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Abstract: The generalized maximum correntropy criterion (GMCC) algorithm is computationally
simple and robust against impulsive noise but it suffers from slow convergence speed as it is derived
and based on stochastic gradient, which only use the current data sample. In order to deal with
this issue, a smoothed GMCC algorithm (SGMCC) is proposed. In the SGMCC algorithm, instead
of taking the exponential weighted average of gradient vector to approximate the expectation of
the gradient vector, we take the exponential weighted average of the variable step-size so that the
SGMCC algorithm can be viewed as a sign GMCC algorithm with smoothed variable step-size.
Moreover, convergence performance analyses are derived in terms of variable step-size, mean-square
stability and steady-state behavior to demonstrate the robustness of the proposed algorithm. At last,
simulation comparisons show that the proposed algorithm is robust against impulsive noise and
converges fast with lower computational complexity. Also, for the steady-state behavior, simulation
results verify that the simulated value matches well with the theoretical one.

Keywords: generalized correntropy; exponential weighted average; robust adaptive filtering
algorithm; impulsive noise

1. Introduction

Information theoretic learning (ITL) [1] methods have been shown to be efficient approaches
in non-Gaussian signal processing due to their robustness against impulsive noise. The maximum
correntropy criterion (MCC) [2,3] is one of the most popular optimization criteria in ITL due to its
simplicity and robustness. Recently, it has been successfully applied in various signal processing
scenarios, particularly the adaptive filtering [4–10].

The introduction of the correntropy as a cost function into adaptive filters was proposed in
Reference [11]. The theoretical analysis in Reference [12] has shown that the steady-state excess mean
square error (EMSE) of the MCC algorithm is controlled by the step-size and the kernel width. Various
kernel width selection methods for the MCC algorithm have been investigated. Adaptive kernel
width adjusting methods were proposed in References [6,7] to improve the convergence speed of the
MCC algorithm.

Just like the least mean square (LMS)-type algorithms, the MCC algorithm with fixed step-size is
insufficient to achieve a good tradeoff between fast convergence and low steady-state misadjustment.
The adaptive variable step-size technique is a promising way to deal with the conflicting requirements
of faster learning speed and lower steady-state misadjustment error. Many varieties of variable
step-size LMS-type algorithms have been proposed to improve the convergence performance [13–16].
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However, many variable step-size methods based on instantaneous error cannot be directly applied in
the MCC algorithm. Of course, just a few variable step-size methods for the MCC algorithm have been
developed to improve the convergence performance in recent years. A convex combination of two MCC
algorithms with different step-sizes was proposed in Reference [4]. The mixing factor in this method
was adaptively updated so that the MCC algorithm with larger step-size can improve the convergence
speed at the beginning while the other with smaller step-size can achieve a lower misadjustment at
steady state. The combinational approach can achieve desirable convergence performance but its
computational complexity was more than two times higher than that of the standard MCC algorithm
since two MCC algorithms were adopted in parallel. A curvature based variable step-size method
for the MCC algorithm was proposed in Reference [17]. This developed method can improve the
convergence speed at the initial stage especially when the weight vector is far away from the optimal
solution.

In recent years, a generalized maximum correntropy criterion (GMCC) has been proposed, which
adopts the generalized Gaussian density [18–20] function as the kernel function (not necessarily a
Mercer kernel [21]) and the type of this correntropy is called the generalized correntropy. Similar to
the original correntropy with Gaussian kernel, the generalized correntropy can also be used as an
optimization cost in the estimation-related problems. Under the GMCC criterion, a stochastic-gradient
based adaptive filtering algorithm, called the GMCC algorithm, was developed [21]. We can see that
the GMCC algorithm was derived and based on stochastic gradient which only uses the current data
sample. Although the GMCC algorithm is computationally simple and robust in the presence of
impulsive noise, it suffers from high steady-state mean square deviation (MSD), which also can be
verified from the next simulation.

