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Abstract: Rényi-type generalizations of entropy, relative entropy and mutual information have found
numerous applications throughout information theory and beyond. While there is consensus that the
ways A. Rényi generalized entropy and relative entropy in 1961 are the “right” ones, several candidates
have been put forth as possible mutual informations of order α. In this paper we lend further evidence
to the notion that a Bayesian measure of statistical distinctness introduced by R. Sibson in 1969 (closely
related to Gallager’s E0 function) is the most natural generalization, lending itself to explicit computation
and maximization, as well as closed-form formulas. This paper considers general (not necessarily discrete)
alphabets and extends the major analytical results on the saddle-point and saddle-level of the conditional
relative entropy to the conditional Rényi divergence. Several examples illustrate the main application of
these results, namely, the maximization of α-mutual information with and without constraints.

Keywords: information measures; relative entropy; conditional relative entropy; mutual information;
Rényi divergence; α-mutual information; channel capacity; minimax redundancy

1. Introduction

The Rényi divergence of order α between two probability measures defined on the same
measurable space,

Dα(P ‖Q) =
1

α− 1
log

∫ ( dP
dQ

(x)
)α

dQ(x), (1)

is a useful generalization of the relative entropy D(P‖Q) introduced by Rényi [1] in the discrete
case (limα↑1 Dα(P ‖Q) = D(P‖Q)). Many of the properties satisfied by relative entropy hold for
Rényi divergence, such as nonnegativity, convexity, lower semicontinuity, data processing inequality,
and additivity for product measures. Dα(P‖Q) can be defined in more generality without requiring
P � Q. A comprehensive survey of the properties satisfied by Rényi divergence can be found in [2].
Just as D(P‖Q), Dα(P ‖Q) provides a useful gauge of the distinctness of P and Q, which has found
applications in large deviations problems (such as the asymptotic analysis of hypothesis testing [3–5]),
lossless data compression [4,6,7], data transmission through noisy channels [8–10], and statistical physics
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[11]. If P1 � P0, then Rényi divergence of order α ∈ (0, 1) ∪ (1, ∞) can be expressed in terms of relative
entropy through [5]

(1− α)Dα(P1‖P0) = min
P�P1

{α D(P‖P1) + (1− α) D(P‖P0)} . (2)

Although not an f -divergence, there is a one-to-one correspondence between Rényi divergence and
Hellinger divergence Hα(P‖Q) (e.g., [12])

Dα(P‖Q) =
1

α− 1
log (1 + (α− 1)Hα(P‖Q)) . (3)

One of the major applications of relative entropy is to quantify statistical dependence in a joint probability
measure by means of the mutual information

I(X; Y) = D(PXY ‖ PX × PY). (4)

The corresponding straight generalization replacing relative entropy by Rényi divergence is also a measure
of dependence but has found scant utility so far (see [6,13]). To explore the generalization that we study in
this paper, namely α-mutual information, we need to consider the conditional versions of relative entropy
and Rényi divergence. These are defined in general for two random transformations PY|X and QY|X and
an unconditional probability measure PX simply as

D(PY|X ‖QY|X |PX) = D(PY|XPX‖QY|XPX), (5)

Dα(PY|X ‖QY|X |PX) = Dα(PY|XPX‖QY|XPX). (6)

A major difference between those conditional measures is that while D(PY|X ‖QY|X |PX) is plainly the
expectation

∫
D(PY|X=x‖ QY|X=x)dPX(x), the conditional Rényi divergence depends on the function

Dα(PY|X=x‖ QY|X=x) in a more involved way. In this paper, the use of the conditional information
measures will be circumscribed to the special case in which QY|X is actually an unconditional measure.
In fact, a more productive way to express mutual information than (4) is the asymmetric expression

I(X; Y) = D(PY|X ‖ PY|PX) (7)

= min
Q

D(PY|X ‖Q | PX). (8)

Equation (8) follows from the key additive decomposition formula

D(PY|X‖PY|PX) = D(PY|X‖QY|PX)− D(PY‖QY), (9)

where QY is an arbitrary measure dominating PY. We see that (8) is a Bayesian measure of the distinctness
of the constellation of probability measures {PY|X=x, x ∈ A}, sometimes referred to as information radius,
where the center of gravity of the constellation is none other than PY. Equation (8) has proven to be very
fertile, particularly when it comes to supremize I(X; Y) with respect to PX since the ensuing sup min
optimization has a saddle-point if and only if there is an input distribution that attains the maximal
mutual information. The convexity of D(PY|X ‖Q | PX) in Q and concavity (linearity) in PX , along with the
minimax theorem ensures the existence of the saddle-point whenever the set of allowed input distributions
is compact. The Arimoto-Blahut algorithm [14,15] for finding max I(X; Y) in finite alphabet settings is also
inspired by (8).



Entropy 2019, 21, 969 3 of 25

Mutual information I(X; Y) = I(PX, PY|X) also possesses a saddle point (assuming convexity and
compactness of the corresponding feasible sets) since it is concave in PX (to see that, nothing better than (9))
and is convex in PY|X . This property has found rich applications in information theory (e.g., [16–18]) but
neither it nor its generalization to α-mutual information will not concern us in this paper.

Even if a saddle-point for the conditional relative entropy does not exist, Kemperman [19] showed
that sup min can be swapped, thereby establishing the existence of a saddle value.

Another well-known application of (8) and the conditional relative entropy saddle-point is
the so-called channel capacity-minimax redundancy theorem due to Gallager [20] and Ryabko [21]
(see also [22,23]), which shows that the maximal mutual information obtained with a finite constellation
{PY|X=x, x ∈ A} is equal to the minimax redundancy in universal lossless data compression of an unknown
source selected from {PY|X=x, x ∈ A}. Notable generalizations of this result to infinite alphabets without
requiring that a distribution maximizing mutual information exists are due to Kemperman [19] and
Haussler [24]. Recently, the Rényi counterpart of the channel capacity-minimax redundancy result has
also been considered, under various restrictions, in [2,25,26].

The main purpose of this paper is to generalize the saddle-point property of conditional relative
entropy and its applications to the maximization of mutual information when relative entropy is replaced
by Rényi divergence. Towards that end, we recall the various directions in which mutual information has
been generalized using Rényi divergence (see also [27]) :

1. As aforementioned, the straight generalization Dα(PXY ‖ PX × PY) has not yet found wide
applicability.

2. In the discrete case and α ∈ (0, 1) ∪ (1, ∞), Arimoto [28] proposed the definition of the
nonnegative quantity

Ia(X; Y) = Hα(X)− Ha
α (X|Y), (10)

where the Rényi entropy [1] and Arimoto-Rényi conditional entropy [28] are

Hα(X) =
α

1− α
log ‖PX‖α, (11)

Ha
α (X|Y) = α

1− α
logE[‖PX|Y(·|Y)‖α] (12)

with the α-norm of a probability mass function denoted as ‖P‖α = (∑x∈A Pα(x))
1
α . Arimoto extended

his algorithm in [14] to compute what he called the capacity of order α,

Ca
α = max

X
Ia(X; Y), (13)

for finite-alphabet random transformations and showed that there exist codes of rate R and
blocklength n whose error probability is upper bounded by

inf
α∈( 1

2 ,1)
exp

(
α− 1

α
(Ca

α − R)
)

.
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3. Augustin [29] and, later, Csiszár [4] defined

Icα (X; Y) = min
QY

E
[

Dα(PY|X(·|X) ‖QY)
]

. (14)

Cc
α = maxX Icα (X; Y) is dubbed the Augustin capacity of order α in [30]. Csiszár [4] showed that for

α ∈ ( 1
2 , 1), Icα (X; Y) is the intercept on the R-axis of a supporting line of slope 1− 1

α of the error
exponent function for codes of rate R with constant-composition PX . Unfortunately, the minimization
in (14) is not amenable to explicit solution.

