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Abstract: Mess (disorder)—there are many different meanings related to this problem. The explicit
majority comes from the area of philosophical, social and medical sciences. In our paper, we try
to present the engineering aspect of the concept of disorder. We propose a mathematical model
which describes the effects and consequences concerning the process of making the mess. We use
Multi-Agent Modeling, where there are several independent agents with decision-making ability.
Each agent has the ability to communicate and perceive for achieving its own aim. We use square
grid n × n with objects which can be moved by agents to another places. The degree of disorder of
the system is examined by the value of entropy. Using computer simulation, we investigate the time
needed to find the desired thing in an environment in which agents (in real life, people) co-exist and
they have different tendencies to tidiness. The cost of mess is counted as the number of attempts to
access the object in the analyzed system and the time needed to locate the object.

Keywords: agent-based modeling (ABM); closed system; complex system; computer simulation;
disorder modeling; entropy; multiagent system

1. Introduction

The concept of order finds its beginning in philosophical, systemic and technical works.
The French philosopher Bergson [1] described order as a being that facilitates humankind’s functioning
in the world. Because of this being, humankind creates patterns of action, which are the basis for
realizing its practical goals. In turn, in the theory of disorganization and disorganizing behavior [2],
the notion of disorder (mess) as the unorganized accumulation of various objects was defined.
A disorder can be caused by both individuals and groups of participants (agents). We can talk
about a mess in the system when there the following is present [2]:

• disorder—a deviation from hierarchical order; when one or more agents are unsuccessfully trying
to create a hierarchical order (the deviation can be either intentional or unintentional);

• accumulation—the creation of disorder as a result of cumulation has a temporal dimension.
Messes can result from distinct processes, evolve at different speeds and persist for varying
durations. Messes can occur relatively suddenly when an exogenous shock destroys the
hierarchical order. However, messes can accumulate relatively slowly, as a result of messiness
(e.g., putting things back elsewhere); and

• a differentiation of objects—when there is no possibility of categorizing objects.

The attempt to organize a mess is called creating order. This process is complex and time-consuming.
Even if every participant (agent) creating order is guided by hierarchical categorization and a certain
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organizational scheme, there is still the risk of creating a mess [2,3]. Each participant (agent) organizing
the order according to his/her own rules, without prior arrangement of the order style, as a consequence,
generates a mess.

A source of inspiration on messes is complexity theory [4]. It examines entropy and the
emergence of order out of disorder. Further studies [5–7] provide insight on some of the benefits
and consequences of certain types of messes. Order, disorder (mess) and hierarchy are introduced
from certain perspectives—economic [8], political [9], sociocultural [10,11] and others [12]. A mess
(the subject of this article) may occur at various levels of analysis (at the level of the economy, the
industry or the organization), in different types of systems (individual, collective or formally organized)
and in various locations (room, file, servers with data or government). The permanent observation of
all areas and complex systems seems impossible.

Hence, modeling is a necessary mechanism for understanding complex phenomena [13,14]
such as messes [15]. We use models to gain an understanding of complex phenomena; indeed,
modeling is “a purposeful abstraction of reality” [16]. Reference [17] states, “a model should be a
close approximation to the real system and incorporate most of its salient features. On the other hand,
it should not be so complex that it is impossible to understand and experiment with it. A good model is
a judicious trade-off between realism and simplicity”. It is a necessary simplification of the real-world
system it models.

In the article, we consider an isolated, closed system composed of noninteracting identical
particles. The initial, hierarchical state of the system can be changed by agents interfering in the system
order by changing the position of individual particles. Based on the changes made, we calculate
the entropy value of the system and other indicators (access time and amount of access and effort),
providing the opportunity to assess how much the order of the system has been disturbed and what
consequences it brings for individual agents. In other words, we reflect the real situation associated
with a certain room, in which there are some objects whose location can be changed by certain people.
Changing the position of an object affects the time it takes to find the object and the effort associated
with finding it. In fact, this translates into a waste of time, for example, an employee looking for a
document that has not been put back to its original place.

Entropy [18] is understood as a measure of disorder [2]. The observation of patterns in nature
prompts the asking of questions about the origin of entropy. Understanding this phenomenon and
the role it plays in systemic thinking requires recalling the second law of thermodynamics, where the
entropy (the property of matter at the microscopic level) can be created but it can never be destroyed.