In this paper, a smoothed GMCC algorithm (called SGMCC) is proposed to improve the
performance of steady-state MSD in the presence of impulsive noise. To avoid the high steady-state
MSD caused by the stochastic gradient in the GMCC algorithm, we take the GMCC algorithm as a
sign algorithm with variable step-size. Then, we take the exponential weighted average of the variable
step-size rather than the gradient vector, which contributes to reduce the computational complexity
and further improve the convergence speed. At last, we present the convergence performance analyses
of the proposed algorithm to demonstrate its robustness. The main contributions of our paper can be
summarized as follows:

1. We propose a novel SGMCC algorithm, which can improve the performance of steady-state MSD
and is robust against impulsive noise.

2. To demonstrate the robustness of the proposed algorithm, we derive the convergence performance
analyses from three aspects including the variable step-size, mean-square stability and
steady-state behavior.

3. Simulation results demonstrate that the proposed algorithm is robust against impulsive noise and
computationally simple. Also, the SGMCC algorithm owns faster convergence speed compared
with other robust adaptive algorithms.

The rest of the paper is organized as follows. In Section 2, after a brief review of the original
GMCC algorithm, a SGMCC algorithm is proposed. In Section 3, the convergence performances of the
SGMCC algorithm are studied. In Section 4, Monte-Carlo simulation results are presented to confirm
the desirable performance of the proposed algorithm. Finally, a conclusion is given in Section 5.

2. SGMCC Algorithm

Assume the received signal dn is obtained from an unknown system W∗

dn = WT
∗Xn + vn (1)
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where yn = WT
∗Xn denotes the output of the unknown system, Xn is the M× 1 dimension input signal

vector at nth time index and W∗ denotes the M× 1 dimension unknown system vector that we wish
to estimate. Here, (·)T means the vector transpose operator.

In Equation (1), vn denotes the Gaussian mixture distribution noise, which is modeled as a random
variable of 2-components Gaussian mixture distribution with mixed coefficient pr. Its probability
density function can be expressed as follows:

MG (σ1, σ2, pr) = (1− pr)N(0, σ2
1 ) + pr N(0, σ2

2 ) (2)

where the first Gaussian distribution N(0, σ2
1 ) generates the normal Gaussian noise with probability

(1− pr), the second Gaussian distribution N(0, σ2
2 ) generates impulsive noise with probability pr.

Usually, σ1 � σ2 and the impulsive noise occurrence probability pr is set as a number that is
near but larger than 0. σ2

1 and σ2
2 denotes the Gaussian noise variance and the impulsive noise

variance, respectively.

2.1. Review of the GMCC Algorithm

As it is well-known that MCC has been successfully applied in various non-Gaussian signal
processing matters due to its robustness properties [5,6,8,22]. As a non-linear local similarity measure
between two random variables x and y, the correntropy is defined by [2,3]:

Vσ(x, y) = E[κσ(x, y)] (3)

where κσ(·) denotes a shift-invariant Mercer kernel. The kernel function is a key factor of the
correntropy that dramatically affects the similarity of two random variables. In most case, the Gaussian
density function is used as kernel function, which is defined as follows:

κσ(x, y) = exp

(
−|x− y|2

σ2

)
(4)

However, for all non-Gaussian signal processing applications, the Gaussian density function is
not always the best kernel function. In order to deal with this issue and take full advantage of the
potential robustness properties of the correntropy, the generalized Gaussian density function was
proposed as a kernel function of the correntropy in Reference [21]. The generalized Gaussian density
function with zero-mean is given by References [18,19] as follows:

Gα,β(x, y) =
α

2βΓ (1/α)
exp

(
−
∣∣∣∣ x− y

β

∣∣∣∣α) (5)

where Γ (·) is the gamma function, α > 0 denotes the shape parameter and β > 0 denotes the scale
parameter. For simplicity, α is usually set as an integer value. Note that the Gaussian kernel is a special
case of the generalized Gaussian density function when α = 2.

