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Abstract: Just like any physical system, projects have entropy that must be managed by spending
energy. The entropy is the project’s tendency to move to a state of disorder (schedule delays,
cost overruns), and the energy process is an inherent part of any project management methodology.
In order to manage the inherent uncertainty of these projects, accurate estimates (for durations, costs,
resources, . . .) are crucial to make informed decisions. Without these estimates, managers have to
fall back to their own intuition and experience, which are undoubtedly crucial for making decisions,
but are are often subject to biases and hard to quantify. This paper builds further on two published
calibration methods that aim to extract data from real projects and calibrate them to better estimate the
parameters for the probability distributions of activity durations. Both methods rely on the lognormal
distribution model to estimate uncertainty in activity durations and perform a sequence of statistical
hypothesis tests that take the possible presence of two human biases into account. Based on these two
existing methods, a new so-called statistical partitioning heuristic is presented that integrates the best
elements of the two methods to further improve the accuracy of estimating the distribution of activity
duration uncertainty. A computational experiment has been carried out on an empirical database of
83 empirical projects. The experiment shows that the new statistical partitioning method performs
at least as good as, and often better than, the two existing calibration methods. The improvement
will allow a better quantification of the activity duration uncertainty, which will eventually lead to a
better prediction of the project schedule and more realistic expectations about the project outcomes.
Consequently, the project manager will be able to better cope with the inherent uncertainty (entropy)
of projects with a minimum managerial effort (energy).

Keywords: project management; entropy; managerial effort; distribution fitting; lognormal
distribution

1. Introduction

Project Management is the discipline to manage, monitor and control the uncertainty inherent to
projects. Project management processes are used to monitor and control the progress of projects in
order to reduce the uncertainty, and each such process requires effort from the project manager and
her team. The academic literature has been overwhelmed by research studies in project management
and control, and many of them focus on the construction of the project baseline schedule to assess the
project risk and to monitor the performance of a project in progress. The combination of these three
dimensions—schedule, risk and control—is often referred to in the literature as dynamic scheduling [1,2]
or integrated project management and control [3].

This paper starts with the observation that the relation between managerial effort and the ability
to reduce the project uncertainty lies at the heart of many research studies, although this relation is
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often not explicitly mentioned. Especially in some research papers that rely on the concept of entropy
as a way to express that projects have the natural tendency to move to a state of disorder, authors
have referred to the relation between entropy (uncertainty) and energy (effort). They have proposed
different entropy measures to enable the project manager to better predict the project uncertainty and
eventually reduce it by taking better actions. This concept of entropy is—to the best of the authors’
knowledge—not widely used in the previously mentioned dynamic scheduling studies; however, it is
believed that it sheds an interesting light on the project management domain and opens ways to look
at the dynamic scheduling literature (schedule/risk/control) in a fundamentally different way.

The current study reviews the research on entropy in project management and proposes a new
way to accurately estimate project uncertainty to improve project forecasting and decision-making.
This paper first elaborates on the link between the traditional dynamic scheduling literature and
the much less investigated concept of entropy in project management and argues that entropy is
an ideal concept to measure project uncertainty. Then, it will be shown that, in order to reduce a
project’s entropy, forecasting and estimates are crucial for a project manager and her team to make
well-informed decisions. Then, finally, a new so-called calibration method is proposed that should
help project managers to better quantify the project uncertainty by providing better estimates for the
activity durations. Such calibration procedures are relatively new in the literature, since they rely on a
combination of statistical data analysis and the correction for human biases.

The paper is organized in the following sections. Section 2 reviews the most important studies on
entropy for managing projects that have been used as an inspiration for the current research study.
Based on this, the section also explains the basic idea of calibrating project data to better estimate
project uncertainty, which constitutes the main theme of our study. In Section 3, two currently known
data calibration methods from literature are then briefly reviewed, as they will be used as foundations
for a new third calibration method taking the shortcomings of the existing methods into account.
This new so-called statistical partitioning heuristic is discussed in Section 4. Section 5 presents the
results of a computational experiment on a set of 83 empirical projects (mainly construction projects)
from a known database. The section shows that the statistical partitioning heuristic outperforms the
two other procedures, but also discusses some limitations that can be used as guidelines for future
research. Finally, Section 6 draws conclusions and highlights some potentially promising future
research avenues.

