each of them the holes that are smaller than a fixed NH (we have used NH = 50) and use the filled
connected components for a new label in Xip . The detailed description of Algorithm 1 is presented in
the panel of the Algorithm 1.

To illustrate the re-estimation process, we show in Figure 2 bottom panel the evolution of some
of the meaningful variables in Algorithm 1, Stage1: the number of connected components found in
Step 1.1.1.1 ncc is marked #Connect. Comp.; The number of models estimated at the large connected
components, n0

cc is marked #Large Connect. Comp.; The number n′cc of models forced to be smaller than
Ncc is marked #Kept Models; The number of pixels remaining unclassified (unlabeled) after Step 1.1.2.2
is marked # Unclassified pixels; finally, the number of contour elements (crack edges) inH and V that are
set to one at Step 1.1.2.3 is marked #Marked Crack Edges. It is seen that the variables in the re-estimation
algorithm are changing at each iteration, inducing variability in the segmentations obtained at each
iteration, which is our main goal in the iteration process.

2.3. Algorithm for Hierarchical Segmentation based on (Description Length-Distortion) Optimization

The Algorithm 2 starts at Stage 1 with creating a library of large regions (called now “objects” for
simplicity, although no “object” meaning is claimed), by inspecting the sequence of segmentations
obtained by Algorithm 1. The objects are allowed to overlap (but more than 95% is not allowed).
An object is described by its set of pixel locations. For each such object the best model for reconstructing
G is found and stored for later use.

At Stage 2 there is a competition between the objects, for being included as new labels in the label
matrix X′n. The benefits in terms of MSE for including each candidate object with new labels in X′n are
evaluated, and possibly some subsets of the candidate object are removed, if the current reconstruction
at the subset is better than that provided by the object. The best fit over the (carved) object is computed
and the improvement in distortion ∆MSE is evaluated.

In order to solve the rate-distortion problem (2) the typical way is to evaluate the slope of the
RD curve λp = ∆MSE

L(θp)+L(Γ) and to add the objects to the segmentation in the order of their slope. The
cost of the polynomial models is explained in Section 3.4. We denote Γ the set of additional contour
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elements that will be set to 1 due to the setting of the new region label in X′n. The cost for encoding
Γ is estimated as being proportional to the cardinality of the set Γ (with a proportionality factor 1.5
found to cover experimentally well the cost of coding contour elements by the algorithm CERV). The
candidate region having the largest value of λ is selected and the Algorithm 2 proceeds to find a new
region, exiting when no region with improvements of ∆MSE can be found.

3. Experimental Results

3.1. The Datasets

We have experimented with a dataset of high-resolution disparity images [36], where all the
images were acquired from real scenes. In Figure 3 we show the scenes used. For the drafting of our
algorithms and for setting the thresholds we have experimented over a set of synthetically generated
images, but for space economy we do not present here results for the synthetic data. We emphasize
that no threshold or algorithmic routines were tuned over the real data.

The dataset [36] was constructed for benchmarking of stereo matching algorithms, and it contains
for each scene a left and a right color image, and also a left and a right disparity image. The disparity
values can be assumed to be approximately inverse proportional to the depth values in the stereo
setting, and then one could apply the algorithms to the modeling of the depth values (equivalent to
inverse disparities), but we did not follow that route. Applying the polynomial surface models to depth
images and to disparity images can produce rather different results. In [36] the goal was to produce
high resolution disparity images, which were carefully evaluated and found to have approximately a
quarter of a pixel precision when checking the stereo correspondence of the left and right color views.
Hence we decided to apply the polynomial surface approximation directly to the disparity image data
provided in [36], not to the inverse disparity data.

Figure 3. The RGB images and the corresponding disparity maps of the scenes from Middleburry
dataset used in the experiments.

3.2. Obtaining the Sequences of Segmentations A and B

Our Algorithms 1 and 2 were run over the left disparity images of 13 scenes, on the quarter sized
images, e.g., the image Adirondack has size (496, 718). The left color images and left disparity map for
the 13 scenes are shown in Figure 3. We have obtained for each scene two sequences of segmentations,
A and B, using the Algorithms 1 and 2.

The number of segmentations produced by Algorithm 1 is maximum 38, since we have used
niter = 40, and we stopped the iterations of Step 2.1 at nmin = 3, hence the maximum persistency level
were 40. However, for some scenes the segmentations obtained at two consecutive values of ip where
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identical (especially at the very high ip values). The size threshold NS in both Algorithms 1 and 2 was
set to 100.

