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Abstract: Framelets theory has been well studied in many applications in image processing,
data recovery and computational analysis due to the key properties of framelets such as sparse
representation and accuracy in coefficients recovery in the area of numerical and computational
theory. This work is devoted to shedding some light on the benefits of using such framelets in the area
of numerical computations of integral equations. We introduce a new numerical method for solving
Volterra integral equations. It is based on pseudo-spline quasi-affine tight framelet systems generated
via the oblique extension principles. The resulting system is converted into matrix equations via these
generators. We present examples of the generated pseudo-splines quasi-affine tight framelet systems.
Some numerical results to validate the proposed method are presented to illustrate the efficiency and
accuracy of the method.

Keywords: Volterra integral equations; multiresolution analysis; oblique extension principle;
pseudo-splines; biorthogonal wavelets; quasi-affine systems

1. Introduction

Many natural science problems are modeled by Volterra integral equations, which therefore has
brought them much attention from scientists in numerical analysis. Yet, many numerical schemes used
wavelet representation to numerically solve some integral equations. However, some approximations
work better with redundant expansions such as the biorthogonal wavelet (or simply, framelet)
expansions. The redundancy property of framelets has been used for many applications in science
and engineering disciplines, for example, in the analysis of the Gibbs phenomenon and numerical
solutions of various types of integral equations (see, e.g., [1–6]), in time–frequency theory for image
analysis, multifilter designs in electrical engineering, the theory of nonshift and shift-invariant spaces,
and many other areas (see, e.g., [7–13]. It is known that the approximation accuracy improved via tight
framelets due to their redundancy. Note that, in orthonormal expansion analysis, the redundancy is
missing. Therefore, we have more freedom in building efficient and accurate recovery.

The aim of this paper is to present a numerical method by using a specific type of framelets
generated using the unitary and oblique extension principles for approximating the solution of
Volterra integral equations defined by

u(x) = f (x) + λ∫
x

a
K(x, t)u(t)dt.

It is difficult, in most cases, to find the solution of the Volterra integral equations analytically. The
collocation-type method is well known as an accurate numerical technique for integral equations.

We use a new and accurate method that generalizes the wavelet-collocation method used in the
literature. We call it the framelet-collocation method.
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Our paper is organized as follows. In Section 2, we provide some preliminary background on
redundant systems (tight frames), their notations, and function expansion. Section 3 provides some
principles in the construction of pseudo-spline quasi-affine tight framelet systems using the oblique
extension principles. We then start the presentation of matrix assembly for solving Volterra integral
equations based on the collocation-type pseudo-spline-quasi-affine-tight-framelets-based method in
Section 4. We further test our method on a numerical example and some graphical illustrations in
Section 5. In Section 6, we conclude with some comments.

2. Preliminary Results

The expansion of a function is not limited, in general, to a specific form, and we can have a
redundancy for a given representation, for example, in the expansion generated via tight frames.
The idea of the frame sequence was introduced in Ref. [14], where frames were used in the
mathematical construction in the analysis of non-harmonic Fourier expansions. In Ref. [15], Daubechies
presented these sets of tight frames of L2(R) in some applications of signal analysis.

Definition 1. A sequence { fk}∞k=1 of generators in the space L2(R) is called a framelet for L2(R) if ∃ numbers
A, B > 0 such that

A∥ f ∥2 ≤
∞
∑
k=1

∣⟨ f , fk⟩∣
2 ≤ B∥ f ∥2, ∀ f ∈ L2(R).

The constants A, B are called framelet bounds. A framelet is called tight if it is possible to have
A = B as a framelet bound. In fact, framelets are extensions of orthonormal bases. The space L2(R) is
the set elements g(x) such that

∥g∥L2(R) = (∫R
∣g(x)∣2)

1/2
< ∞.

Let f ∈ L2(R), then the dilation and translation functions, D and T, are defined by D f (x) =√
2 f (2x) and Ta f (x) = f (x − a) for a ∈ R, respectively. Note that for j ∈ Z, we have TaDj = DjT2ja and

DjTa = T2−jaDj. Define

`2(Z) =
⎧⎪⎪⎨⎪⎪⎩

h[k] ∶
¿
ÁÁÀ

∞
∑

k=−∞
∣h[k]∣2 < ∞, k ∈ Z

⎫⎪⎪⎬⎪⎪⎭
.