We deal with the concept of entropy every day. It is nothing else but a measure of the disorder
of the system—a mess that comes from interfering in the initial order. To answer the question as
to what the actual cause of the mess is, it would be necessary to carry out appropriate research,
involving people who would perform the changing of the place of different objects. It should be
noted at this point that the completion of such research in a reasonable time would be determined
by the rapid performance of instructions by those employed in the research, which seems impossible
to do. Fortunately, modern technology allows us to conduct this type of research using computer
simulation [19] and multiagent systems [20–22].

To answer the question about the impact of agents using resources on the creation of entropy, it is
necessary to use sociological [23] and cognitive sciences [24]. The analysis of several theories related
to this topic, including the theory of disorganization, the issue of cognitive science in connection
to game theory [25], which systematized resolving conflicts over access to resources, allows for an
understanding of the problem and the simulation of this phenomenon.

According to Reference [8], ordered systems are desirable systems. Therefore, the purpose of
this article is to check the unfavorable effects of the disorder of a closed system in the context of
time, effort and increasing entropy. To achieve the goal, we developed a mathematical model of the
studied phenomenon and implemented it in the form of a multiagent system that allows for conducting
research on various potential agents’ behaviors. For our task, we have put forward the thesis that
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different agents’ strategies of access to objects are the particles of the closed system that cause a diverse
disorganization of the system, which we can estimate using entropy values, as well as other parameters
such as the number of accesses to objects, access time to the facility and effort. In the subsequent part
of the article, we define all these measures.

The article is organized as follows. In Section 2, we include the related works. Section 3 presents
a theoretical background (the entropy calculation, description of the terms we have used and the
description of the model). Then, the experimental results and the discussion are shown. The last
section describes the conclusion.

2. Related Works

The selection of articles available in the scopus.com database allowed us for analysis of studies
related to multiagent modeling. The database has been questioned in relation to the following
keywords—multiagent, mess and disorder. 152 results were obtained. The vast majority concerned
only one of the listed phrases and they are not at all connected to presented approach. Another group
of results is a group of medical articles, in which disorder is the word determining the organization of
cells (e.g., skin, blood) of a specific case of disease.

Only a few studies were strictly related to multi-agent simulation in the aspect of the disorder factor.
For example, in Reference [26], the transfer of the messages in large distributed multi-agent systems is
studied. The authors have proposed the method of messages transfer through linking events. The results
show an efficient transmission of messages between agents, including extract associated events from
mess messages. In the aspect of manufacturing execution an interaction mechanism designed around
the concept of order and resource agents implementing the monitor-analyze-plan-execution loop have
been described in Reference [27]. In Reference [28] the authors investigate the multiagent evolutionary
games on a lattice and their extension by allowing the players to use additional neutral strategies that
provide zero payoffs for both players if one of them selects one of the neutral strategies. They conclude
that in the resulting n-strategy evolutionary games the analytical methods and numerical simulations
indicate continuous order-disorder phase transitions when increasing the noise level if n does not
exceed a threshold value. In Reference [29] authors have investigated how the frustration of a social
network influences the appearance of nonzero equilibria as a function of a scalar parameter playing the
role of social effort. In Reference [30] authors used the Lefebvre’s “algebra of conscience” to describe
decision-making strategies of agents simulating people with different brain dominance. They suggest
that the emergence of the two principal statistical distributions is able to illustrate different types of
society organization and also to be used in order to simulate market phenomena and psychic disorders,
when a switching of hemisphere dominance is involved.

The disorder can be also considered as social disorder generated by traffic congestion such as
delays, economic losses and environmental pollution in urban life. Using multiagent systems such
disorders are investigated for example in References [31–33].

In our approach, we rely on the concept of an “actor” defined by Hewitt [34], which is defined
as a self-contained, interactive and concurrently executing object which has some encapsulated
internal state and could respond to messages from other similar objects. As Hewitt stated, an actor
“is a computational agent which has a mail address and a behavior. Actors communicate by
message-passing and carry out their actions concurrently”. Wooldridge defined a deliberative agent
as “one that possesses an explicitly represented, symbolic model of the world and in which decisions
(for example about what actions to perform) are made via symbolic reasoning” [35].