2. Managing Projects

2.1. Entropy in Project Management

Project Management is the discipline to manage, monitor and control the uncertainty inherent
to projects. Whatever specific project management process is used to monitor and control the project
progress to reduce the uncertainty, it always requires effort from the project manager and her team.
In several studies in the literature, this managerial effort of project management to reduce the project’s
uncertainty is studied from an entropy point-of-view. In this view, the entropy is the natural tendency
of projects to move to a state of disorder, often quantified as schedule delays, cost overruns and/or
quality problems, and the managerial effort to monitor and control such projects in progress is then the
energy of the entropy concept to reduce the uncertainty. The general idea of entropy is proposed by [4]
who stated that the uncertainty of a system decreases by receiving information about the possible
outcome of the system. From this point of view, project management requires energy to cope with the
inherent entropy of projects. Note that the term energy cannot be interpreted in a very strict sense here,
since energy itself is of course not sufficient for dealing with entropy. Project management is much
more than just using energy, and instead requires the right people at the right place to solve problems.
Hence, effective project management requires “competences” and “skills” which are composed by
many components, and not only the amount of energy by its people. Consequently, the term energy is
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used to refer to all the effort done by people with the right competences to bring projects in danger
back on track.

Most project management studies do not explicitly take the concept of entropy into account,
but nevertheless all aim at developing new methodologies for project managers to better measure,
predict and control the inevitable problems of a project (uncertainty) in the easiest possible way
(effort). Consequently, while many excellent studies indirectly deal with the issue of managing project
uncertainty, to the best of our knowledge, only three studies explicitly quantified the relation between
managerial effort (energy) and uncertainty reduction (entropy). First, the study of [5] investigated
whether the use of schedule risk analysis can improve the time performance of projects in progress.
In a large simulation study with artificial project data, the author varied the degree of management
attention—which is a proxy for the effort of control—and measured whether this has an impact on
the quality of the corrective action decision-making process to bring projects in trouble back on track
(uncertainty reduction). The study of [6] extended this approach and relied on the same concept of
effort (of a project manager) and quality of actions (to cope with uncertainty) and compared two
alternative project control approaches. The bottom-up control approach is similar to the previously
mentioned schedule risk analysis study and aims at reducing the project uncertainty by focusing on the
activities with the highest risk in the project schedule. The second so-called top-down method makes
use of the well-known earned value management methodology to monitor the project’s performance,
which is used as an early warning signal for taking corrective actions. The authors compared these
two alternative project control methods, and proposed the so-called control efficiency concept which
aims at finding the right balance between minimizing effort and maximizing quality of actions. Finally,
Ref. [7] measured the impact of managerial effort to reduce the activity variability on the project
time and cost performance. Without mentioning the concept of entropy, they defined a so-called
effort-uncertainty reduction function to quantify the relation between the managerial effort (energy)
and the reduced uncertainty (entropy). Despite the explicit quantification of both effort and uncertainty
reduction, these three studies never have made any attempt to use empirical project data to measure
uncertainty. Instead, all results have been obtained using simulation studies on artificial project
data using statistical probability distributions with randomly selected values for their parameters
to quantify project uncertainty. Hence, since the authors had no idea whether the chosen values
correspond with possible real-life values, they have relied on a huge set of simulation runs, varying
these values as much as possible to assure that their results provide enough managerial insights
relevant for practice. Moreover, none of these studies have explicitly referred to the concept of entropy
as a possible way to model project uncertainty.

However, the use of entropy sheds an interesting light on the project management domain.
In a study of two decades ago by [8], the authors proposed an entropy model for estimating and
management the uncertainty of projects, and argued that controlling projects comes with a certain
degree of managerial effort, since:

“With the aid of the entropy one can estimate the amount of managerial effort required to
overcome the uncertainty of a particular project.”

Or course, not all project management studies took the relation between effort and uncertainty
so explicitly into account, but nevertheless made use of the entropy concept in project management.
Ref. [9] proposed an uncertainty index as a quantitative measure for evaluating the inherent uncertainty
of a project, and analysed their approach on a real turbojet engine developing project. In a recent study,
Ref. [10] measure the uncertainty related to the evolution of a resource-constrained project scheduling
problem with uncertain activity durations using the entropy concept. Ref. [11] proposed a new risk
analysis and project control methodology, and used entropy functions for a project’s completion
time and critical path. In addition, [12] proposed an entropy-based approach for measuring project
uncertainty, and argued that management’s inability to address uncertainty is one of the major reasons
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for project failures. According to these authors, the managerial effort to deal with uncertainty in
projects should consist of three parts:

Step 1. Identifying sources of project uncertainty,
Step 2. Quantifying project uncertainty,
Step 3. Using the uncertainty metrics for improving decision-making.