For f ∈ L2(R), the Fourier transform and its inverse are defined, respectively, by

f̂ (ξ) = ∫R
f (t) e−iξtdt, ξ ∈ R

and
f (x) = 1

2π ∫R
f̂ (ξ) eiξxdξ, x ∈ R.

Definition 2. Let φ be a compactly supported function in ∈ L2(R). Then φ is a refinable function if there exists
a sequence h0[k] ∈ `2(Z) such that the following equation is satisfied:

φ(x) = 2∑
k∈Z

h0[k]φ(2x − k). (1)

Here, we call h0 the low mask filter of the refinable function φ.

Note that we can write Equation (1) in the frequency domain as

φ̂ = (ĥ0φ̂) (⋅/2) , (2)
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for some 2π-periodic ĥ0. In addition, it known that if φ ∈ L2(R) such that φ̂(0) = 1, then we have,
ĥ0(0) = 1 and ĥ0(π) = 0, (see, for example, Refs. [7,16,17]). Hence, ĥ0(ξ) can be written as

ĥ0(ξ) = (1+ e−iξ

2
)

n

τ(ξ), (3)

where n ∈ N refers to the highest multiplicity of the roots of ĥ0(π) such that τ(ξ) is a polynomial of
trigonometric functions with τ(0) = 1. One can easily show that Equation (2) can be rewritten as

φ̂(ξ) =
∞
∏
j=1

ĥ0(2−jξ).

Hence, by Equation (3), we have

φ̂(ξ) =
∞
∏
j=1

⎛
⎝

1+ e−i(2−jξ)

2
⎞
⎠

n ∞
∏
j=1

τ(2−jξ) = (1− e−iξ

iξ
)

n ∞
∏
j=1

τ(2−jξ). (4)

We say that a function ψ has a vanishing moment of order m if

∫
∞

−∞
xpψ(x)dx = 0; p = 0,⋯, m − 1.

It is known that multiresolution analysis (MRA) is a tool to generate wavelet bases. To formulate
the matrix from and the numerical solution of a given Volterra integral equation, we will study and
use pseudo-spline quasi-affine tight framelets and their constructions that are derived from an MRA,
and in particular, the oblique extension principle (OEP) in Ref. [17]. The interested reader should
consult [18–20] and other related references for more details.

Define Ψ = {ψ`}
r
`=1 ⊂ L2(R) as

ψ` = 2∑
k∈Z

h`[k]φ(2 ⋅ −k). (5)

The sequence {h`[k], k ∈ Z}r
`=1 is called the high mask filter of Ψ. Equation (5) can be expressed in

terms of its Fourier representation and is given by

ψ̂` = (ĥ`φ̂)(⋅/2), ` = 1,⋯, r,

where ĥ`(⋅) = ĥ`(⋅ + 2π),∀` = 1,⋯, r.

Theorem 1. Assume that φ is a refinable function in L2(R) with compact support. Let h0 be its finitely
supported low mask filter. Let

{h`[k], k ∈ Z}r
`=1

be sequences with finite support. Then,

X (Ψ) = {ψ`,j,k ∶ ` = 1,⋯, r; j, k are integers} (6)

generates a tight framelet system for L2(R) if the following equations are satisfied such that −π ≤ ξ ≤ π, where

r
∑
`=0

∣̂h`(ξ)∣2 = 1 and
r
∑
`=0

ĥ`(ξ)ĥ`(ξ +π) = 0. (7)

Proof. See Ref. [17].
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By Theorem 1, it can be concluded that for any function f ∈ L2(R), we have the tight framelet
representation given by

f =
r
∑
`=1
∑
j∈Z
∑
k∈Z

⟨ f , ψ`,j,k⟩ψ`,j,k. (8)

The expansion in Equation (8) is known as the best possible expansion of the function f , where it can
be truncated by Sn, such that

Sn f =
r
∑
`=1
∑
j<n
∑
k∈Z

⟨ f , ψ`,j,k⟩ψ`,j,k. (9)

We will use Equation (9) to find the numerical solution of a given Volterra integral equation using
quasi-affine tight framelets generated by pseudo-spline functions.

3. Pseudo-Spline Quasi-Affine Tight Framelets

B-spline tight framelets are one of the most important framelets in the framelet family. They are
interesting due to their simple structure and properties, e.g., they have compact support and are given
by explicit and quite simple formulas in the time and Fourier domain. The smoothness of the B-spline
increases as we increase n. It has an important role in applied numerical mathematics, geometric
analysis, and many other areas (see, e.g., Refs. [21,22]).