The Algorithm 2 was producing a much larger number of segmentations, in the order of several
hundreds, since we have used as the exit threshold condition in Step 2.3 λ0 = 0, i.e., we exited when
no large region had still associated a positive improvement gain λ.

3.3. Benchmarking the Sequences of Segmentations against References Extracted from the Color Images

The dataset also contains RGB images of the scenes, that we used only for finding color based
contour maps or segmentations so that we can compare the segmentations obtained by our algorithms
with other segmentation methods.

In order to find a reference contour map based on the RGB image we have used the
software provided in a recent convolutional neural network (CNN) method [16] that performs edge
detection, which was shown to achieve similar F-values as the human annotations over the BSD
benchmarking database.

We have used the edge map produced for every RGB image of a scene by the software associated
to [16], to obtain the edge map probability at every pixel, and we used additionally the non-maxima
suppression from [14] for obtaining thin edges. We used a threshold for cutting the edge map
probability for obtaining a map of binary edges, and by varying the threshold we obtained candidate
contour maps of the image. By visually analyzing the contour maps at various thresholds, we have
chosen for each scene one threshold, resulting in a computer generated “color reference edge map”,
where the threshold was chosen by human. Since there are no public available annotations of the
contours in Middleburry images, we chose to provide a substitute of the ground truth that we need for
benchmarking by this reference edge map, generated with state of the art CNN based edge detection.
We show in third row of Figure 4 the edge maps of the scenes, that we consider as reference color
edge maps. They are used as a reference for benchmarking the performance of four algorithms: first:
the segmentations generated by Algorithm 1, second, generated by Algorithm 2, (both obtained from
disparity data), third, the segmentations obtained by the method Selective Search [18] dubbed here “SSS
algorithm” using the disparity data, and fourth the segmentations obtained by the method Multiscale
Combinatorial Grouping [19] dubbed here “MCG algorithm” using the disparity data, all against the
reference color edge maps obtained from the RGB image.

For benchmarking we have used the established methodology for boundaries evaluations
from [35] summarized next: one considers a binary edge map Bre f as “ground truth”, which we take
to be the reference color edge map mentioned above. Then we take say sequence A of segmentations,
and go over each segmentation Xt, transform it to a binary boundary image Bt (function provided in
the software [35]) and then the contours in Bre f and Bt are aligned by a dynamic programming routine,
resulting in the best alignment, and in two matching images, out of which one can obtain the true
and false positive and the true and false negative, the precision Pt and the recall Rt, and finally the F
values Ft = 2PtRt/(Pt + Rt). For the best F-value for each image we also show the matching maps in
Figure 4, where one can notice that the Algorithms 1 and 2 generate meaningful boundaries (the set
of green and blue edges) and miss contour elements that are associated to color features, but not to
disparity features. We present a complete description of the (precision-recall) performance in Figure 5
for all the images and all four algorithms and show by a circle the place with maximum F on each
curve. In the Figure 5 and in the rest of the paper we refer to the method from [18] as SSS algorithm
and to the method from [19] as MCG algorithm.

We also show in Table 1 the F values obtained for each algorithm over each image from the
dataset. One can notice that Algorithm 2, based on the optimization using the gains λ defined in term
of codelength, is the most often winner.
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Figure 4. Matching the reference color edges (third row) by Algorithm 1 (fifth row), Algorithm 2 (fourth
row), SSS algorithm [18] (sixth row) and by MCG algorithm [19] (last row): the green lines are true
positives and blue lines are false positives (together they form the edges found by the algorithm on
disparity image); the red lines are true negatives (edges existing in the reference color segmentation,
but not found by the algorithm in the disparity image).
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Figure 5. Boundary Precision-Recall Curves obtained with Algorithm 1, Algorithm 2, SSS algorithm [18]
and MCG algorithm [19] for disparity images from Middlebury Dataset [36]. Algorithm 1: Blue,
Algorithm 2: Red, SSS algorithm: Magenta, MCG algorithm: Black. F-value remains constant on each
green curve.
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Finally, we show for visual evaluation in Figure 6 the segmentations of the four compared
methods, at the highest value of F. One can notice the good matching of the segmentation regions with
the objects, or distinct parts of the objects in the scene.