Based on the experiences from previous studies, we propose a model that allows interaction
between agents based on the shifts of objects available on the n × n board. This is a kind of game where
agents perform specific tasks without assessing the profit and loss for each of them. The leitmotif is
to check the parameters of the system, that is, entropy, the level of system disturbance and the time
needed to organize the system. Agents reflect people in the real world, particles on the board mean
objects that surround us, shifting the particles means the process of using real-life objects and putting
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them back to the original place or to another, random place. The whole scheme reflects the coexistence
of people (e.g., in project team) who create a mess in the common space, making the task handled by
companions more difficult to perform.

3. Proposed Approach

3.1. Entropy Calculation

To determine the measure of disorder, let us briefly recall the basics of the notion of entropy and
its application to the system under study. Throughout the paper, we use the common Shannon entropy:

S = −
n

∑
i=1

pi log(pi). (1)

with pi being the probability of particular state. One can certainly expect that some more sophisticated
form of entropy, such as the generalized Renyi [36] entropy, could be used. Two factors, however,
in our opinion, motivate our choice. First, the simplicity of the Shannon formula and its generality
make it possible to more easily familiarize the results. Second, the selection of the α parameter (alpha
corresponds to the exponent of probability used in summation) for the Renyi formula would necessitate
a detailed discussion in the context of the studied problem. We can also show that often the studies of
extended propositions of entropies are considered as particular problems, such as in References [37,38].

The symbols we use in further considerations are as follows:

• N— the number of positions available for objects,
• n—the number of types of objects and
• ni, i = 1 . . . n—the number of objects of a particular type.

Additionally, the empty positions have to be considered in statistical calculations as a separate
(n + 1)th type of object. The number of empty places is certainly given as follows:

ne = N −
n

∑
i=1

ni, (2)

where the summation is taken over all possible configurations of system.
The basic assumption when taking into account the particular objects is that about their

nondiscernability or even identity. The problem can be discussed at different levels of generality.
The crucial remark, however, is that the set of the object’s features that are available to the observer
follow the Leibniz principle of identity. Therefore, the number of possible realizations of the system
equals the number of permutations with repetitions:

k =
N!

ne! ·∏ ni!
=

N!
(N −∑ ni)! ·∏ ni!

(3)

In this paragraph we consequently denote—the number of configurations by k, their probabilities
by p and entropies by S; the index corr corresponds to the correct configuration while ncorr to the all
incorrect ones.

Among the k arrangements given by Equation (3) certainly kcorr = 1 is correct, so the probability
equals 1 and the entropy Scorr = 0. To determine the entropy of the disordered state, we have to
make some additional assumptions. In the initial phase we have no knowledge about any position
of an object, so we cannot reduce the remaining number of k− 1 configurations. The exact value of
entropy depends here on the likelihood of realization of the particular configuration. Since we have
no suggestion about the preference of different patterns, we can assume that every configuration is
equally probable and this assumption will be used throughout the whole paper. Therefore, we can
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write the following for the entropy of the disordered state: Sncorr = −(k− 1) · pncorr · lg(pncorr). Since
pncorr = 1/(k− 1), we can finally write the following:

Sncorr = −lg(pncorr) = −lg
( 1

k− 1

)
. (4)

The situation presented above is certainly well known and can be, on the other hand, considered
an extreme case. In reality, we have some knowledge about the system that reveals the fact that we can
enlist some objects as occupying the appropriate positions. For the localization of other objects, we can
assume, however, one of two statements:

• We either have no information about other objects or we are not interested in them. This leads to
the conclusion that some of the objects not enumerated during the procedure described above can
occupy their correct position. For some reason, we do not have this information.

• We are sure that no one from other objects is located in an appropriate position.

We can imagine both situations as follows—the first one corresponds to the covering of the whole
board of the game with some overlay, while the second one corresponds to the walkthrough of all
positions with the expected presence of some objects with a negative result. The choice of one of the
presented models strongly influences the results due to the differences in the amount of information
provided by both methods. Our knowledge about the system is much greater when using the second
approach compared to the first one. Certainly, the second approach restricts much more the entropy
value and we decided to use further the first one.

We additionally have to define two notions related to the occupied positions. Let the following hold:

• M—the number of positions that are occupied by the correct, presumed object and
• mi, i = 1 . . . n—the number of objects of a particular type in the correct positions.

Certainly, ∑n
i=1 mi = M.

The crucial observation is now the one in which we have exactly the same question as earlier in
this section. We must simply distribute ∑(ni −mi) objects in N −M positions. Therefore, once more,
the permutations with repetitions are the solution to the problem and the appropriate values can be
calculated as follows. The number of configurations (3) corresponding to the previous formula are
as follows:

k1 =
(N −M)!