4. For the purpose of coming up with a measure of the similarity among a finite collection of probability
measures {PY|X=x, x ∈ A}, weighted by PX on A, Sibson [31] proposed the information radius of order
α as

Iα(X; Y) = min
Q

Dα(PY|X ‖Q|PX). (15)

As we will see, the minimization in (15) can be solved explicitly. This is the generalization of mutual
information we adopt in this paper and which, as in [27], we refer to as α-mutual information. A word
of caution is that in [4], the symbols Iα(X; Y) and Kα(X; Y) are used in lieu of what we denote Icα (X; Y)
and Iα(X; Y), respectively. Cα = maxX Iα(X; Y) is dubbed the Rényi capacity of order α in [26].

5. Independently, Lapidoth-Pfister [32] and Tomamichel-Hayashi [33] proposed

Ilα (X; Y) = min
QX

min
QY

Dα(PXY ‖QX ×QY). (16)

and showed that it determines the performance of composite hypothesis tests for independence
where the hypothesized joint distribution is known but under the independence hypothesis the
marginals are unknown. It was shown in [34] that

Icα (X; Y) ≤ Ilα (X; Y) ≤ Iα(X; Y). (17)

Despite the difference in the definitions of the various versions, it was shown in the discrete setting
that [4,28].

Ca
α = Cc

α = Cα (18)

Therefore, solving for maxX Iα(X; Y) carries added significance, whenever one of the other definitions
is adopted. Note that (17) and (18) imply that Cα = maxPX Ilα (PX, PY|X). A major application for the
maximization of Iα(X; Y) is in the large deviation analysis of optimal data transmission codes since the
sphere-packing error exponent function and the random-coding error exponent function

Esp(R) = sup
ρ≥0

{
ρ C 1

1+ρ
− ρ R

}
, (19)

Er(R) = sup
ρ∈[0,1]

{
ρ C 1

1+ρ
− ρ R

}
, (20)
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popularized in [35] and [36], respectively, are upper and lower bounds to the channel reliability function,
respectively. A function similar to (20) has recently been shown [37] to yield the large deviations behavior
of random coding in the setting of channel resolvability.

The organization of the paper is as follows. Section 2 states the definitions and properties of the
various information measures that are used throughout the paper. In particular, we introduce the key
notion of α-response to an input probability measure through a given random transformation. In Section 3
we present the main results (with proofs relegated to Section 5) related to the saddle-point and saddle-value
of the conditional Rényi divergence, allowing the optimization to be circumscribed to any convex set of
input probability measures. The equivalence of the existence of a probability measure that maximizes
α-mutual information and the existence of a saddle point is shown and several illustrative examples of the
use of this result in the computation of Cα are also given. The fact that a saddle-level exists (i.e., sup min
commute) even if there is no input probability measure that achieves the supremum α-mutual information
is established, thereby generalizing Kemperman’s [19] saddle-level result to Rényi divergence through a
different route than that followed in [26].

2. Notation, Definitions and Properties

1. If (A, F , P) is a probability space, X ∼ P indicates P[X ∈ F ] = P(F ) for all F ∈ F .

2. Let (A, F ) and (B, G ) be measurable spaces, which we refer to as the input and output spaces,
respectively, with A and B referred to as the input and output alphabets respectively. PY|X : A → B
denotes a random transformation from A to B, i.e. for any x ∈ A, PY|X=x(·) is a probability measure
on (B, G ), and for any B ∈ G , PY|X=·(B) is an F -measurable function. For brevity, we will usually
drop mention of the underlying σ-fields. If P is a probability measure on A and PY|X : A → B is a
random transformation, the corresponding joint probability measure on A×B is denoted by P PY|X
(or, interchangeably, PY|XP). The notation P→ PY|X → Q indicates that the output marginal of the
joint probability measure P PY|X is denoted by Q.

3. The relative information ıP‖Q(x) between two probability measures P and Q on the same measurable
space such that P� Q is defined as

ıP‖Q(x) = log
dP
dQ

(x), (21)

where dP
dQ is the Radon-Nikodym derivative of P with respect to Q. The relative entropy is

D(P‖Q) = E[ıPX‖QX
(X)], X ∼ P. (22)

4. Given PX → PY|X → PY, the information density is defined as

ıX;Y(a; b) = ıPY|X=a‖PY
(b), (a, b) ∈ A×B. (23)

5. Fix α > 0, PY|X : A → B, and a probability measure PX on A. Then, the output probability measure
PY[α]

is called the α-response to PX if

ıY[α]‖Y(y) =
1
α

logE[exp(α ıX;Y(X; y)− κα)], X ∼ PX , (24)
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where PX → PY|X → PY, and κα is a scalar that guarantees that PY[α]
is a probability measure.

For notational convenience, we omit the dependence of κα on PX and PY|X . Equivalently, if pY[α]
and

pY|X denote the densities with respect to some dominating measure, then (24) becomes

pY[α]
(y) = exp

(
−κα

α

)
E

1
α

[
pα

Y|X(y|X)
]

, X ∼ PX . (25)

In particular, the 1-response to PX is PY. In [26], the α-response to PX is dubbed the order α Rényi mean
for prior PX .

6. Given two probability measures P and Q on the same measurable space and a scalar α ∈ (0, 1)∪ (1, ∞),
the Rényi divergence of order α between P and Q is defined as [1]

Dα(P‖Q) =
1

α− 1
log

∫
A

pαq1−α dµ, (26)

where p and q are the Radon-Nikodym derivatives of P and Q, respectively, with respect to a common
dominating σ-finite measure µ. We define D1(P‖Q) = D(P‖Q) as this coincides with the limit from
the left at α = 1. It is also the limit from the right whenever Dα(P‖Q) < ∞ for some α > 1. The cases
α = 0 and α = ∞ can be defined by taking the corresponding limits. In this work, we only focus on
the simple orders of α, i.e. α ∈ (0, 1) ∪ (1, ∞). As we saw in (1), if P� Q, then (26) becomes

Dα(P ‖Q) =
1

α− 1
log
(
E
[
exp

(
α ıP‖Q(W)

)])
, W ∼ Q (27)

=
1

α− 1
log
(
E
[
exp

(
(α− 1) ıP‖Q(V)

)])
, V ∼ P (28)

7. If α ∈ (0, 1) ∪ (1, ∞), then the binary Rényi divergence of order α is given by

dα(p‖q) = Dα([p 1− p]‖[q 1− q]) (29)

=
1

α− 1
log
(

pαq1−α + (1− p)α(1− q)1−α
)