Figure 6. The segmentation corresponding to the best F-value obtained by Algorithm 2 (first row),
Algorithm 1 (second row), by SSS algorithm [18] (third row) and by MCG algorithm [19] (last row).
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Table 1. Boundary-Recall and compression performances of hierarchical segmentation using four
different segmentation algorithms (Algorithm 1, shortened as A1; Algorithm 2, shortened as A2; SSS
algorithm [18]; and MCG algorithm [19])). The columns 2 to 5 present the optimal Precision-Recall
pairs. The columns 6 to 9 present the optimal corresponding F-values. The columns 10 to 13 present
the Bjøntegaard BD-PSNR values between the rate -distortion results when applying the encoding
algorithm from Algorithm 3 to each of the four segmentation algorithms, compared against the
rate-distortion of JPEG2000, considered as anchor. The bold results present the winning of the fours
algorithm for each scene according to F-Value and according to Bjøntegaard BD-PSNR.

Precision-Recall F-Value Bjøntegaard BD-PSNR (dB)

Scene A1 A2 SSS MCG A1 A2 SSS MCG A1 A2 SSS MCG

Adirondack 0.71–0.64 0.65–0.75 0.56–0.76 0.79–0.40 0.68 0.69 0.65 0.53 −5.11 −2.73 −6.62 −3.21
ArtL 0.72–0.66 0.66–0.70 0.40–0.83 0.50–0.52 0.69 0.68 0.54 0.51 −1.77 −0.77 −4.72 −2.82

Jadeplant 0.66–0.79 0.56–0.87 0.49–0.79 0.73–0.71 0.72 0.68 0.60 0.72 −1.83 −1.94 −5.82 −2.77
Motorcycle 0.72–0.64 0.73–0.82 0.66–0.86 0.58-0.82 0.68 0.77 0.74 0.68 −8.21 −2.79 −7.30 −3.86

Piano 0.75–0.69 0.68–0.72 0.49–0.84 0.72–0.62 0.72 0.70 0.62 0.66 −1.93 −2.93 −6.27 −3.64
Pipes 0.77–0.80 0.77–0.84 0.60–0.78 0.80–0.72 0.78 0.80 0.68 0.76 −1.83 −1.29 −6.64 −3.49

Playroom 0.55–0.80 0.62–0.87 0.57-0.88 0.63–0.73 0.65 0.72 0.69 0.68 −0.75 −2.67 −5.32 −2.95
Playtable 0.74–0.55 0.78–0.78 0.54-0.85 0.81–0.57 0.63 0.78 0.66 0.67 −6.92 −3.25 −7.49 −4.00

PlaytableP 0.63–0.60 0.82–0.81 0.57–0.81 0.63–0.74 0.61 0.82 0.67 0.68 −5.57 −2.91 −8.44 −3.70
Recycle 0.68–0.56 0.65–0.74 0.35–0.88 0.65–0.53 0.62 0.70 0.50 0.58 −7.87 −2.51 −6.39 −2.59
Shelves 0.75–0.84 0.76–0.81 0.53–0.91 0.84–0.63 0.79 0.78 0.67 0.72 1.36 −1.24 −6.88 −3.32
Teddy 0.35–0.54 0.45–0.60 0.43–0.74 0.42–0.53 0.42 0.51 0.54 0.47 −0.62 −2.42 −5.01 −3.09

Vintage 0.67–0.53 0.66–0.52 0.44–0.82 0.72–0.43 0.59 0.58 0.57 0.54 0.32 −1.56 −11.59 −2.11

3.4. Rate-Distortion Performance of the Segmentation Algorithm

We have used the encoding algorithm presented in Algorithm 3 for compressing G using the
sequences obtained at the output of the Algorithm 1, Algorithm 2, SSS algorithm [18] and MCG
algorithm [19]. The polynomial models have the parameter vector θ of length 6, corresponding to
quadratic polynomial surfaces (1). For each obtained θ we quantize the parameters to 8 bits in the
fractional part, and we encode the 6 quantized numbers by Golomb–Rice codes, determining the
optimal parameter k = 2r of the GR codes, where r ∈ {1, . . . , 8} is also encoded (in three bits) and
transmitted in the header of the bitstream. For each scalar coefficient θ we transmit in one bit the sign
of the coefficient, in unary coding the quotient q =

⌊
|θ|
2r

⌋
(i.e., q bits one followed by a 0 bit) and in r

bits we transmit the binary representation of (|θ| − q2r). The codelength for θ for each r ∈ {1, . . . , 8}
is evaluated and the optimal value of r is selected. The length of the bitstream for encoding the
parameter vectors θ1, . . . , θL is the model parameter cost ∑L

`=1 L(θ`). Additionally, the cost L(X) of
transmitting the segmentation X by using the CERV algorithm [5] needs to be added, to obtain the
overall codelength L.