In practice, the distribution of the data is usually unknown and only a finite number of samples
are available. It is common to use these samples of the data to approximate its expectation, so the
generalized corretropy can be estimated by [21]:

V̂α,β(X, Y) =
1
N

N

∑
i=1

Gα,β(xi, yi) (6)

Just like the correntropy, the generalized correntropy can be used as a cost function in adaptive
filters. Hence, the generalized correntropy between the desired signal dn and the filter output yn can
be shown as a cost function by [21]:
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JGMCC = E
[
Gα,β (en)

]
= γα,βE

[
exp

(
−λ|en|α

)]
(7)

where en = dn − yn is the instantaneous prediction error, γα,β = α
/
(2βΓ (1/α)) represents the

normalization constant and λ = β−α denotes the kernel parameter.
The goal of the adaptive filtering algorithm is to find an estimator of the unknown system vector

which maximizes the generalized correntropy of en. The optimal solution of this cost maximization
problem can be solved by a stochastic-gradient based adaptive algorithm, called GMCC algorithm [21].
The update expression of the weight vector in the GMCC algorithm can be derived as [21]

Wn+1 = Wn + η exp
(
−λ|en|α

)
|en|α−1sign (en)Xn (8)

where η is the step-size parameter and sign() is a universal sign function. It is obvious that the GMCC
algorithm can be viewed as a sign algorithm with variable step-size η exp

(
−λ|en|α

)
|en|α−1.

2.2. SGMCC Algorithm

As mentioned above, although the GMCC algorithm is robust and computationally simple,
it suffers from high steady-state MSD as it is derived and based on stochastic gradient which only
uses the current data sample. The instantaneous prediction error en fluctuates randomly with the
background noise vn and the input vector Xn. The random fluctuations of en and Xn can disturb the
update of the weight vector and thus lead to a slow convergence speed.

To deal with this issue, it is common practice to take the average of the latest N sample data
to approximate the expectation of the gradient vector, which can statistically reduce the adverse
effects caused by the randomness of en and Xn. Hence, the update expression of the weight vector in
Equation (8) can be rewritten as follows:

Wn+1 = Wn +
η

N

n

∑
i=n−N+1

exp
(
−λ|ei|α

)
|ei|α−1sign (ei)Xi, (9)

where ei = di −WT
nXi is the prediction error at nth iteration for the input vector Xi. It is worth noting

that the calculation of each instantaneous prediction error ei (i = n − N + 1, ..., n) is based on the
present weight vector Wn, so the weight update in Equation (9) needs N times of computational cost
and storage cost than that of Equation (8).

In order to reduce the computational cost and the storage cost, the exponential weighted average
of the gradient vector can be adopted to approximate the expectation of the gradient vector, which is
shown as follows:

p̄n = θp̄n−1 + (1− θ) exp
(
−λ|en|α

)
|en|α−1sign (en)Xn, (10)

where p̄n is the exponential weighted average of the GMCC gradient vector with a smoothing factor
θ(0 < θ < 1). In this case, the update expression of the weight vector can be further expressed as

Wn+1 = Wn + ηp̄n. (11)

Although computational cost of Equation (11) is much lower than that of Equation (9), it still needs
extra N multiplications and additions than that of Equation (8). In order to reduce the computational
cost derived from gradient vector, we take the GMCC algorithm as a variable step-size sign algorithm
by taking the exponential weighted average of the variable step-size instead of that of gradient vector.
The exponential weighted average of the variable step-size, µn , can be expressed as follows:

µn = θµn−1 + (1− θ) exp
(
−λ|en|α

)
|en|α−1. (12)
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The replacement of the variable step-size from gradient vector can further reduce the
computational cost and lead to a smoothed GMCC algorithm, namely SGMCC. The weight vector
update of the SGMCC algorithm can be expressed as follows:

Wn+1 = Wn + ηµnsign (en)Xn. (13)

For convenience, the proposed SGMCC algorithm is specifically summarized in Algorithm 1.

Algorithm 1 SGMCC Algorithm.

Input: Xn, dn, α, λ, θ, η.
Initialize: W1 = 0, e0 = d1, µ0 = 0.

while {Xn, dn} available
en = dn −WT

nXn,
µn = θµn−1 + (1− θ) exp

(
−λ|en|α

)
|en|α−1 according to Equation (12),

Wn+1 = Wn + ηµnsign (en)Xn according to Equation (13),
end while
W∗ = Wn+1,

Output: estimated unknown system W∗.