. (30)

Note that

lim
α→1

dα

(
p‖1

2

)
= log 2− h(p), (31)

where the usual binary entropy function is denoted by h(x) = x log 1
x + (1 − x) log 1

1−x . Given
(p0, p1) ∈ (0, 1)2, p0 6= p1, the solution to dα(p0‖q) = dα(p1‖q) is

q =

(
1 +

(
pα

0 − pα
1

(1− p1)
α − (1− p0)

α

) 1
1−α

)−1

. (32)

8. Dα(P ‖Q) ≥ 0, with equality only if P = Q.

9. Dα(P ‖Q) is monotonically increasing with α.

10. While we may have D(P‖Q) = ∞ and P � Q simultaneously, Dα(P‖Q) = ∞ for any α ∈ (0, 1) is
equivalent to P and Q being orthogonal. Conversely, if for some α > 1, Dα(P‖Q) < ∞, then P� Q.
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11. The Rényi divergence satisfies the data-processing inequality. If PX → PY|X → PY and QX → PY|X →
QY, then

Dα(PX‖QX) ≥ Dα(PY‖QY). (33)

12. Gilardoni [38] gave a strengthened Pinsker’s inequality upper bounding the square of the total
variation distance by

|P−Q|2 ≤ inf
α∈(0,1]

1
2α

Dα(P‖Q) (34)

≤ inf
α>0

1
2 min{α, 1}Dα(P‖Q), (35)

where we have used the monotonicity in α of the Rényi divergence.

13. The Rényi divergence is lower semicontinuous in the topology of setwise convergence, i.e., if for
every event A ∈ F , Pn(A)→ P(A), and Qn(A)→ Q(A), then

lim inf
n→∞

Dα(Pn‖Qn) ≥ Dα(P‖Q), α ∈ (0, ∞]. (36)

In particular, note that (36) holds if |Pn −Qn| → 0.

14. In the theory of robust lossless source coding [22,25] the following scalar, called the α-minimax
redundancy of PY|X , is an important measure of the worst-case redundancy penalty that ensues when
the encoder only knows that the data is generated according to one of the probability measures in the
collection {PY|X=x, x ∈ A}:

Rα = inf
QY

sup
x∈A

Dα(PY|X=x‖QY), (37)

where the infimum is over all the probability measures on B.

15. Given input distribution PX and random transformations PY|X , QY|X , the conditional Rényi divergence
of order α ∈ (0, 1) ∪ (1, ∞) is

Dα(PY|X ‖QY|X |PX) = Dα(PXPY|X ‖ PXQY|X). (38)

Although (38) also holds for the familiar α = 1 case, in general the conditional Rényi divergence is
not the arithmetic average of D(PY|X=x‖QY) with respect to PX if α 6= 1. Instead it’s a generalized
mean, or a scaled cumulant generating function evaluated at α− 1. Specifically, if X ∼ PX , then

Dα(PY|X‖QY|PX) =
1

α− 1
logE

[
exp

(
(α− 1)Dα(PY|X(·|X)‖QY)

)]
. (39)
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Regardless of whether α ∈ (0, 1) or α ∈ (1, ∞), (39) implies that

Dα(PY|X‖QY|PX) ≤ sup
x∈A

Dα(PY|X=x‖QY) (40)

= sup
PX

Dα(PY|X‖QY|PX) (41)

with the supremum in (41) over all input probability measures.

16. The key additive decomposition formula for the mutual information (9) has a nice counterpart for
the α-mutual information [27]. Let PX → PY|X → PY and QY be an arbitrary probability measure on
B such that PY � QY. Then, it is easy to verify that

Dα(PY|X‖PY[α]
|PX) = Dα(PY|X‖QY|PX)− Dα(PY[α]

‖QY), (42)

a relationship noted by Sibson [31] in the discrete case.

17. Given α > 0, PX and PY|X , the α-mutual information is [27,31]

Iα(X; Y) = min
Q

Dα(PY|X ‖Q|PX) (43)

= Dα(PY|X ‖ PY[α]
|PX) (44)

=
1

α− 1
logE

[
exp

(
(α− 1)Dα(PY|X(·|X)‖PY[α]

)
)]

(45)

= Dα(PY|X ‖ PY|PX)− Dα(PY[α]
‖ PY), (46)

where PX → PY|X → PY. It can be checked that the constant in (24) is equal to

κα = (α− 1)Iα(X; Y). (47)

Note that I1(X; Y) = I(X; Y) but, in general, Iα(X; Y) 6= Iα(Y; X).

18. An alternative expression for α-mutual information, which will come in handy in our analysis and
which does not involve either PY or PY[α]

is obtained by introducing an auxiliary probability measure
PȲ dominating the collection {PY|X=u, u ∈ A} [27]:

Iα(X; Y) =
α

α− 1
logE[E

1
α [exp(α ıX;Ȳ(X; Ȳ))|Ȳ]], (X, Ȳ) ∼ PX × PȲ, (48)

where

ıX;Ȳ(x; y) = log
dPY|X=x

dPȲ
(y). (49)
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As usual, sometimes it is convenient to fix σ-finite measures µX and µY on the input and output
spaces which dominate PX and {PY|X=x : x ∈ A}, respectively, and denote their densities with
respect to the reference measures by

pY|X(y|x) =
dPY|X=x

dµY
(y), (50)

pX(x) =
dPX
dµX

(x). (51)

Then, we can write α-mutual information as

Iα(PX , PY|X) =
α

α− 1
log

∫
B

(∫
A

pα
Y|X(y|x)pX(x)dµX(x)

) 1
α

dµY(y). (52)

19. In the special case of discrete alphabets,

E0(ρ, PX , PY|X) = ρ I 1
1+ρ

(X; Y), (53)

where the left side is the familiar Gallager function defined in [36] for ρ ∈ (0, 1) as

E0(ρ, PX , PY|X) = − log ∑
y∈B

(
∑

x∈A
PX(x)P

1
1+ρ

Y|X (y|x)
)1+ρ

. (54)

20. Fix α > 0, PY|X : A → B, and a collection P of probability measures on the input space. Then,
we denote

Cα(P) = sup
PX∈P

Iα(PX , PY|X). (55)

When P is the set of all input measures we write simply Cα, dubbed the Rényi capacity in [26]. Cα is a
measure of the similarity of the family {PY|X=x, x ∈ A}, which plays an important role in the analysis
of the fundamental limits of information transmission through noisy channels, particularly in the
regime of exponentially small error probability. For a long time (e.g., [39]) the cutoff rate C 1

2
was

conjectured to be the maximal rate for which reliable codes with manageable decoding complexity
can be found. The zero-error capacity of the discrete memoryless channel with feedback is equal to
either zero or [40]

C0f = max
X

I0(X; Y), (56)

depending on whether there is (a1, a2) ∈ A2 such that PY|X(·|a1) ⊥ PY|X(·|a2).

21. The related quantity maxPX I 1
α
(PX, Pα

Y|X) arises in the study of the fundamental limits of guessing
and task completion under mismatch [41,42].

22. While D(P‖Q) is convex in the pair (P, Q), the picture for Rényi divergence is somewhat
more nuanced:
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(a) If α ∈ (0, 1), then Dα(P ‖Q) is convex in (P, Q).