The previously mentioned studies have been an inspiration to develop and propose the model
of the current paper. However, it should be noted that the literature contains many studies dealing
with the three-step process discussed earlier, and an overview of these is outside the scope of this
paper. The reader is referred to summary papers about project risk [13] and project control [14] to find
interesting references. The current study elaborates on the second part of the required managerial
effort (quantifying uncertainty) and proposes a new way of quantifying probability distributions for
activity duration by making use of empirical project data rather than simply by relying on statistical
probability functions with randomly chosen values for the averages and variances (with no known
link to practice). Ref. [8] argue that such a study for better quantifying activity duration uncertainty is
necessary since “usually in practice we can only estimate the possible duration range of activities and
very rarely we have information about the probability distribution curve”. Moreover, in the previously
mentioned paper by [12], the authors conclude that “a better prediction of project costs, schedule and
potential benefits leads to more realistic expectations about project outcomes and lower failures”, and,
hence, implicitly argue that a more accurate way of estimating probability distributions for project
uncertainty is key for making better project management decisions.

As a conclusion, the previous studies have shown that, just like any physical system, projects
have entropy that must be managed by spending energy. This energy process—defined as all the effort
done by people with the right competences—is a very important aspect of any project management
methodology. In order to manage the inherent uncertainty of these projects, accurate estimates
(for durations, costs, resources, . . . ) are crucial to make informed decisions. Without these estimates,
managers have to fall back to their own intuition and experience, which—although valuable—are
often subject to biases and hard to quantify. The next section discusses the specific approach of the
current study to accurately estimate distributions for activity duration, and it is shown that this specific
approach—which we refer to as data calibration—is an extended version of an existing methodology
of three recently published studies.

2.2. Calibrating Data

In the previous section, it has been shown that forecasting is important for good decision-making
in project management, and that such an approach requires the presence of accurate estimates for
the activity durations and costs of the project activities. While many studies have investigated the
project management domain from different angles, they all—implicitly or explicitly—agree that good
forecasting is a necessary requirement for coping with the entropy of projects, but this requires energy,
which is the managerial effort of the project manager and her team.

Hence, accurate estimates should ideally be based on a mix of data for similar past projects and
human judgement (the expertise often so readily available in the project team). Many of the simulation
studies in the literature clearly opt for using well-known statistical distributions to model activity
uncertainty, and randomly vary the parameters for the average duration and standard deviation
without really knowing what realistic values are. Despite the relevance of such studies, they do not
take any human judgement into account when estimating the distribution parameters, and hardly make
use of data of past projects. Instead, they simply rely an arbitrarily chosen numbers for the distribution
parameters without a link to real projects. The idea of calibrating data is to overcome the shortcomings
of these simulation studies by relying on data of past projects to fit probability distributions, without
ignoring the observation that these data are prone to human biases and possible misjudgements.
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Figure 1 gives a graphical summary of the central idea of calibrating project data for activity
duration distributions. A calibration method is a method to filter data of empirical projects (inputs) by
removing parts (calibration) that cannot be used further in the analysis, and to identify the distribution
parameters for activity duration that appears the most appropriate in a real-life context. The goal is
to classify the project activities in clusters that have identical values for the parameters (average and
variance) of a predefined probability distribution (outputs). The three parts (input–calibration–output)
are briefly summarized along the following lines, followed by some details about the existing
calibration methods.

• Input: The input data should exist of a set of empirical projects that are finished and for which
the outcome is known. More specifically, the empirical project data should consist of a set of
planned activity durations (estimates made during the schedule construction) and a set of known
real activity durations (that are collected after the project is finished).

• Calibration: The calibration phase makes use of the input data (planned and real activity
durations) and performs a sequence of hypothesis tests to split the set of activities into clusters
(partitions) with similar characteristics. Throughout these hypothesis tests, it is assumed that the
activity durations follow a predefined probability distribution, but a calibration method differs
from an ordinary statistical test since it recognizes that the reported values in the empirical data
might contain some biases. More precisely, the data might be biased due to the presence of the
Parkinson effect (activities that finish early are reported to be on time (hidden earliness)) as well
as rounding errors (real activity durations are rounded up or down when reported). In order to
overcome these potential biases, the calibration method starts with a sequence of hypothesis tests
(for which the null hypothesis is that all activity durations follow the predefined distribution), and,
if the hypothesis cannot be accepted, a portion of the activities of the project has to be removed
from the set to correct for the previously mentioned biases. This approach continues until the
remaining set of project activities follows the predefined distribution (i.e., the test is accepted),
and then the value for the average and variance of this distribution can be accurately estimated.