Algorithm 3 Encoding G based on the segmentation X and polynomial models over each region

Input: The input disparity map G. The segmentation X.
Stage 1. Encode the segmentation X by the CERV encoding algorithm from [5], resulting in the

codelength L(X).
3.1 For ` = 1, . . . , L (for each region Ω` of the segmentation X)

1.1.1.2.1 Estimate the parameters θ` of the polynomial surface model by
minimizing ∑(i,j)∈Ω`

(G(i, j)− Pθ`(i, j))2.
1.1.1.2.1 Encode the parameters θ` using a Golomb–Rice code, resulting in the

codelength L(θ`).
1.1.1.2.1 Compute the sum of squares SSE` = ∑(i,j)∈Ω`

(G(i, j)− Pθ`(i, j))2 of
the reconstruction using the parameters θ`1.1.1.2.1 Compute the mean square error MSE = 1

nrnc
∑L
`=1 SSE` and the

peak signal to noise ratio PSNR = 10 log10
Mg2

MSE with Mg =
max(i,j)∈Ω0 G(i, j).

Output: The PSNR in dB and the rate RATE = 1
nrnc

(L(X) + ∑L
`=1 L(θ`) in bits per pixel



Entropy 2019, 21, 1113 18 of 21

We additionally consider the rate-distortion of other two lossy compression methods: first the
wavelet based coder JPEG 2000, which uses a hierarchical wavelet decomposition and context based
coding of the wavelet coefficients, in a heavily engineered reference software. Second we consider a
simple method, dubbed “Model 0+UQ”, which performs first the uniform quantization (UQ) of the
image G, with various quantization steps, and then transmits the quantized image using the CERV
algorithm. For reconstruction, the scaling back by the quantization step is performed. Qualitatively, the
quantized version of the image G looks like a geodesic map, being formed of constant regions enclosed
by simple boundaries. This image can be encoded extremely efficiently by CERV, and hence “Model
0+UQ” has a very good RD curve, better than JPEG 2000 starting from a given rate on. However, at
low bitrates the “Model 0+UQ” is below the JPEG 2000, and this is the place where the Algorithms 1
and 2 are intended to be utilized, for conveying at a low bitrate simple efficient reconstructions of G,
which additionally convey a good segmentation into objects or parts of objects. The “Model 0+UQ”
and JPEG 2000 competing methods do not provide informative segmentations, so we can compare
them to ours only on the compression performance.

We show in Figure 7 the Rate-Distortion plots for all the images and algorithms, in which we
present the rate in normalized form, L/(nrnc), as bits per pixels. The performance of Algorithms 1
and 2 is better than “Model 0+UQ” at low bitrates, but still not as high as JPEG 2000. At the very low
bitrate Algorithm 2 is systematically the best, but for some images Algorithm 1 succeeds to overpass
significantly Algorithm 2 at higher bitrates. Finally, we show in Table 1 the Bjøntegaard distances
(BD-PSNR) between the RD curves of each algorithm and the RD plot of JPEG algorithm. The minus
sign for BD-PSNR means that the average of (PSNRAlg(R)− PSNRJPEG(R)) is negative. The RD
performance, for reconstructing the G, has to be seen in connection to the performance for boundary
detection and object detection, which favors consistently Algorithm 2.
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Figure 7. Rate-Distortion Curves obtained with the methods Algorithm 1, Algorithm 2, SSS algorithm
[18], MCG algorithm [19], JPEG 2000 and Model 0+UQ.

4. Conclusions

We have proposed algorithms that create segmentations from disparity images, useful for two
goals: as segmentation of the scene, and also as partitions for a piece-wise polynomial model based
lossy compression. These algorithms can be further combined in more complicated structures to cover
the more advanced applications mentioned in the paper. The investigation in this paper revealed good
properties of the created partitions for high resolution disparity images, encouraging further study of
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these models for the new types of immersive image modalities that may benefit from precise geometry
modeling and compression.
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