Definition 3. The B-spline Nm+1 is defined by

Nm+1 (x) = ∫
1

0
Nm (x − t) dt,

where N1(x) is the indicator function on the interval [0, 1).

Definition 4. Let m ∈ N. Then we define the B-spline Bm by the following equation:

Bm (x) ∶= Nm(x + m
2
).

Hence, we define Bm by
Bm+1 ∶= Bm ∗ B1, m ∈ N,

where B1(x) = χ[−1/2,1/2] (x).

For m = 1,⋯, 4, we plot the graphs of B-splines in Figure 1.

Figure 1. The B-splines Bm for m = 1,⋯, 4, respectively.

One can easily show that the Fourier transform of the B-spline, Bm, of order m is given by

B̂m(ξ) = (sin(ξ/2)
ξ/2

)
m

and ĥ0(ξ) = cosm(ξ/2).

Note that
N̂m(ξ) = B̂m(ξ − m

2
) = e

imξ
2 B̂m(ξ), and its low mask filter is e

imξ
2 ĥ0(ξ).

We refer the reader to [23] for more details.
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The unitary extension principle (UEP) is known as a method to generate tight framelets via a
refinable function. It is known that the MRA is a special case of the well known UEP. In addition,
the UEP was extended to the OEP in [18,20] by finding a 2π-periodic function Θ. For any refinable
function and to construct a tight framelet system, the non-negative function Θ, which is essentially
bounded and continuous at zero such that Θ(0) = 1, shall satisfy the following conditions:

Θ(2ξ)∣̂h0(ξ)∣2 = Θ(ξ) −
r
∑
`=1

∣̂h`(ξ)∣2;

Θ(2ξ)ĥ0(ξ)ĥ0(ξ +π) +
r
∑
`=1

ĥ`(ξ)ĥ`(ξ +π) = 0.

Definition 5 ([24]). Suppose that the conditions of the UEP hold for Ψ. Then, the quasi-affine system X J (Ψ)
generated using Ψ is defined by

X J(Ψ) = {ψ`,j,k ∶ ` = 1,⋯, r; j, k ∈ Z}

such that

ψ`,j,k = { 2j/2ψ`(2j ⋅ −k), j ≥ J
2jψ`(2j (⋅ − k)), j < J

.

Here, for our proposed method, we consider the system above for the case where J = 0.
If ĥ0 is the low mask filter of a given refinable function φ, then using the OEP, it is assumed [24]

that
Θ(ξ) −Θ(2ξ)∣̂h0(ξ)∣2 ≥ Θ(2ξ)∣̂h0(ξ +π)∣2.

This condition helps to find the high mask filters of the required framelet system. Let ∣h∣2 = H, where

H = Θ(ξ) −Θ(2ξ)∣̂h0(ξ)∣2 ≥ Θ(2ξ)∣̂h0(ξ +π)∣2

and
∣θ∣2 = Θ.

Here, the square root is obtained by the spectral factorization in Ref. [7]. Assume that c2, c3 are two
2π-periodic trigonometric functions/polynomials such that

∣c2(ξ)∣2 + ∣c3(ξ)∣2 = 1, c2(ξ)c2(ξ +π) + c3(ξ)c3(ξ +π) = 0.

Then, we can find three high mask filters, namely,

ĥ1(ξ) = eiξθ(2ξ) ĥ0(ξ +π), ĥ2(ξ) = c2(ξ)h(ξ), 4ĥ3(ξ) = c3(ξ)h(ξ),

with a standard choice of c2(ξ) = (1/
√

2) and c3(ξ) = (1/
√

2)eiξ . If we consider the UEP rather than
the OEP in the construction above, i.e., Θ = 1, then we will use the assumption that

∣̂h0(ξ)∣2 ≤ 1− ∣̂h0(ξ +π)∣2.

Define the high mask filters by

ĥ1(ξ) = eiξ ĥ0(π + ξ), ĥ2(ξ) = (
√

2/2)h(ξ), ĥ3(ξ) = eiξ ĥ2(ξ).