(ne −me)! ·∏ (ni −mi)!
. (5)

In addition, the entropy is simply the modification of formula (4) using the above value of k1:

S1 = − lg(pk1) = − lg(
1

k1 − 1
), (6)

where ne is the number of correctly unoccupied (empty) places and among the me which should be
unoccupied. We use the index 1 just to distinguish this case from the previously described one.

3.2. Descriptions of the Terms Used

In this section, we present a few terms used in the article for better understanding the model and
discussion:

• The system (the closed system)—a finite set of objects whose location will change depending on
the requests of agents of the multiagent system.

• The object—one of the elements of the closed system. The number of objects in the system can be
any number. For example, for a 4 × 4 grid, the maximum number of objects is 16.

• Dispatcher—the agent managing the set of objects. This agent receives requests to access the
selected object by agents: Guest 1, Guest 2 and Guest n. If the Guest agents request access
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to the same object, the Dispatcher grants access to the object depending on the strategy being
considered—randomly or in accordance with the principles of game theory.

• Guest—one of many agents in a multiagent system who is trying to access objects in the system.
Before starting the simulation, he/she writes to his/her own register the information about the
layout of objects (objects’ positions in the matrix) because, in the beginning, his/her objects exist
only in the Dispatcher matrix. The Guest agent, after he/she receives the object, may postpone
it to the same place or place it in a different place with the probability level set for him/her.
This process is called the disorganization of the system or the generation of a mess. The Guest
agent requests the object from the Dispatcher in accordance with the tactics used—in the order of
agents or in accordance with the tactics of game theory.

• The interaction between Dispatcher and Guest—a Guest agent selects from the register the
coordinates of the object that he/she is trying to access and then sends it to the Dispatcher with
the request to release the object (Figure 1). In response to the request, the Dispatcher sends the
object, marking its place as a blank. Once the Guest finishes using the object, he/she sends it back
with the coordinates of the place in which he/she wants to place the object. The Dispatcher saves
the object in accordance with the transferred coordinates and then terminates the communication
with the Guest agent by replying OK. Such a series of actions is a part of the effort of the Guest
and it is equal to 2 [Request, Return]. The time when one application proceeds (e.g., Request) is
called the time of the agent’s access to the object.

• Effort—the number of attempts to access a given object regardless of what action the Guest agent
performs. One cycle associated with picking up and returning an object yields an effort equal to 2.

• The time of the agent’s access—the access time to the expected object, from the moment the Guest
sends requests to the Dispatcher until he/she receives the object.

• Entropy—the measure of the system disorder.

Figure 1. The interaction between Dispatcher and Guest. Dispatcher manages the matrix of
objects—gray squares symbolize the free space in which Guest agents can postpone downloaded
objects, colored squares are objects of various types. The column of the colored squares at the Guest
agent symbolizes the register of object positions in the matrix managed by the Dispatcher agent (square
number 1 is the object on position [1, 1] in the Dispatcher matrix, and so on).

3.3. Multiagent Model

Wooldrige [39] has defined the concept of an agent as “an independent computer system, placed
in a specific environment, able to undertake autonomous actions and decisions in order to implement
specific tasks”. Huhns and Singh [40] have defined this concept as “a computer entity capable of
reacting, inferring, initiating action and communication”.

A multiagent system is a system consisting of many independent, albeit cooperating, agents.
This is what distinguishes a multiagent system from other distributed systems, wherein the large
autonomy and activity of individual elements, as well as the openness of the architecture, is obtained
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because of the standardization of communication. Multiagent systems enable the construction of
diverse applications, which are easily scalable and transformable. The standards presented by the FIPA
organization document all the relevant patterns of the multiagent system, including the communication
of agents and languages of the message description (metalanguage), agent management, the structure
of services and elements of the multiagent system. Normative architecture has been defined in
documents collected under the FIPA Abstract Architecture. It standardizes the basic elements of the
system—communication mechanisms, system management tools, services and requirements for the
agent’s interface.

We have implemented a multiagent system based on the JADE (Java Agent Development
Framework) platform, which is compliant with the FIPA standard, characterized by open source,
code and is made available under the LGPL license. The concurrent agent functions were performed
using behaviors (Figure 2). The behaviors are used to control complicated, sequential agent work
processes. Concurrency is performed on the basis of the cyclic activation of a given behavior, one after
the other, which allows for the solving of the problem of synchronizing access to data.