2.3. Computational Complexity

The complexity of the adaptive filtering algorithm is one of the important factors to measure its
performance. The recursive weight updates of adaptive filtering algorithm generally include addition
and multiplication operations. Since the complexity of multiplication operations is much higher than
that of additive operations, in the iterative update process, the number of multiplication operations is
usually used to calculate the computational complexity of the adaptive filtering algorithm. Next, we
will make a comparison of the computational complexity between SGMCC and several other robust
algorithms. The detail is summarized in Table 1.

Table 1. Comparison of computational complexity.

Algorithm Computational Complexity

CMCC [4] 6M + 10
VSSA [16] 5M + 4

GMCC [21] 2M + α + 4
SGMCC 2M + α + 6

As one can see from Table 1, the computational complexity of the proposed SGMCC algorithm and
the GMCC algorithm are much lower than that of the other algorithms. The SGMCC algorithm owns
almost the same the computational complexity as the GMCC algorithm. Those two algorithms require
about 2M + α (usually α < M) multiplications, which is just about half of that required by other robust
algorithms. The CMCC algorithm requires the most multiplication operations since it has to calculate
two MCC algorithms with different step-sizes and update the combination parameter to combine
those two MCC algorithms. The VSSA algorithm still requires more multiplication operations than the
proposed SGMCC algorithm as this algorithm involves the calculation of the weighted average of the
gradient vector and its square norm.

3. Convergence Performance Analysis

3.1. Analysis of the Variable Step-Size

Since the proposed SGMCC algorithm can be viewed as a variable step-size sign algorithm,
it is necessary to evaluate the variable step-size theoretically. For the proposed SGMCC algorithm,
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the initial value of the variable step size is usually set as µ0 = 0, so the variable step size can be
expressed as

µn = (1− θ)
n

∑
i=1

θn−iexp
(
−λ|ei|α

)
|ei|α−1. (14)

Equation (14) shows the transient value of the variable step-size. If the transient variable step-size
is positive and bounded, the adaptive algorithm can converge to steady state. It is obvious that µn is
positive, namely

µn = (1− θ)
n

∑
i=1

θn−iexp
(
−λ|ei|α

)
|ei|α−1 > 0. (15)

In order to get the upper bound of the variable step size, we take the derivative of φ (ei) =

exp
(
−λ|ei|α

)
|ei|α−1 with respect to ei and set it to 0, namely

∂φ (ei)

∂ei
= exp

(
−λ|ei|α

)
|ei|α−2 [(α− 1)− λα|ei|α

]
= 0, (16)

then we can obtain the variable ei which maximizes φ (ei):

|ei|α =
α− 1

λα
(17)

so the maximum of φ (ei) is

max φ (ei) =

(
α− 1

λα

) α−1
α

exp
(
−α− 1

α

)
. (18)

Usually the shape parameter α is an integer (larger than 1) and the kernel parameter λ < 1, so
we have

max φ (ei) =

(
α− 1

λα

) α−1
α

exp
(
−α− 1

α

)
< λ−1. (19)

Above all, we can get the range of the variable step-size

0 < µn < λ−1. (20)

We can see that the variable step size of the proposed algorithm is positive and bounded, so the
proposed SGMCC algorithm can converge to steady state when a suitable step-size parameter η is
selected. When the adaptive algorithm converges to steady state, the variable step-size converges to a
constant, which determines the steady-state accuracy of the adaptive filtering algorithm.