(b) If α > 0, then Dα(P ‖Q) is convex in Q for all P, (see [4]).

23. For any fixed pair (PY|X, QY|X), Dα(PY|X‖QY|X |PX) is concave (resp. convex) in PX if α ≥ 1 (resp.
α ∈ (0, 1]) (see [43]).

24. The α-mutual information Iα(PX, PY|X) is concave in PX for any fixed PY|X and α > 1 (see [43]).
If α ∈ (0, 1) ∪ (1, ∞), then the following monotonically increasing function of Iα(PX , PY|X) is concave
in PX

Γα

(
Iα(PX , PY|X)

)
=

1
α− 1

ϕ 1
α

(
Iα(PX , PY|X)

)
, (57)

where ϕα(z) = exp(z− αz) (see [10,43]).

3. Conditional Rényi Divergence Game

As can be expected from (43), when maximizing α-mutual information, for fixed PY|X , with respect to
the input probability measure, it is interesting to consider a zero-sum game with payoff function

Dα(PY|X ‖Q|PX)

such that one player tries to maximize it by choosing PX ∈ P , where P is a given collection of input
probability measures, and the other player tries to minimize it by choosing the probability measure Q ∈ Q
on the output space. Balancing simplicity and generality and motivated by applications, while we allow P
to be a proper subset of the set of all input probability measures, we assume that there are no restrictions in
the choice of the output probability measure, and thereforeQ stands for the whole collection of probability
measures on the output space. This game also arises in the determination of the worst-case redundancy
in (37). In Section 3.1 we consider the important special case in which there exists an input distribution that
attains the supremum in (55). In the more general scenario in which the supremum may not be achieved,
we cannot identify a saddle point but we can indeed swap sup and min as we show in Section 3.2.

3.1. Saddle point

We begin by showing that the maximal α-mutual information input distribution and its α-response
form a saddle point.

Theorem 1. Let P be a convex set of probability distributions on A and Q be the set of all probability distributions
on B. Let α ∈ (0, 1) ∪ (1, ∞). Suppose that there exists some P∗X ∈ P such that

Iα(P∗X , PY|X) = max
PX∈P

Iα(PX , PY|X) < ∞, (58)

and denote the α-response to P∗X by P∗Y[α]
. Then, for any (PX , QY) ∈ P ×Q,

Dα(PY|X‖P∗Y[α]
|PX) ≤ Dα(PY|X‖P∗Y[α]

|P∗X) (59)

≤ Dα(PY|X‖QY|P∗X). (60)

Conversely, if (P∗X , P∗Y[α]
) is a saddle point of Dα(PY|X‖ · |·), namely, (59)–(60) are satisfied, then P∗X maximizes the

α-mutual information.
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Remark 1. Assuming that P includes δx (unit mass at x ∈ A), (59) implies that for any x ∈ A,

Dα(PY|X=x‖P∗Y[α]
) ≤ max

PX∈P
Iα(PX , PY|X). (61)

We can easily obtain corollaries to Theorem 1 that elucidate useful properties of the saddle point.

Corollary 1. Let α ∈ (0, 1) ∪ (1, ∞). Under the assumptions in Theorem 1, for any PX ∈ P , we have

Dα(PY[α]
‖P∗Y[α]

) ≤ Iα(P∗X , PY|X)− Iα(PX , PY|X) < ∞, (62)

where PY[α]
is the α-response to PX. Moreover, PY[α]

= P∗Y[α]
if, in addition to P∗X, PX also attains Cα(P) =

maxPX∈P Iα(PX , PY|X).

Proof of Corollary 1. For any PX ∈ P ,

Iα(PX , PY|X) = Dα(PY|X‖PY[α]
|PX) (63)

= Dα(PY|X‖P∗Y[α]
|PX)− Dα(PY[α]

‖P∗Y[α]
) (64)

≤ Dα(PY|X‖P∗Y[α]
|P∗X)− Dα(PY[α]

‖P∗Y[α]
) (65)

= Iα(P∗X , PY|X)− Dα(PY[α]
‖P∗Y[α]

), (66)

where (64) and (65) follow from (42) and (59), respectively. Since Rényi divergence is nonnegative,
Dα(PY[α]

‖P∗Y[α]
) = 0 if PX also attains Cα(P).

Therefore, Corollary 1 implies that the α-responses to all the maximal α-mutual information input
distributions must be identical. Moreover, if α > 1, then every α-response to any input distribution satisfies
PY[α]
� P∗Y[α]

.
If P is the space of all probability distributions on A, then we can get the following corollary.

Corollary 2. Unconstrained maximization of α-mutual information. Suppose that α ∈ (0, 1) ∪ (1, ∞) and P
contains all probability mass functions on the discrete alphabet A. Fix PY|X : A → B. For any input distribution
P̄X , denote its support by ĀX ⊂ A and the corresponding α-response by P̄Y[α]

.
A necessary and sufficient condition for P̄X to achieve maxX I(X; Y) < ∞ is

max
a∈ĀX

Dα(PY|X=a‖P̄Y[α]
) = min

a∈ĀX

Dα(PY|X=a‖P̄Y[α]
) ≥ max

a∈Āc
X

Dα(PY|X=a‖P̄Y[α]
). (67)

Proof of Corollary 2.

• maxX Iα(X; Y) = Iα(P̄X , PY|X)⇒ (67): Regardless of whether α > 1 or α < 1, we see from (45) that if
there exists some x0 ∈ ĀX such that

Dα

(
PY|X=x0

‖P̄Y[α]

)
< max

PX∈P
Iα(PX , PY|X), (68)

then Iα(P̄X, PY|X) < maxPX∈P Iα(PX, PY|X), which contradicts the assumed optimality of P̄X.
Moreover, if there exists some x0 ∈ Āc

X such that (68) holds with the strict inequality reversed,
then (59) would be violated, again contradicting the assumed optimality of P̄X .
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• (67) ⇒ maxX Iα(X; Y) = Iα(P̄X, PY|X): Again, we see from (45) that if (67) is satisfied, then (59) is
satisfied. Since P̄Y[α]

is the α-response to P̄X , (59) is also satisfied, and the converse part in Theorem 1
results in the optimality of P̄X .

Remark 2. According to Corollary 2, if some input distribution P∗X achieves Cα, we know the α-response output
distribution P∗Y[α]

is equidistant in Dα(·‖P∗Y[α]
) to any of the output distributions in the collection

S = {PY|X=x, P∗X(x) > 0} ⊂ Q. (69)

Moreover, we know that the optimal α-response output distribution is actually unique even if there exist several
optimal input distributions. So the key is to find the unique centroid of S when the distance is measured by the Rényi
divergence. In contrast to the maximization of the mutual information, the optimal α-response output distribution is
no longer a mixture of the conditional output distributions.