Figure 2. The agent architecture based on behaviors.

Let us denote agents as A1, A2, . . . , An and the set of objects as O = o1, . . . , on. In the unit of
time t, any agent can possess only one unique object oi ∈ O. Agents have knowledge about the
location of objects compatible with the collection G of the Dispatcher. Guest agents synchronously
or asynchronously request a specific object for the resource manager (Dispatcher agent) (Figure 3).
For the sake of the simplicity of further reasoning, two agents, A1 and A2, were assumed to be labeled
as Guest1 and Guest2, respectively.

Figure 3. Agents send a request for objects.

The Guest agent receives the requested object and, after its use, returns the object in the place
originally assigned to it posi ∈ G or in a random place with the probability P from a set of free locations
Gempty. If the Guest agent places the object in a different location, it records the new location of the
object in its memory (Figure 4).
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Figure 4. Agents give back the objects. Guest1 has exchanged object 2 with 4.

In the situation where both agents request access to the same object, to whom it will be assigned
can be selected in two ways. The first method is to randomly select one of the agents with the
probability of getting access P = 0.5. The second method consists of selecting an agent in accordance
with the tactics of game theory (hawk and pigeon model). If both agents have the same tactic (both are
hawks or both are pigeons), the probability of winning is the same, P = 0.5. Implementing the hawk
tactics, each agent loses 0.5 seconds for combat, while 2 seconds for pigeon tactics. An agent that
does not receive the requested object in a given queue, in the next iteration, requests the object again
(Figure 5).

Figure 5. Dispatcher sends objects in accordance to tactic.

If there is a request to issue an object that has been moved to a place other than its original one,
then the process of searching for the object takes place. The Guest agent starts this process from the
first to the last object in its register. At the same time, it stores in its registry the current arrangement of
objects from the matrix belonging to the Dispatcher agent (Figures 6 and 7).

Figure 6. Agent Guest 2, requested the access to the object, which in the previous moment of time was
postponed by the Guest 1 agent to a different place. It receives the “Not Found” message from the
Dispatcher agent.

Figure 7. The Guest 2 agent reports the next possible coordinates of the searched object. When it hits
the right one, it receives the “Found” message from Dispatcher.
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Agents can also work in cleaning mode. In this mode, the Guest agent finds in the registry
the objects postponed by him/her in a place other than the initial one and then sends them to the
Dispatcher agent with the “Clean” action. The Dispatcher agent, based on the initial coordinates,
places the object in the originally assigned place and then responds to the Guest agent with the message
“Cleaned” (Figure 8).

Figure 8. The situation of cleaning the system by the Guest 2 agent.

It is worth noting that agents do not act in isolation. Agents perform operations on shared objects,
and even if the agent knows where he put down the object, he does not know what the other agent did.

3.4. Model Validation

To validate the model, a simulation consisting of two stages was performed—(1) disorganization
of the system by two agents and (2) cleaning the system. Figure 9 shows the layout at the beginning of
the simulation, after the first stage and after the second stage of the simulation. During the first stage,
each of the agents requested 50 times from the Dispatcher to access the objects, assuming that Guest 1
places objects in their original location and that Guest 2 places objects in random, empty places with a
probability of 0.2. The second stage, cleaning the system, was carried out until the system returned to
the initial state (all objects were in their original places). Entropy was used to assess the state of the
system and it should have the same value at the beginning and the end of the simulation.

Figure 9. The state of the system before starting the simulation (left), after the first simulation stage
(middle) and after the second simulation stage (right). Each color describes the type of elements. Here
are four types of elements and each type consists of 30 elements.

The placement of objects in the Dispatcher’s matrix has not changed relative to the initial state.
The entropy value of the system in the individual simulation steps is shown in Figure 10.
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Figure 10. Entropy of the closed system for the simulation with two stages—disordering and cleaning.