After taking the expectation for both sides of Equation (14), we obtain

E [µn] = (1− θ)E

[
n

∑
i=1

θn−i exp
(
−λ|ei|α

)
|ei|α−1

]
. (21)

When the step-size parameter η is small enough, the weight vector Wn can approach very close
to the optimal weight vector W∗ and the instantaneous prediction error en is dominated by the
background noise vn. Assume the proposed SGMCC algorithm converges to steady state when n > N,
Equation (21) can be approximated as

lim
n→N

E [µn] = (1− θ)E

[
lim

n→N

n

∑
i=1

θn−i exp
(
−λ|vi|α

)
|vi|α−1

]
. (22)

The background noise vn is usually assumed to be independent and identically distributed, so
Equation (22) can be denoted as
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lim
n→N

E [µn] = (1− θ) lim
n→N

n

∑
i=1

θn−iE
[
exp

(
−λ|vi|α

)
|vi|α−1

]
. (23)

When N is large enough, Equation (23) can be further simplified as

E [µN ] = E
[
exp

(
−λ|vN |α

)
|vN |α−1

]
. (24)

3.2. Mean-Square Stability

The energy conservation relation (ECR) is the most widely used method to evaluate the
convergence performance analysis of an adaptive filtering algorithm [12,16,21,23–25]. In this paper,
we also use the ECR analysis to successively derive the mean-square stability and the steady-state
behavior of the proposed SGMCC algorithm.

For the simplicity of the ECR analysis, the recursive weight update of an adaptive filtering
algorithm can be denoted as

Wn+1 = Wn + η f (en)Xn. (25)

For the proposed SGMCC algorithm, f (en) can be expressed as

f (en) = µnsign (en) , (26)

where the instantaneous prediction error en can be denoted as

en = dn −WT
n−1Xn = ea,n + vn, (27)

where ea,n = W̃T
nXn is an a priori error. Here, W̃n = W∗ −Wn represents the weight-error vector.

The performance of the adaptive filtering algorithm is usually measured by the MSD value of the
weight-error vector W̃n, namely

MSD = E
[∥∥W̃n

∥∥2
]

. (28)

The weight-error vector at nth iteration can be derived as

W̃n+1 = W̃n + η f (en)Xn. (29)

For both sides of Equation (29), we successively take the squared-norms and expectations, then
we obtain the ECR expression as follows:

E
[∥∥W̃n+1

∥∥2
]
= E

[∥∥W̃n
∥∥2
]
− 2ηE [ f (en)ea,n] + η2E

[
f 2(en)‖Xn‖2

]
. (30)

To facilitate the convergence analysis of the SGMCC algorithm based on the energy conservation
relationship, some commonly-used assumptions [12,16,21,23–25] are listed:

Assumption 1 (A1). The background noise sequence {vn} is independent and identically distributed (i.i.d.).
Also it is independent of the input vector sequence {Xn}.

Assumption 2 (A2). The filter is long enough such that ea,n is zero-mean Gaussian and independent of the
background noise vn.

Remark 1. A1 is a valid assumption for most practical applications and is a basic assumption often used
in signal processing. Moreover, it should be noted that, unlike most conventional signal processing methods
that assume the background noise vn is Gaussian distribution, A1 does not impose any restrictions on the
statistical distribution of the background noise. Based on A1, it is easy to conclude that the a priori error ea,n and
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background noise vn are independent, which is assumed by A2. According to the Central Limit Theorem, it is
reasonable that the a priori error ea,n satisfies the Gaussian distribution.

Mean-square stability analysis is carried out to determine the upper bound of step-size parameter
η that makes sure the SGMCC algorithm is convergent. The adaptive algorithm is convergent implies
that MSD is monotonously decreasing. That is to say that the following condition exists:

E
[∥∥W̃n+1

∥∥2
]
≤ E

[∥∥W̃n
∥∥2
]

(31)

Based on the ECR relation, the following inequality holds:

2E [ f (en)ea,n] ≥ ηE
[

f 2(en)‖Xn‖2
]

. (32)

So, the step-size parameter η that makes adaptive filtering algorithm converges to steady state
would be

η ≤ 2 inf
n≥0

E [ f (en) vn]

E
[
| f (en)|2 ‖Xn‖2

2

] . (33)

In our case, the scale parameter η that ensures the stability of the SGMCC algorithm should meet

η ≤ 2 inf
n≥0

E [µnsign(en)ea,n]

E
[
µ2

n ‖Xn‖2
2

] . (34)