Remark 3. Corollary 2 enables us to recover Gallager’s finite alphabet result in Theorem 5.6.5 of [44],
which characterizes the maximal α-mutual information input distribution if α ∈ (0, 1) when both A and B
are finite. The optimal input distribution P∗X must satisfy the following condition:

∑
y∈B

(
∑

x∈A
Pα

Y|X(y|x)P∗X(x)

) 1−α
α

Pα
Y|X(y|u) ≥ ∑

y∈B

(
∑

x∈A
Pα

Y|X(y|x)P∗X(x)

) 1
α

, (70)

with equality for all u such that P∗X(u) > 0. To verify this condition, note that Corollary 2 requires that

exp(κ∗α) = exp ((α− 1)Cα) ≤ ∑
y∈B

Pα
Y|X=u(y)

(
P∗Y[α]

(y)
)1−α

, (71)

with equality if P∗X(u) > 0, and where κ∗α stands for the normalizing constant in (24) with PX ← P∗X.
Upon substitution of (25) with PX ← P∗X, we obtain (70). The assumption of finite output alphabet can be
easily dispensed with to obtain the more general optimality condition

E
[
Ψ1−α

α (Y∗) exp
(
α ı∗X;Y(u; Y∗)

)]
≥ E [Ψα(Y∗)] (72)

with equality for all u such that P∗X(u) > 0. In (72), ı∗X;Y stands for the information density corresponding to
P∗X → PY|X → P∗Y and

Ψα(y) = E
1
α
[
exp

(
α ı∗X;Y(X∗; y)

)]
, X∗ ∼ P∗X (73)

If α > 1, condition (72) holds with the inequality reversed.

Remark 4. When B is finite, it was shown in [2,4,25] that for any α ∈ [0, ∞],

Cα = Rα, (74)
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where Rα is defined in (37). This is now established without imposing finiteness conditions, as long as there is an
input that achieves the maximal α-mutual information because

Rα ≤ Cα (75)

= max
PX∈P

min
QY∈Q

Dα(PY|X‖QY|PX) (76)

≤ min
QY∈Q

max
PX∈P

Dα(PY|X‖QY|PX) (77)

≤ Rα, (78)

where (75) follows from particularizing (59) to deterministic PX , and (78) follows from (40).

3.2. Minimax identity

In this section we drop the assumption that there exists an input probability measure that attains the
maximal α-mutual information and show that the conditional Rényi divergence still satisfies a minimax
identity, even if a saddle point does not exist.

Theorem 2. Let P be a convex set of probability distributions on A and Q be the set of all probability distributions
on B. We have the minimax equality:

Cα(P) = sup
PX∈P

min
QY∈Q

Dα(PY|X‖QY|PX) (79)

= min
QY∈Q

sup
PX∈P

Dα(PY|X‖QY|PX). (80)

Furthermore, if Cα(P) < ∞, then there exists a unique element in Q attaining the minimum in (80).

The assumption of convexity in Theorem 2 is not superfluous, as the following example illustrates.

Example 1. Let A = B = N and Y = X + N, where N is a geometric random variable on the nonnegative
integers with positive mean and independent of X. Let P be the non-convex set of all the deterministic probability
measures on A. In this case, the left side of (80) is zero, while the right side is infinity. To see this, note that for any
QY ∈ Q and n ∈ N, it follows from the data processing inequality applied to the binary deterministic transformation
1{Y ≥ n} that

Dα(PY|X=n‖QY) ≥ dα (1‖QY({n + 1, . . .})) , (81)

whose right side diverges as n→ ∞. Therefore, for any QY ∈ Q, (39) results in

sup
PX∈P

Dα(PY|X‖QY|PX) = ∞. (82)

Continuing with the theme in Remark 4, Theorem 2 extends the validity of Rα = Cα without
requiring the existence of the maximal α-mutual information input distribution. It was conjectured in [2]
(and proved in [26]) that for α ∈ (0, ∞), if Rα < ∞ and B is finite or countable, there exists a unique
redundancy-achieving distribution

Q∗Y = arg min
QY

sup
x∈A

Dα(PY|X=x‖QY) (83)
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and for all probability measures QY on the output space,

sup
x∈A

Dα(PY|X=x‖QY) ≥ Cα + Dα(Q∗Y‖QY). (84)

We can prove the conjecture easily with the help of Theorem 2.

Proof. Let P be the convex set of all probability measures on A. Since Cα = Rα < ∞, by Theorem 2,
we know there exists a unique P∗Y[α]

such that supPX∈P Dα(PY|X‖P∗Y[α]
|PX) = Cα, which implies that P∗Y[α]

is precisely the unique redundancy-achieving distribution in (83). Moreover, as shown in the proof of
Theorem 2, we can find a sequence {PXn}n≥1 in P such that Iα(PXn , PY|X) → Cα as n → ∞ and such
that the corresponding α-responses PYn[α]

converge to P∗Y[α]
in the total variation metric. Pick an arbitrary

QY ∈ Q. If α > 1 and PY|X=x 6� QY for some x ∈ A, then supx∈A Dα(PY|X=x‖QY) = ∞ and (84) holds.
Otherwise, by (42) we always have

Dα(PY|X‖QY|PX) = Dα(PY|X‖P∗Y[α]
|PX) + Dα(P∗Y[α]

‖QY). (85)

For any n ≥ 1, since P includes all probability measures on A, we have

sup
x∈A

Dα(PY|X=x‖QY) = sup
PX∈P

Dα(PY|X‖QY|PX) (86)

≥ Dα(PY|X‖QY|PXn) (87)

= Dα(PY|X‖PYn[α]
|PXn) + Dα(PYn[α]

‖QY) (88)

= Iα(PXn , PY|X) + Dα(PYn[α]
‖QY), (89)

where (88) is due to (42). Taking the limit as n → ∞, the lower-semicontinuity of the Rényi divergence
ensures that

sup
x∈A

Dα(PY|X=x‖QY) ≥ Cα + Dα(P∗Y[α]
‖QY), (90)

and therefore the sought-after Q∗Y is none other that P∗Y[α]
, the unique maximal α-mutual information output

distribution.

4. Finding Cα

In this section, we present a number of examples to illustrate how the results in Section 3 can be used
to maximize the α-mutual information with respect to the input distribution. It is instructive to contrast
the present approach with the maximization of α-mutual information invoking the KKT conditions, which
is feasible in both the case α > 1 in which the functional is concave with respect to the input distribution,
and the case α ∈ (0, 1) in which a monotonically increasing function of α-mutual information is concave.
Simple finite-alphabet examples of such approach can be found in [44] when dealing with the E0 functional
in (54). Thanks to Theorem 1 it is possible to avoid taking derivatives of any functionals.

Example 2 (Binary symmetric channel). Let the input and output alphabet be A = B = {0, 1} and the random
transformation be

PY|X =

[
1− δ δ

δ 1− δ

]
, δ ∈ [0, 1]. (91)



Entropy 2019, 21, 969 15 of 25

Let’s try the input distribution P∗X(0) = P∗X(1) = 0.5. Then, according to (25), the α-response output
distribution is also equiprobable P∗Y[α]

(0) = P∗Y[α]
(1) = 0.5. Since

Dα(PY|X=0‖P∗Y[α]
) = Dα(PY|X=1‖P∗Y[α]

) = dα

(
δ
∥∥ 1

2

)
(92)

the conditions of Corollary 2 are met, P∗X attains the maximal α-mutual information and therefore,

Cα = dα

(
δ
∥∥ 1

2

)
= log 2 +

1
α− 1

log (δα + (1− δ)α) , (93)

which satisfies, according to (31)

lim
α→1

Cα = log 2− h(α), (94)

lim
α→∞

Cα = log (2 max{δ, 1− δ}) . (95)

Example 3 (Binary erasure channel.). Let the input/output alphabets be A = {0, 1} and B = {0, e, 1}, and the
random transformation be

PY|X =

 1− δ 0
δ δ

0 1− δ

 , δ ∈ [0, 1]. (96)

(Departing from usual practice, columns/rows represent input/output letters respectively, i.e. probability vectors are
column vectors, although for typographical convenience we show them as row vectors in the text.)