During the simulation, agents obtained access to objects 158 times. The entropy of the system
increased during its disorganization by agents (stage 1). When the cleaning process started (stage 2),
the entropy value of the system started to decrease until the initial value equaled 0. An unsteady
graph line results from the system operation in the asynchronous mode, in which agents access the
objects alternately and entropy is counted after each returned object, so its measurement during the
test often falls out when one of the agents has taken the object and has not returned it yet. The first
stage lasted 100 iterations, during which the system’s entropy increased up to a maximum value of
30.58. In subsequent iterations, the entropy decreased until it reached the value of 0 at the end of the
second stage of model validation process. The system returned to its initial state within 30 seconds.
Since the ordering of the system ended with the initial state of the system, it means that the developed
model and system work correctly.

The time of access to objects for both agents is different (Figure 11). This results from the
situation where a given agent tries to access an object that has been moved to a location other than the
original one.

Figure 11. The access time of individual agents for the case of cleaning a temporarily unordered system.

4. Numerical Results

This section presents the results of the simulations, assuming that both agents (1 and 2) place
objects in a place other than the original one. Subsequent research concerns various cases:

• Simulation 1—Agent 1 places the collected items in a different place with a probability of 0.9,
while Agent 2—with a probability of 0.1 (Figure 12).

• Simulation 2—Agent 1 and Agent 2 place the collected items in a different place with a probability
of 0.1 (Figure 13).

• Simulation 3—Agent 1 and Agent 2 place the collected items in a different place with a probability
of 0.5 (Figure 14).
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• Simulation 4—Agent 1 and Agent 2 place the collected items in a different place with a probability
of 0.9 (Figure 15).

Figure 12. The state of the system for the simulation 1, at the beginning (left) and after the simulation
(right). Each color describes the type of elements. Here are four types of elements and each type
consists of 30 elements.

Figure 13. The state of the system for the simulation 2, at the beginning (left) and after the simulation
(right). Each color describes the type of elements. Here are four types of elements and each type
consists of 30 elements.

Figure 14. The state of the system for the simulation 3, at the beginning (left) and after the simulation
(right). Each color describes the type of elements. Here are four types of elements and each type
consists of 30 elements.
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Figure 15. The state of the system for the simulation 4, at the beginning (left) and after the simulation
(right). Each color describes the type of elements. Here are four types of elements and each type
consists of 30 elements.

The set (0.1, 0.5, 0.9) was chosen as a case of boundaries values and the middle value. The chosen
set is enough and reflects the characteristics of the system and the process.

Each simulation lasted 300 seconds. Each simulation (1)–(4) was repeated 100 times. Figures 12–15
show the example layout before and after each simulation. Analyzing individual images, it is difficult to
discern which layout has more disorder. For this reason, the entropy charts for individual simulations
(Figure 16) are presented and the entropy values for all simulations are compared in Table 1.

Figure 16. The entropy for the simulation 1 (top left), simulation 2 (top right), simulation 3 (bottom
left) and simulation 4 (bottom right).
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Table 1. Entropy values of the simulated system for individual simulations.

Simulation Probability of Number of Max. Entropy Average
Number Agents A1 and A2 Interactions Entropy

1 A1[0.9], A2[0.1] 792 221.63 179.49
2 A1[0.1], A2[0.1] 882 122.26 72.74
3 A1[0.5], A2[0.5] 517 202.69 141.42
4 A1[0.9], A2[0.9] 439 212.19 162.57

It can be observed that the change in the arrangement of the system (creating the mess) increases
the entropy of the simulated system, which translates into a reduction in the number of accesses to
facilities by individual agents. In case the desired object is not in its original location, the agent searches
for it until it is found. This action takes the agent’s time, so during the simulation, the agent can find
fewer objects than in the case of an ordered system.

Some interesting effects can be observed when analyzing the time characteristics of the
state-change process. For all performed simulations, we prepared four plots that can be observed in
Figures 17 and 18 for the first simulation. The first pair of plots (Figure 17) shows the relation between
the effort of the particular agent and the time spent on this effort. The crucial observation is that the
probability of placing the collected item in a different place influences the apparent dependencies.

In the selected set of simulation parameters enlisted in the beginning of this section, certainly, the
first simulation differs from another one due to the asymmetry of probabilities. This asymmetry is
reflected in the shape of time versus effort plots (Figure 17). An interesting effect can be observed when
analysing the access time versus effort plot. While for the second agent, whose activity is described
by the probability 0.1, the points from simulation are concentrated along the straight line, for the first
agent (probability 0.9), they are organized in the conic sector of plot with the higher values almost two
times greater than the minimal one. Since such effect is not observed for other simulations, where the
values of probabilities are equal we can connect it to the asymmetry of probabilities.