Note that we can reduce the number of framelets from three to two with the new fundamental function
1− H, where

ĥ1(ξ) = eiξ θ(2ξ)ĥ0(π + ξ), ĥ2(ξ) = h0(ξ)h(2ξ).
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However, this will usually affect the framelet system by having less symmetry of the framelets or
longer filters.

Let φ be as Equation (1), which generates an MRA (Vj)j, and Wm
2 (R) be the Sobolev space. Then,

X(Ψ) provides approximation order m if

∥ f − Sn f ∥2 = O(2−nm), ∀ f ∈ Wm
2 (R).

The approximation order of the truncated function Sn was studied in [18,25]. It is known that the
approximation orders rely on the behavior near zero of the function Λφ, where

Λφ =

¿
ÁÁÀ1−

∣φ̂∣2

[ φ̂, φ̂ ]

and
[ f , g](ξ) = ∑

k∈2πZ
f (ξ + k)g(ξ + k).

Note that the refinable function φ satisfies m-Strang–Fix condition if the following equation is satisfied,
where

φ̂(0) ≠ 0, φ̂(j)(2πk) = 0, j ∈ 0,⋯, m − 1, k is a non-zero integer.

It was proved in Ref. [25] that if the function φ provides approximation order m, then Λφ has a zero of
order m at the origin. This means that Λφ has a zero of order m at ξ = 0, and then φ̂ has a zero of order
m. In addition, Jetter et al. in [26] showed that depending on the OEP construction, the truncated Sn

provides approximation order m iff [φ̂, φ̂] − ∣φ̂∣2 = O(22m).
Daubechies, in Ref. [18], has proved that if the system X(Ψ) has a vanishing moment of order m1

and φ has an approximation order m, then the approximation order of X(Ψ) is equal to the minimum
of m and 2m1. To have high approximation orders, we have to construct refinable functions where the
Fourier transforms are very smooth at the origin. This leads to the well-known refinable functions,
pseudo-splines, and their tight framelet generators.

Pseudo-splines provide us with a nice class of refinable and compactly supported functions.
The first type was introduced in [18,27] to construct a special type of tight framelets and type II were
introduced in [28] to construct tight framelets with specific properties of symmetry. In the frequency
domain and for non-negative integers l, m such that l < m, pseudo-splines of type I (or PS-I -(m, l) and
type II with order m and type l (or PS-II -(m, l)) can be defined by

kφ̂(ξ) =
∞
∏
i=1

k ĥ0(2−iξ) with kφ̂(0) = 1, for k = 1, 2,

where the low mask filter of the pseudo-splines of type I with order (m, l) is defined by

∣1ĥ0(ξ)∣2 = cos2m(ξ/2)
l
∑
k=0

(m + l
k

) sin2k(ξ/2) cos2(l−k)(ξ/2)

and the low mask filter of the pseudo-splines of type II with order (m, l) is defined by

2ĥ0(ξ) = cos2m(ξ/2)
l
∑
k=0

(m + l
k

) sin2k(ξ/2) cos2(l−k)(ξ/2).

Note that if r = 0, pseudo-splines of both types are B-splines. It is known that the smoothness of the
pseudo-spline increases with m and decreases with l (see Ref. [28]). According to spectral factorization,
or by using the Fejér–Riesz lemma (see [7]), the low mask filter of the pseudo-spline of type I is
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obtained by taking the square root of type II, i.e., 2ĥ0(ξ) = ∣1ĥ0(ξ)∣2. In general, we have the following
lemma.

Lemma 1. Assume that L(ξ) is a positive valued trigonometric polynomial given by

f (ξ) =
M
∑
m=0

am cos(mξ), with am ∈ R.

Then ∃ a trigonometric polynomial g of order M, where

g(ξ) =
M
∑
m=0

bm eimξ , with bm ∈ R,

such that ∣g(ξ)∣2 = f (ξ).

Proof. See Ref. [7].

In Mallat’s construction (see Ref. [29]), it is shown that ĥ0(ξ)ĥ0(ξ +π) + ĥ1(ξ)ĥ1(ξ +π) = 0, where

ĥ1(ξ) = eiξ ĥ0(ξ +π), and that

H(ξ) = cos2m(ξ)
m−1
∑

k=`+1
(m + `

k
) cos2(`−k)(ξ/2) sin2k(ξ/2). (10)

If we take m = 4 and ` = 1, then we will get short filters compared with the general case. This is
because of the form of H(ξ), where

H(ξ) =
3
∑
k=2

(5
k
) cos10−2k(ξ/2) sin2k(ξ/2) = 10 cos4(ξ/2) sin4(ξ/2).