The α-response output distribution to P∗X(0) = P∗X(1) = 0.5 is

P∗Y[α]
(0) = P∗Y[α]

(1) =
1− δ

δ2
1
α + 2(1− δ)

, (97)

P∗Y[α]
(e) =

δ2
1
α

δ2
1
α + 2(1− δ)

. (98)

By symmetry,

Cα = Dα(PY|X=0‖P∗Y[α]
) = Dα(PY|X=1‖P∗Y[α]

) (99)

=
1

α− 1
log

(1− δ)α

(
(1− δ)

δ2
1
α + 2(1− δ)

)1−α

+ δα

(
δ2

1
α

δ2
1
α + 2(1− δ)

)1−α
 (100)

=
1

α− 1
log

 1− δ + 2
1−α

α δ(
δ2

1
α + 2(1− δ)

)1−α

 (101)

=
1

α− 1
log

 2
α−1

α (1− δ) + δ(
δ + 2

α−1
α (1− δ)

)1−α

 (102)

=
α

α− 1
log
(
(1− δ)2(1− 1

α ) + δ
)

, (103)
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which satisfies (in bits)

lim
α→1

Cα = 1− δ, (104)

lim
α→∞

Cα = log2(2− δ). (105)

Example 4 (Binary asymmetric channel). Let the input and output alphabet be A = B = {0, 1} and the random
transformation be

PY|X =

[
1− δ0 δ1

δ0 1− δ1

]
, (δ0, δ1) ∈ [0, 1]2. (106)

If δ0 + δ1 = 1, then Iα(X; Y) = 0 for any input distribution. We will assume δ0 + δ1 < 1. Otherwise, we can just
relabel the output alphabet (0, 1)← (1, 0), or equivalently (δ0, δ1)← (1− δ0, 1− δ1). The condition

Dα(PY|X=0‖P∗Y[α]
) = Dα(PY|X=1‖P∗Y[α]

) (107)

is now dα

(
1− δ0‖P∗Y[α]

(0)
)
= dα

(
δ1‖P∗Y[α]

(0)
)

, which, in view of (32) yields

P∗Y[α]
(0) =

(
1 +

(
(1− δ0)

α − δα
1

(1− δ1)α − δα
0

) 1
1−α
)−1

. (108)

We can verify from (25) that this corresponds to the α-response to P∗X(1) = p∗ = 1− P∗X(0), where p∗ ∈ [0, 1] is
the solution to

δα
0 (1− p) + (1− δ1)

α p
(1− δ0)α(1− p) + δα

1 p
=

(
(1− δ0)

α − δα
1

(1− δ1)α − δα
0

) α
1−α

. (109)

Then,

Cα = Dα(PY|X=0‖P∗Y[α]
) (110)

=
1

α− 1
log
(
(1− δ0)

α (1− δ1)
α − δα

0 δα
1
)
+ log

((
(1− δ0)

α − δα
1
) 1

1−α +
(
(1− δ1)

α − δα
0
) 1

1−α

)
. (111)

which satisfies

lim
α→1

Cα = log
(

exp
(

h(δ0)

1− δ1 − δ0

)
+ exp

(
h(δ1)

1− δ1 − δ0

))
− (1− δ1)h(δ0) + (1− δ0)h(δ1)

1− δ1 − δ0
, (112)

and

lim
α→∞

Cα = log(2− δ0 − δ1). (113)

Example 5 (Z channel). Let the input and output alphabet be A = B = {0, 1} and the random transformation be

PY|X =

[
1 δ

0 1− δ

]
, δ ∈ [0, 1]. (114)
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Since this is the special case (δ0, δ1) = (0, δ) of the binary asymmetric channel we obtain

Cα = log

(
1 +

(
1− δα

(1− δ)α

) 1
1−α

)
. (115)

The limit

lim
α→1

Cα = log
(

1− δ
1

1−δ + δ
δ

1−δ

)
(116)

coincides with the capacity of the Z-channel originally derived in [45].

The next example illustrates a case in which there are multiple optimal input distributions.

Example 6. Let A = {0, 1, 2}, B = {0, 1, 2, 3} and the random transformation be

PY|X =


1
2 − δ δ 1

2 − δ

δ 1
2 − δ δ

δ 1
2 − δ δ

1
2 − δ δ 1

2 − δ

 , δ ∈
[
0, 1

2

]
. (117)

Let P0
X = [ 1

2
1
2 0] and P1

X = [0 1
2

1
2 ]. Its easy to verify that the corresponding α-responses are the equiprobable

distribution on B. To verify that P0
X and P1

X attain the maximal α-mutual information, denote P∗Y[α]
=
[

1
4

1
4

1
4

1
4

]
.

For all x ∈ A, we have

Dα

(
PY|X=x‖P∗Y[α]

)
= Dα

([
δ

1
2
− δ

1
2
− δ δ

] ∥∥∥ [1
4

1
4

1
4

1
4

])
(118)

=
2α− 1
α− 1

log 2 + log
(

δα +

(
1
2
− δ

)α)
(119)

= Cα, (120)

where (120) follows from Corollary 2.

In the next example Cα is constant in α.

Example 7 (Additive phase noise). Let the input and output alphabet be A = B = [0, 2π) and the random
transformation be Y = (X + N) mod 2π, where N is independent of X and is uniform on the interval [−θ0, θ0]

with θ0 ∈ (0, π]. Suppose P∗X is uniform on [0, 2π), it is easy to verify that P∗Y[α]
is also uniform on [0, 2π).

Invoking (26), we obtain

Dα

(
PY|X=x‖P∗Y[α]

)
= log

π

θ0
, x ∈ A, (121)

which according to Theorem 1 must be equal to Cα attained by P∗X .
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Example 8 (Additive Gaussian noise). Let A = B = R, Y = X + N, where N ∼ N (0, σ2) is independent of
X. Fix α ∈ (0, 1) and P > 0. Suppose that the set, P , of allowable input probability measures on A consists of those
that satisfy

E
[

expe

(
− α(1− α)X2

2 (α2P + σ2)

)]
≥

√
α2P + σ2

αP + σ2 . (122)

By completing the square, it is easy to verify that P∗X ∼ N (0, P) satisfies (122) with equality. Furthermore, its
α-response is P∗Y[α]

∼ N (0, αP + σ2). To show that P∗X does indeed attain Cα(P), first we compute

Dα

(
PY|X=x‖P∗Y[α]

)
=

1
2

log
(

1 +
αP
σ2

)
− 1

2 (1− α)
log
(

αP + σ2

α2P + σ2

)
+

1
2

αx2

α2P + σ2 log e. (123)