Because µn is an exponential weighted average of exp
(
−λ|ei|α

)
|ei|α−1, so the correlation between

µn and en, ea,n is negligible when the smoothing factor β is close to 1. Therefore, the inequality
Equation (34) can be further rewritten as follows:

η ≤ 2 inf
n≥0

E [µn]E [sign(en)ea,n]

E [µ2
n]E

[
‖Xn‖2

2

] . (35)

Next, considering the above mentioned condition 0 < µn < λ−1, we obtain a smaller lower limit
of the step-size parameter η:

η ≤ 2λ

Tr (Rx)
inf
n≥0

E [sign(en)ea,n], (36)

where Rx = E
[
XnXn

H
]

is the covariance matrix of the input vector and Tr(·) denotes the trace operator.
In this paper, the impulsive background noise vn is modeled as a random variable that follows a

2-component Gaussian mixture distribution MG(σ1,σ2,pr). Based on the assumption A2, the Price’s
theorem [26] and References [16,27], we have

E [sign(ea,n+vn)ea,n]=E
[
e2

a,n

]√ 2
π

 1− pr√
E
[
e2

a,n
]
+σ2

1

+
pr√

E
[
e2

a,n
]
+σ2

2

 . (37)

The Cramer-Rao [28] bound c is the minimum mean square error that the a priori error ea,n of an
adaptive filtering algorithm can reach, so the step-size parameter η for the SGMCC algorithm would be

η ≤ 2λc
Tr (Rx)

√
2
π

 1− pr√
c + σ2

1

+
pr√

c + σ2
2

 . (38)
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3.3. Steady-State Behavior

The steady state behavior is usually measured by E
[
e2

a,n
]

when the adaptive filtering algorithm
converges to steady state. The steady-state value of E

[
e2

a,n
]

is generally known as EMSE. Assume the
adaptive filtering algorithm converges to steady state when n > N, then EMSE can be denoted as

S = lim
n→N

E
[
e2

a,n

]
. (39)

MSD would converge to a constant when the algorithm reaches steady-state, so we have

lim
n→N

E
[∥∥W̃n+1

∥∥2
]
= lim

n→N
E
[∥∥W̃n

∥∥2
]

. (40)

Based on the ECR relation, we have

2 lim
n→N

E [ f (en)ea,n] = η lim
n→N

E
[

f 2(en)‖Xn‖2
]

. (41)

For the proposed SGMCC algorithm, Equation (41) can be expressed as

2 lim
n→N

E [µnsign (en) ea,n] = η lim
n→N

E
[
µ2

n‖Xn‖2
]

. (42)

With the same reason mentioned above, the correlation between µn and en, ea,n is negligible.
Therefore, the following expression holds

2 lim
n→N

E [µn]E [sign (en) ea,n] = ηTr(Rx) lim
n→N

E
[
µ2

n

]
. (43)

As is derived in Equation (24), E [µN ] would converge to a constant when the η is small enough.
Therefore, Equation (43) becomes

2 lim
n→N

E [sign (en) ea,n] = ηTr(Rx)E [µN ] . (44)

The impulsive background noise is assumed to be Gaussian mixture noise that follows
MG(σ1,σ2,pr). Based on the assumption A2, the Price’s theorem [26] and References [16,27], we have

lim
n→N

E [sign(ea,n + vn)ea,n] = S

√
2
π

 1− pr√
S + σ2

1

+
pr√

S + σ2
2

 . (45)

After substituting Equations (44) and (45) into Equation (43), we obtain

S =

√
π

8
ηTr(Rx)E [µN ]

 1− pr√
S + σ2

1

+
pr√

S + σ2
2


−1

. (46)

When the step-size parameter η is small enough, EMSE or S would converge to a smaller number,
which is negligible comparing with the power of background noises. In this case, Equation (46) can be
approximated by

S ≈ ηTr(Rx)E [µN ]

√
π

8
σ2σ1

σ2 (1− pr) + σ1 pr
. (47)

Note that the theoretical EMSE value computed by (Equation (47)) is an approximate value that
the SGMCC algorithm can achieve at steady state. The accuracy of the approximation is largely affected
by the step-size parameter η. A valid approximation of EMSE can be secured with a small-enough η.