In fact, we have the following fact.

Proposition 1. For non-negative integers l, m such that l < m, If ` = m − 3, then

H(ξ) = (2m − 3
m − 1

) cos2m−4(ξ/2) sin2m−4(ξ/2).

Proof. As (2m−3
m−2 ) = (2m−3

m−1 ), then we have

H(ξ) =
m−1
∑

k=m−2
(2m − 3

k
) cos4m−6−2k(ξ/2) sin2k(ξ/2).

Therefore,

H(ξ) = (2m − 3
m − 2

) cos2m−4(ξ/2) sin2m−2(ξ/2) + (2m − 3
m − 1

) cos2m−2(ξ/2) sin2m−4(ξ/2)

= (2m − 3
m − 1

) cos2m−4(ξ/2) sin2m−4(ξ/2).

Using pseudo-splines of both types, we give some examples of quasi-affine tight framelets
constructed via the OEP.
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Example 1 (PS-I -(4,1)). For the order (4, 1), consider the pseudo-spline of type I, 1φ̂(ξ). Then, its low mask
filter can be given by ∣1ĥ0(ξ)∣2 = cos8(ξ/2)(1+ 4 sin2(ξ/2)). Note that by using Lemma 1, we have

1ĥ0(ξ) = −e−i5ξ(1+ eiξ)4 (2+ (−3+
√

5) eiξ)
16(1−

√
5)

.

Define

1ĥ1(ξ) = eiξ
1ĥ0(ξ +π), 1ĥ2(ξ) =

√
5

2
sin2(ξ), and 1ĥ3(ξ) = eiξ

1ĥ2(ξ).

Let Ψ = {1ψ`; ` = 1, 2, 3}, where 1ψ̂` = 1ĥ`(ξ/2)1φ̂(ξ/2); ` = 1, 2, 3. Then the system X0(Ψ) forms a
quasi-affine tight framelet for L2(R).

The pseudo-spline of type I, with its corresponding quasi-affine tight framelets generated by
using 1φ̂(ξ) of order (4, 1), is depicted in Figure 2.

Figure 2. The type I pseudo-spline of order (4, 1) along with its quasi-affine tight framelets, respectively.

Example 2 (PS-II -(3,1)). For the order (3, 1), consider the pseudo-spline of type II, 2φ̂(ξ). Its low mask filter
is given by

2ĥ0(ξ) = cos6(ξ/2)(1+ 3 sin2(ξ/2)).

Define
2ĥ1(ξ) = e−iξ

2ĥ0(ξ +π), 2ĥ2(ξ) = h(ξ) + e−iξ h(−ξ)

and
2ĥ3(ξ) = e−iξ h(−ξ) − h(ξ),

where

H(ξ) = 0.30108642578125305− 0.2014160156250013e−2iξ − 0.20141601562500128e2iξ+

0.05090332031249944e−4iξ + 0.050903320312499445e4iξ + 0.00024414062500026867e−6iξ+

0.00024414062500026867e6iξ − 0.00027465820312493067e−8iξ − 0.00027465820312493067e8iξ

and

h(ξ) = −0.22813823298962+ 0.00139868605052e−2iξ + 0.44712319189971e2iξ

+ 0.00123930398199e−4iξ − 0.2216229489426e4iξ .

The pseudo-spline of type II with its corresponding quasi-affine tight framelets generated by

2φ̂(ξ) of order (3, 1) is depicted in Figure 3.

Figure 3. The pseudo-spline scaling function of type II with order (3, 1) along with its quasi-affine
tight framelets, respectively.
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4. Matrix Assembly via Pseudo-Spline Quasi-Affine Tight Framelets

Consider the Volterra integral equation defined by

u(x) = f (x) + λ∫
x

a
K(x, t)u(t)dt, (11)

where λ ∈ R, f , and K are given and known functions and u is an unknown function to be approximated.
K is called the kernel of Equation (11). A function u(x) defined over [a, b] can be expressed by framelets
as Equation (8). To find an approximate solution un of Equation (11), we will truncate the framelet
representation of u as Equation (9). Then,

u(x) ≈ un(x) =
r
∑
`=1
∑
j<n
∑
k∈Z

c`j,kψ`,j,k, (12)

where c`j,k = ⟨un, ψ`,j,k⟩. Substituting Equation (12) into Equation (11) and by using the suitable
collocation points to the truncated expansion, we have

r
∑
`=1
∑
j<n
∑

i,k∈Z
c`j,kψ`,j,k(xi) = f (x) + λ

r
∑
`=1
∑
j<n
∑

i,k∈Z
∫

x

a
K(xi, t)c`j,kψ`,j,k(t)dt. (13)