With (122) and (123), it is straightforward to see that if PX ∈ P then

Dα

(
PY|X‖P∗Y[α]

|PX

)
≤ Dα

(
PY|X‖P∗Y[α]

|P∗X
)

. (124)

Consequently, Theorem 1 establishes that P∗X achieves the maximal α-mutual information, which using (39) is
given by

Cα(P) =
1
2

log
(

1 +
αP
σ2

)
. (125)

5. Proofs

5.1. Proof of Theorem 1

We deal with the converse statement first. If (59)–(60) are satisfied then (P∗X, P∗Y[α]
) is a saddle point,

and therefore,

Iα(P∗X , PY|X) = max
PX∈P

min
QY∈Q

Dα(PY|X‖QY|PX) (126)

= min
QY∈Q

max
PX∈P

Dα(PY|X‖QY|PX). (127)

which, by definition of α-mutual information, implies that P∗X attains maxPX∈P Iα(PX , PY|X). To show that
the optimal input and its α-response must form a saddle point, first we deal with the case α > 1, in which
we can use the concavity of the conditional Rényi divergence. Choose arbitrary ν ∈ (0, 1) and PX ∈ P . Let
Pν = νPX + (1− ν)P∗X and denote its α-response by

Q(ν)
Y[α]

= arg min
QY∈Q

Dα(PY|X‖QY|Pν). (128)
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Therefore, Q(0)
Y[α]

= P∗Y[α]
. We have

Iα(P∗X , PY|X) ≥ Iα(Pν, PY|X) (129)

= Dα(PY|X‖Q
(ν)
Y[α]
|Pν) (130)

≥ νDα(PY|X‖Q
(ν)
Y[α]
|PX) + (1− ν)Dα(PY|X‖Q

(ν)
Y[α]
|P∗X) (131)

≥ νDα(PY|X‖Q
(ν)
Y[α]
|PX) + (1− ν) min

QY∈Q
Dα(PY|X‖QY|P∗X) (132)

= νDα(PY|X‖Q
(ν)
Y[α]
|PX) + (1− ν)Iα(P∗X , PY|X), (133)

where (129) is due to the assumption of the optimality of P∗X, (131) holds because Dα(PY|X‖QY|PX) is
concave in PX for α > 1 and (130) and (133) are due to the definition of α-mutual information.

It follows that

Dα(PY|X‖Q
(ν)
Y[α]
|PX) ≤ Iα(P∗X , PY|X) = Dα(PY|X‖P∗Y[α]

|P∗X). (134)

Since |Q(ν)
Y[α]
−Q(0)

Y[α]
| → 0 as ν→ 0, the lower semicontinuity of Rényi divergence and (134) imply (59).

We now show the desired result for α ∈ (0, 1). In this case, the method of proof is easy to adapt to the
α > 1 case but it is more cumbersome than the foregoing proof, which is able to capitalize on the concavity
of the conditional Rényi divergence. The starting point is the expression in (52) which we write as

Iα(PX , PY|X) =
α

α− 1
log f (pX), (135)

f (r) =
∫
B

(∫
A

pα
Y|X(y|x)r(x)dµX(x)

) 1
α

dµY(y), (136)

where we have defined the functional f on the convex cone P̄ of nonnegative functions r on the input
space such that r(x) = β dP

dµX
(x) for some β ≥ 0 and P ∈ P . Recall from (48) that when the argument is a

density, then we have

f (pX) = E[E
1
α [exp(α ıX;Ȳ(X; Ȳ))|Ȳ]], (X, Ȳ) ∼ PX × PȲ. (137)

By virtue of the convexity of (·) 1
α , f is a convex functional. Its directional (Gateaux) derivative is given by

(note that the assumed finiteness of Iα(X; Y) allows swapping of differentiation and integration by means
of the dominated convergence theorem)

f ′(r; q) =
d
dδ

f (r + δq)|δ=0 (138)

=
1
α

∫
B

(∫
A

pα
Y|X(y|x)r(x)dµX(x)

) 1−α
α
(∫
A

pα
Y|X(y|x)q(x)dµX(x)

)
dµY(y). (139)

Define the Lagrangian

L(r, λ) = f (r)− λ

(∫
A

r(x)dµX(x)− 1
)

. (140)
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Since f is convex and (135) is maximized by P∗X among all probability measures on the convex set P , there
exists some λ0 ≥ 0 such that

max
λ≥0

min
r

L(r, λ) = L(p∗X , λ0), (141)

where the minimization is over the convex cone P̄ . It follows from standard convex optimization (e.g., see
p. 227 in Reference [46]) that the Gateaux derivative of L(·, λ0) at p∗X in the direction of any q ∈ P̄ satisfies

L′(p∗X ; q, λ0) ≥ 0, (142)

with equality if q = p∗X . Invoking (139), we obtain

L′(p∗X ; q, λ0) =
1
α

∫
B

(∫
A

pα
Y|X(y|x)p∗X(x)dµX(x)

) 1−α
α
(∫
A

pα
Y|X(y|x)q(x)dµX(x)

)
dµY(y)

− λ0

(∫
A

p∗X(x)dµX(x)− 1
)

. (143)

Specializing (142) and its condition for equality to q← pX we obtain

L′(p∗X ; pX , λ0) ≥ L′(p∗X ; p∗X , λ0) (144)

which, upon substitution of (143), becomes

f (p∗X) ≤
∫
A

∫
B

pα
Y|X(y|x)

(∫
A

pα
Y|X(y|x)p∗X(x)dµX(x)

) 1−α
α

pX(x)dµY(y)dµX(x). (145)

Taking 1
α−1 log(·) of both sides of (145), invoking (25) and (47), the inequality is reversed and we obtain

Dα(PY|X‖P∗Y[α]
|PX) +

1− α

α
Iα(X∗; Y∗) ≤ 1

α
Iα(X∗; Y∗), (146)

which upon rearranging is the sought-after inequality (59).

5.2. Proof of Theorem 2

In order to show

inf
QY∈Q

sup
PX∈P

Dα(PY|X‖QY|PX) ≤ sup
PX∈P

min
QY∈Q

Dα(PY|X‖QY|PX) = Cα(P), (147)

we construct Q∗Y ∈ Q such that

Dα(PY|X‖Q∗Y|PX) ≤ Cα(P), ∀PX ∈ P . (148)

Moreover, Q∗Y is indeed the minimizer in the leftmost side of (147) and we may replace the inf with
min therein.