Entropy 2019, 21, 1099 10 of 15

Usually, σ1 � σ2 and pr � 1− pr, Equation (47) can be simplified as

S ≈ ηTr(Rx)E [µN ]

√
π

8
σ1

1− pr
. (48)

4. Simulation Results

To validate the theoretical analysis and evaluate the performance of the proposed SGMCC
algorithm, we conduct simulations in a channel estimation [29–32] with Gaussian mixture background
noise. An unknown time-varying channel with 20 multipath subchannels is randomly generated
and then normalized by WH

optWopt = 1. The input signals are generated by a zero-mean Gaussian
distribution with unit variance. The input signals are transmitted via the above mentioned unknown
channel and contaminated by impulsive background noise generated by a 2-component Gaussian
mixture distribution MG (σ1, σ2, pr). The simulation results are averaged over 100 independent
Monte-Carlo experiments.

Firstly, we compare the MSD convergence curves of the proposed SGMCC algorithm with four
parameters and investigate the effect of each parameter on the convergence performance of the SGMCC
algorithm. Note that Figure 1 is obtained with σ1 = 0.2, σ2 = 100 and pr = 0.1. At each simulation,
we set different values for a specific parameter with the other three parameters fixed and observe the
effect of the parameter on the corresponding MSD convergence curve.

(a) with different α (b) with different λ

(c) with different θ (d) with different η

Figure 1. MSD convergence curves of SGMCC algorithm.
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Under the condition of fixed parameter λ = 0.25, θ = 0.9 and η = 0.05, Figure 1a shows that the
SGMCC algorithm with larger shape parameter α converges slower to a lower steady-state MSD. As
one can see in Figure 1b, under the condition of fixed parameter α = 3, θ = 0.9 and η = 0.05, the MSD
convergence curve of SGMCC algorithm with smaller kernel parameter λ is not smooth and fluctuates
around a larger range. However, a larger kernel parameter λ may lead to a slower convergence speed.
As observed in Figure 1c, under the condition of fixed parameter α = 3, λ = 0.25 and η = 0.05, the
SGMCC algorithm with different smooth factor θ values converges to the almost same steady-state
MSD after 1000 iterations. In addition, the SGMCC algorithm with smaller θ converges faster but the
improvement of the convergence speed is not obvious when θ smaller than 0.9. At last in Figure 1d,
under the condition of fixed parameter α = 3, λ = 0.25 and θ = 0.9, the SGMCC algorithm with
smaller step-size parameter η can achieve lower steady-state MSD at the cost of a slower convergence
speed and vice versa.

Secondly, we compare the convergence MSD performance of our proposed algorithm with several
recently published algorithms to demonstrate its convergence performance. The parameters of the
GMCC algorithm is set the same as that of the SGMCC algorithm. The parameters of other algorithms
are carefully adopted according to the corresponding reference. The compared algorithms and their
corresponding parameters were summarized in Table 2.

Table 2. Parameters setting.

Algorithm Parameters

CMCC [4]
λ = 0.5, µa = 4.5, β = 0.8, γ = 1.5, σ = 2
µ1 = 0.05, µ2 = 0.01, ε1 = ε2 = 0.00001

VSSA [16] α = 0.95, β = 0.97, γ = 0.0005

GMCC [21] α = 3, λ = 0.25, η = 0.05

SGMCC α = 3, λ = 0.25, η = 0.05, θ = 0.9

(a) under impulsive noise (b) under Gaussian noise

Figure 2. Comparison of the mean square deviation (MSD) curves versus iteration.

Figure 2a shows a comparison of the MSD convergence curves of different algorithms under
impulsive noise generated by MG (0.2, 100, 0.1). As observed in Figure 2a, the proposed SGMCC
algorithm achieves a much lower steady-state MSD than the GMCC algorithm with the same
parameters. The SGMCC algorithm and the VSSA algorithm converge to the same and the lowest
steady-state MSD. On the other hand, the proposed SGMCC algorithm converges faster than the
VSSA algorithm and the CMCC algorithm. Different from Figure 2a simulated under impulsive noise,
Figure 2b is conducted under Gaussian noise. We can see that Figure 2b shows the similar results with
Figure 2a. So we can conclude that, compared with the other three algorithms, the proposed SGMCC
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algorithm achieves the lowest steady-state MSD with a relatively fast convergence speed. Also, the
proposed SGMCC algorithm is robust against both impulsive noise and Gaussian noise.