Figure 17. The relation between the effort and access time for simulation 1.

Figure 18. The cumulative distribution of effort and average single access for simulation 1.

Figure 18 reflects the abovementioned effects. The distributions are presented here in two ways.
In the left plot, there is a cumulative distribution of effort, while in the right one, there is the average
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access time. As seen, the distribution of effort measured in the number of attempts is exactly the same
for both agents. In order to find some regularities we make some simple statistical analysis of these
distributions. Indeed, we performed the regression calculations for the cumulative distributions of
effort values. The results, shown in Table 2 in the form of correlation coefficient and the regression
coefficient confirm the exponential character of these dependencies. However, significant differences
are revealed in the right plot. With the different values of probabilities, not only quantitative differences
exist but also qualitative ones. For Agent 1, we observe the same values as the efforts in the exponential
distribution; however, for Agent 2, this distribution is in the interval (200, 400) ms and is almost
uniform, leading to the linear run of the cumulative distribution.

Table 2. The regression coefficients for time analysis.

Simulation Probability of Lowest Average Effort Average
Number Agents A1 and A2 Attempt Time [s] Attempt Time [s]

1 A1[0.9], A2[0.1] 0.201 −0.0445 (0.999) −0.0341 (0.982)
2 A1[0.1], A2[0.1] 0.236 −0.0511 (0.997) −0.0152 (0.993)
3 A1[0.5], A2[0.5] 0.201 −0.0595 (0.997) −0.0265 (0.992)
4 A1[0.9], A2[0.9] 0.201 −0.0672 (0.997) −0.0297 (0.996)

For the second simulation, we prepared the same figures as those for simulation 1. They are
shown in Figures 19 and 20. Since both agents act here in the same way, we expect the compatibility
of all characteristics. This fact is confirmed in the figures. The image of the access time versus effort
dependencies looks identical for both distributions.

Figure 19. The relation between the effort and access time for simulation 2.

Figure 20. The cumulative distribution of effort and average single access for simulation 2.

The distributions of effort as well as for the average access time are the exponential ones.
For simulation 3, we repeat the determination of access characteristics, visible in Figures 21 and 22.

Let us here mention only briefly that, qualitatively, the result is the same as that in simulation 2.
The plots in Figure 21 are indistinguishable one from another and the distributions in Figure 22 on
both plots and for both agents can be described by the exponential distribution.
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Figure 21. The relation between the effort and access time for simulation 3.

Figure 22. The cumulative distribution of effort and average single access for simulation 3.

Additionally, the access characteristics for simulation 4, presented in Figures 23 and 24, follow the
regularity observed earlier. It concerns the similarity of access time versus effort plots, as well as the
exponential character of both distributions.

Figure 23. The relation between the effort and access time for simulation 4.

Figure 24. The cumulative distribution of effort and average single access for simulation 4.

Table 2 presents the comparison of regression coefficients obtained for all 4 simulations. The successive
columns present as follows:

• the lowest average attempt time—the linear regression coefficient calculated for the lowest line of
attempt time versus effort plots.
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• effort—the exponential regression coefficient for the distribution of effort. In the parentheses—the
correlation coefficient.

• average attempt time—the exponential regression coefficients for the distribution of average
attempt time. In the parentheses—the correlation coefficient.

The data in Table 2 show some similarities but also some deviations from the predicted order.
When analyzing the second column related to the linear plots describing the simulations we can
observe that, while other values are the same, the result for simulation 2 (both probabilities equal 0.1)
shows the slope is higher by a factor of almost 20%. This effect cannot be explained with the small
statistics since every plot was created for 100 simulation runs. The values in the third and fourth
columns are calculated with the assumption that all distributions, for efforts as well as average attempt
times, are the exponential ones. This assumption can be confirmed by the, mentioned earlier, regression
analysis. Additionally, the result, which is not shown in the table, indicating that the description of the
effort distribution that is exponential is the weakest (also taking into account the statistical description)
among all presented cases leads to the conclusion that a more detailed analysis of the data is necessary.

This remark is confirmed by the value in the first row. The coefficients concerning the case with
mixed probabilities {0.9, 0.1} can be in no way explained by mixing the values for these parameters
separately, which means that the system with different probabilities has significantly different dynamics
than those of the uniform one.