Equation (13) can be simplified to a system of equations with the unknown coefficients c`j,k
given by

r
∑
`=1
∑
j<n
∑
k∈Z

c`j,k M`,j,k(xi) = f`,j,k(xi), (14)

where

M`,j,k(xi) = ψ`,j,k(xi) − λ∫
b

a
K(xi, t)ψ`,j,k(t)dt. (15)

Now the unknown coefficients are determined by solving the resulting system of equations
obtained from Equation (14), and then we get the approximate solution un. The absolute error for this
formulation is defined by

en = ∥un(x) − u(x)∥2 , x ∈ [a, b].

5. Numerical Performance

To validate the accuracy of our method, in this section we present the following example of
Volterra integral equations. The numerical results obtained here using Mathematica software.

Example 3. We consider the following Volterra–Fredholm integral equation:

u(x) = f (x) +∫
x

0
et cos(x)u(t)dt,

where
f (x) = ex − 1

2
cos(x)(e2x − 1)

and the exact solution is u(x) = ex.

In Tables 1 and 2, the error en for different values of n and the numerical values of the exact and
approximated solution un(x) when n = 2 are computed, respectively. Some illustrations for the graphs
of the exact and approximate solutions and the error are depicted in Figures 4 and 5.
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Figure 4. The graphs of u and un for n = 2, 3, respectively, of Example 3 based on the PS-I -(4,1)
framelet system.
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Figure 5. The graphs of the error for n = 2, 3, respectively, of Example 3 based on the PS-I -(4,1)
framelet system.

Table 1. The error en of Example 3 using different types of pseudo-spline framelet systems.

n PS-I -(4,1) PS-II -(3,1)

2 1.08× 10−3 6.438× 10−4

3 2.63× 10−4 1.67× 10−4

4 4.32× 10−5 3.21×10−5

5 2.83× 10−6 0.57×10−5

6 5.58× 10−7 6.93×10−6

7 1.01× 10−8 2.44×10−8

8 6.44× 10−9 1.56×10−9

9 9.35× 10−11 3.45× 10−10

10 2.35× 10−12 6.69× 10−11
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Table 2. Numerical results of the function un of Example 3 using different types of pseudo-spline
framelet systems and for a level n = 2.

n Exact PS-I -(4,1) PS-II -(3,1)

0.1 1.10517 1.105117381 1.105117134
0.2 1.22140 1.222175185 1.222124175
0.3 1.34986 1.350694516 1.340694516
0.4 1.49182 1.491882666 1.491802512
0.5 1.64872 1.646677909 1.646672532
0.6 1.82212 1.822082188 1.822194893
0.7 2.01375 2.015056716 2.015321421
0.8 2.22554 2.226976714 2.226776701
0.9 2.45960 2.459772459 2.459610020
1.0 2.71828 2.715929278 2.715989072

To validate the proposed method, we provide Figure 6 to show the rate of convergence of
Example 3 in the log–log scale plot by using both systems of pseudo-spline quasi-affine tight framelets
PS-I -(4,1) and PS-II -(3,1) generated using the OEP.

+
+

+
+

+

++

+

+

+
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1
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1
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1
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1

11
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10-7

10-9

10-11

10-13

Figure 6. The rate of convergence of the proposed method for Example 3.

6. Conclusions

A collocation-type pseudo-spline-quasi-affine-framelet-based method is developed to numerically
solve a given Volterra integral equation. This is an important research direction in the filed of
framelet-based numerical schemes for integral equations. With a few orders of truncated partial sums,
the results show that the proposed method is effective and accurate. It turns out that increasing the
order of the truncated partial sums of the framelet system and its vanishing moments will dramatically
increase the approximation orders as well as the accuracy of the solution. In addition, the accuracy
orders of the approximated solution using both pseudo-spline quasi-affine tight framelet systems were
close to each other, with slight differences and preferences to those with a higher order of m.
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