(a) under impulsive noise (b) under Gaussian noise

(c) under impulsive noise (d) under Gaussian noise

Figure 3. Comparison of the execution time.

Thirdly, we compare the execution time of our proposed algorithm with several recently published
algorithms in the next Figure 3. The parameter setting of four algorithms in Figure 3 is same with that
in Figure 2, which is shown in Table 2. Note that the measured execution time of four algorithms is
related to the running platform and specific code-programming efficiency.

Figure 3a,b shows a comparison of the execution time curves of different algorithms versus
iteration under impulsive noise and Gaussian noise, respectively, and these two subfigures show the
same performance trend. Figure 3c,d shows a comparison of the steady-state MSD curves of different
algorithms versus execution time under impulsive noise and Gaussian noise respectively and these
two subfigures show the same performance trend. Concretely speaking, Figure 3a,b demonstrate that
the proposed SGMCC algorithm owns the shortest run time and is close to the GMCC algorithm.
Figure 3c,d demonstrate that the SGMCC algorithm owns the shortest run time by observing the length
of the curve tail. Although the run time of the proposed SGMCC algorithm is also is close to that of
the GMCC algorithm, the SGMCC algorithm achieves a much lower steady-state MSD. Moreover, the
superiority of the SGMCC algorithm in run time can be ensured by computational complexity shown
in Table 1.
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(a) EMSE versus σ1 (b) EMSE versus σ2

(c) EMSE versus pr

Figure 4. Comparison of the theoretical result with the simulation result.

Finally, we perform simulations to confirm the steady-state behavior analysis presented in
Section 3.3. The theoretical steady-state EMSEs are evaluated by Equation (47). The simulated
steady state EMSEs were calculated as a average over the last 500 iterations of EMSE that is averaged
over 50 independent Monte-Carlo simulation with 5000 iterations. We investigate the theoretical and
simulated EMSEs under MG(σ1, σ2, pr) versus Gaussian noise standard deviation σ1, impulsive noise
standard deviation σ2, impulsive noise occurrence probability pr. Note that the parameters of the
SGMCC algorithm in Figure 4 are set as α = 3, λ = 0.25, θ = 0.9 and η = 0.01.

The comparisons of the theoretical and simulated value on EMSE versus σ1, σ2 and pr are shown
in Figure 4a–c, respectively. As observed in Figure 4a, the simulated EMSEs match well the theoretical
EMSEs computed by Equation (47) and the simulation value grows with the increase of the parameter
σ1. As one can see from Figure 4b,c, the simulated EMSEs also match well the theoretical EMSEs. In
Figure 4b, the EMSE values show a very slow downward trend and no significant changes with the
increase of the parameter σ2 from 10 to 60 and from 60 to 100, respectively. In Figure 4c, the EMSE
values keep almost the same value with the range of the parameter pr value from 0.02 to 0.2. This
implies that the steady-state behavior analysis presented in Section 3.3 is valid and the proposed
SGMCC algorithm is robust against impulsive noise.

5. Conclusions

In this paper, we propose a smoothed GMCC algorithm called SGMCC to improve the
performance of steady-state MSD in the presence of impulsive noise. To avoid the high steady-state
MSD caused by the stochastic gradient, instead of taking the exponential weighted average of gradient
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vector to approximate the expectation of the gradient vector, we take the exponential weighted average
of the variable step-size so that the SGMCC algorithm can be viewed as a sign GMCC algorithm
with smoothed variable step-size. Convergence performance analyses are derived to demonstrate the
robustness of the proposed algorithm and it is verified by the previous simulation part. Simulation
results also demonstrate that the proposed SGMCC algorithm is robust against impulsive noise and
converges fast with lower computational complexity.
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