5. Discussion

Let us start the recapitulation from some general remarks. It turns out to be a difficult task to study
the order versus disorder relationship when these notions have to be related to some particular systems
as their features. Certainly, we can think about the concept of order on several levels. For example,
when looking at it etymologically, we can see the systematic, regular distribution or the arrangement
of some objects or ideas (things, plans, intentions, etc.). It is unambiguously related to the proper
harmony describing this system.

For us, the crucial scientific meaning lies in the three kinds of order that are usually defined as the
mathematical one, the social one and the architectural one.

In the presented paper, we focused on the mathematical order, which is one of the original concepts
of mathematical logic—the relationship between objects in a closed system. Such an ordering we
contrast to chaos, which is understood as the stochastic behavior of deterministic physical systems [41].

Our closed system is limited when taking into account the number of elements and, following this
fact, the number of states. The number of elements and states considered a mess (or disorder) depends
on the assumed definition of what influences the detailed definition of entropy. We use the ABM
as the supplemental mechanism for studying the effects of producing of a disorder, distinguishing
the different modes of people’s behavior. That is why we present the different types of individuals’
behaviors by the different parameters of agents. The successive simulations are performed for the
probabilities of creating disorder and are chosen from the set {0.1, 0.5, 0.9}.

The study shows that the model of entropy allows for the evaluation of the ordering state of
a closed system. On the other hand, entropy is not the only measure that helps us to understand
completely the results observed during the simulation. It turns out that the number of attempts when
accessing particular objects can introduce considerable interesting information. We understand it as a
trial to find an object that has to be found in some expected position. Let us show an example. During
simulation 1, agent 1 makes, on average, approximately 700 trials to access the objects, while agent 2
makes approximately 50 trials.

Agent 2 tries to keep the order (places the object in a random place with probability 0.1) but
his/her access is permanently obstructed. This is because agent 1 has a high probability (0.9) of not
placing objects correctly. This fact is also confirmed by the average efforts: 2 and 145 for the agents 1
and 2, respectively. Some sudden changes for this value correspond to these iterations when agent 2 is
forced to look for the object. The values of effort for agent 1 are low because he/she knows the current
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coordinates of the objects that were earlier rearranged by him/her. Therefore, only agent 2 need not
search for it but agent 1 has no knowledge about the fact of the rearrangement.

For comparison, we can point out every other simulation where both agents put the objects in
random places with the same probability. Both then have a comparable problem of finding objects.

During the numerous simulations, we notice that the increase in entropy explicitly causes the
decrease in the number of accesses to the objects. With the maximum value of entropy, this number is
as much as two times lower than that of the earlier accesses.

During the simulations, when the probability of random replacement is extremely high (0.9),
the number of accesses is the lowest among all simulations, despite the fact that entropy does not
reach the highest possible value (during the assumed simulation time). On the other hand, the entropy
shows the fastest increase when at least one of the agents generates a mess with high probability.

We can also formulate some more general conclusions that may be well known from everyday life.
With increasing disorder in some common space, shared by several persons, the time needed to localize
the necessary object also increases but the mess-generating people are able to localize them faster.

The model and approach that are presented here in the initial version, have, in our opinion,
large possibilities when used in a study of some theoretical models, like the resource assignment
or some optimization mechanisms as well as in real social behavior (we think here especially on
the inference processes and mutual relations between cooperating individuals, for example, house,
children’s room, office, construction crew, project team). We are going to concentrate on the problem of
different agents’ strategies, especially taking into account their purposefulness.

6. Conclusions

As it was mentioned in the introduction and related work, there is a large bibliography of papers
related to the problem of disorder. Here, the explicit majority comes from the area of social and
philosophical sciences. In our paper, we tried to present another aspect of the concept of disorder.
We focused more on the mathematical description of the effects and consequences concerning the
process of making the mess instead of its sources and psychological reasons. By using multiagent
modeling, we showed the following:

• the measure of entropy is useful and appropriate when describing the disordering of the system;
• we should consider other measures together with entropy, for example, the effort or average

number of attempts;
• the coexistence of different individuals with different tendencies to tidiness interferes more in the

one more inclined to keep the order; and
• the time of ordering the system increases with the increasing time of making a mess.

We showed the correctness of the main idea discussed in the paper. The different modes of
behavior of agents/individuals influence the organization of a closed system and it is possible to study
this effect with the measurement of entropy and some additional proposed parameters.

Further work will focus on the inclusion of agents’ strategies taken from the game theory.
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