The construction of Q∗Y follows a Cauchy-sequence approach in the proof of Kemperman’s result
in [47]. Let {PXn}n≥1 be a sequence of probability distributions in P such that

lim
n→∞

Iα(PXn , PY|X) = Cα(P). (149)
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Fix an arbitrary PX ∈ P and let Pn ⊂ P denote the convex hull of {PX , PX1 , . . . , PXn}, which is a compact
set. Although Iα(·, PY|X) may not be concave for α ∈ (0, 1), recall from (57) that the monotonically
increasing function Γα is such that Γα(Iα(·, PY|X)) is concave. So there exists some P∗Xn

∈ Pn that attains
Cα(Pn). Thus for any n ≥ 1,

Iα(PXn , PY|X) ≤ Iα(P∗Xn
, PY|X) ≤ Cα(P) (150)

by the definition of Cα(P). The asymptotic optimality of the sequence Xn implies that Iα(P∗Xn
, PY|X) =

Cα(Pn) also converges to Cα(P).
Denote by P∗Yn[α]

the α-response to P∗Xn
. Then for any m ≥ n ≥ 1, we have

Iα(P∗Xn
, PY|X) = Dα(PY|X‖P∗Yn[α]

|P∗Xn
) (151)

= Dα(PY|X‖P∗Ym[α]
|P∗Xn

)− Dα(P∗Yn[α]
‖P∗Ym[α]

) (152)

≤ Dα(PY|X‖P∗Ym[α]
|P∗Xm

)− Dα(P∗Yn[α]
‖P∗Ym[α]

) (153)

= Iα(P∗Xm
, PY|X)− Dα(P∗Yn[α]

‖P∗Ym[α]
), (154)

where (151) and (154) are due to the definition of α-mutual information, (152) follows from (42), and (153)
holds because of Theorem 1 applied to Pm since P∗Xn

∈ Pm as Pn ⊂ Pm for m ≥ n. Rearranging the
end-to-end inequality in (151)–(154) results in

Dα(P∗Yn[α]
‖P∗Ym[α]

) ≤ Iα(P∗Xm
, PY|X)− Iα(P∗Xn

, PY|X). (155)

But since Iα(P∗Xn
, PY|X) converges to Cα(P), it is a Cauchy sequence, i.e.∣∣∣Iα(P∗Xn

, PY|X)− Iα(P∗Xm
, PY|X)

∣∣∣→ 0, n, m→ ∞. (156)

Hence, (155) ensures that P∗Yn[α]
is also a Cauchy sequence in the sense that Dα(P∗Yn[α]

‖P∗Ym[α]
) → 0 as

n, m→ ∞. By the generalized Pinkser’s inequality (35), P∗Yn[α]
is also a Cauchy sequence in total variation

distance, i.e., |P∗Yn[α]
− P∗Ym[α]

| → 0 as n, m→ ∞. Since the space of probability measures is complete in the

total variation distance, {P∗Yn[α]
}n must possess a limit point, which we denote by P∗Y[α]

.
Now, by Theorem 1 applied to Pn, we have

Dα(PY|X‖P∗Yn[α]
|PX) ≤ Dα(PY|X‖P∗Yn[α]

|P∗Xn
) ≤ Cα(P), (157)

and since Dα(P‖Q) is lower-semicontinuous in (P, Q) for α > 0, taking limits as n→ ∞ of (157), we obtain

Dα(PY|X‖P∗Y[α]
|PX) ≤ Cα(P). (158)

Next we show that (158) holds for all PX ∈ P , in other words, the limit point P∗Y[α]
does not depend on the

initial choice of PX ∈ P . Choose an arbitrary distribution QX ∈ P , QX 6= PX , and introduce the following
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notation: P ′n is the convex hull of {QX, PX, PX1 , . . . , PXn}; Q∗Xn
is a maximizer of Iα(PX, PY|X) in P ′n; its

α-response is Q∗Yn[α]
; and Q∗Y[α]

is the limit of the sequence {Q∗Yn[α]
}n. Then we have

Dα(P∗Yn[α]
‖Q∗Yn[α]

) = Dα(PY|X‖Q∗Yn[α]
|P∗Xn

)− Dα(PY|X‖P∗Yn[α]
|P∗Xn

) (159)

≤ Dα(PY|X‖Q∗Yn[α]
|Q∗Xn

)− Dα(PY|X‖P∗Yn[α]
|P∗Xn

) (160)

= Iα(Q∗Xn
, PY|X)− Iα(P∗Xn

, PY|X), (161)

where (159) holds because of (42); (160) is due to Theorem 1 applied to P ′n and the fact that P∗Xn
∈ Pn ⊂ P ′n

for any n ≥ 1; and (161) is because of the definition of the α-mutual information.
The same argument that led to the conclusion that Iα(P∗Xn

, PY|X) → Cα(P) establishes that
Iα(Q∗Xn

, PY|X) → Cα(P). Therefore, taking limits as n → ∞ in (159)–(161) and applying the
lower-semicontinuity of Dα(P‖Q) again, we obtain

Dα(P∗Y[α]
‖Q∗Y[α]

) = 0, (162)

and therefore P∗Y[α]
= Q∗Y[α]

. Since the limiting output distribution is the same whether we use Pn or P ′n
and according to the latter the roles of PX and QX are identical, we conclude that had we defined Pn with
QX instead of PX, we would have reached the same limiting output distribution and (158) holds for all
PX ∈ P . So we have constructed Q∗Y satisfying (148).

Finally, we show that P∗Y[α]
is the only element that achieves

inf
QY∈Q

sup
PX∈P

Dα(PY|X‖QY|PX).

Arguing by contradiction, suppose that there exists another P̂Y such that

sup
PX∈P

Dα(PY|X‖P̂Y|PX) = Cα(P). (163)

As earlier in the proof, let {PXn ∈ P}n be a sequence satisfying (149), and denote the corresponding
α-responses by PYn[α]

. Then, invoking (42) again we have

Dα(PY|X‖PYn[α]
|PXn) + Dα(PYn[α]

‖P̂Y) = Dα(PY|X‖P̂Y|PXn) (164)

≤ Cα(P) < ∞, (165)

where the inequality follows from (163). Using (149) we obtain

Dα(PYn[α]
‖P̂Y) ≤ Cα(P)− Dα(PY|X‖PYn[α]

|PXn) (166)

→ 0, (167)

and by (35), it follows that

|PYn[α]
− P̂Y| → 0. (168)

Furthermore, we established above that

|PYn[α]
− P∗Y[α]

| → 0. (169)
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So, by the triangle inequality, we conclude that P̂Y = P∗Y[α]
.

6. Conclusions

The supremization of α-mutual information with respect to the input distribution plays an important
role in various information theoretic settings, most notably in the error exponent of optimal codes operating
below capacity. We show that the optimal (if it exists) input distribution, together with its α-response,
form a saddle-point of the conditional Rényi divergence, and vice versa, the existence of the saddle
point ensure the existence of a maximal α-mutual information input distribution. The application of this
result to various discrete and non-discrete settings illustrates the power and generality of this tool, which
mirrors a similar result enjoyed by conditional relative entropy; However, the proof of the latter result
is much easier due to the more convenient structure of the objective function. Regardless of whether
there exists an input distribution maximizing α-mutual information, there always exists a unique optimal
output distribution, which is the limit of the α-responses of any asymptotically optimal sequence of input
distributions. Furthermore, a saddle-value exists and

sup
PX

min
Q

Dα(PY|X ‖Q|PX) = min
Q

sup
PX

Dα(PY|X ‖Q|PX) (170)

even if we restrict the feasible set of input distributions to be an arbitrary convex subset. These results lend
further evidence to the notion that, out of all the available Rényi-generalizations of mutual information,
the α-mutual information defined as in (43) is the most convenient and insightful, although Icα (X; Y) is
also of considerable interest particularly in the error exponent analysis of channels with cost constraints.
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