• Output: The ultimate goal of the data calibration phase is to define one or multiple clusters
of activities with similar and known values for the parameters for the predefined probability
distribution (i.e., average durations and standard deviation). These values can be used to better
predict the project outcome, and since the activity uncertainty is then no longer set as randomly
chosen values (as is often the case in simulation studies) but based on realistic values, it should
enable the project manager to better predict the project outcome and reduce the project uncertainty
more efficiently. Hence, calibration methods aim at better estimating the activity and project
uncertainty (i) based on real project data, (ii) by taking human input biases into account, and (iii)
by recognizing that not all activities should have the same values but can be clustered in smaller
groups with similar values within each group, but different values between groups.

To the best of our knowledge, only two calibration methods have been proposed in literature
that explicitly take the presence of the two human biases—the Parkinson’s effect and the effect of
rounding errors—into account, and the current study will extend these methods to a third method.
The two existing calibration procedures rely on a pre-defined distribution for the activity durations
of the project, as outlined in the calibration step. More specifically, the lognormal distribution is chosen
as the distribution for modelling activity duration uncertainty, which means that the null hypothesis
for all calibration tests (step 2 in Figure 1) is that the division of real activity duration with the
estimated activity duration from the schedule follows a lognormal distribution. While some arguments
were given in previous studies why the lognormal distribution is a good candidate distribution for
modelling activity duration uncertainty (see, e.g., the study by [15] who advocated the use of this
distribution based on theoretical arguments and empirical evidence), this choice obviously restricts
the two current and the newly presented calibration methods. Indeed, many other distributions have
been used in literature to model activity duration uncertainty, such as the beta distribution (e.g., [16]),
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the generalised beta distribution (e.g., [17]) or the triangular distributions (e.g., [18]), but a detailed
discussion on the choice of distribution and a comparison of these distributions for modelling activity
uncertainty is not within the scope of our study. However, this does not mean that our study has
no practical or academic value. The main goal of the calibration methods used in the study is that,
although they assume that the core distribution of an activity duration is the lognormal distribution,
it is still true that the parameters for this given distribution (such as the values for the average and
standard deviation) cannot be readily seen from empirical data due to distorting human factors such
as hidden earliness or rounded data. Consequently, since the calibration methods test whether activity
durations follow a lognormal distribution after correcting for the Parkinson effect and rounding errors,
we will refer—in line with the previous studies—to the assumed distribution for activity duration as
the Parkinson distribution with lognormal core (PDLC).

Mario Vanhoucke

The idea of data calibration

• Remove points (human errors) 
• Split data in clusters 
• Fit remaining data to distributions

Schedule Reality

Input Calibration Output

• Schedule: activity durations (estimates) 
• Reality: real activity durations (reported)

• Clusters of activities 
• Each cluster: Known values for 

average and standard deviation

• Past project data (24 projects) 
• Statistical analysis of project (1 cluster)

1. Calibration method

2. Extended calibration method
• Past project data (51 projects) 
• Human partitioning (multiple clusters)

3. Statistical partitioning heuristic
• Past project data (83 projects) 
• Statistical & human partitioning (multiple clusters)

Figure 1. The idea of calibrating project data.

The current paper focuses on extending the two currently existing methods to a third method,
taking the weaknesses and shortcomings of the existing methods into account. A summary of the three
methods is given below the calibration step of Figure 1. The first calibration method has been proposed
by [15] and has been validated on only 24 projects by [19]. The procedure consists of a sequence of
tests that removes data from the empirical database until the lognormality test is accepted for the
project as a whole (no clustering). More recently, this calibration method has been extended by [20] and
includes human partitioning as an initialisation step before the calibration actually starts its sequence
of hypothesis tests. The underlying idea is that humans can better divide activities into clusters based
on their knowledge about the project, and only afterwards, the calibration phase processes the data of
each cluster to test the lognormallity of the calibration phase. A summary of both calibration methods
(i.e., the original calibration method and its extension to human clustering) is given in Section 3. It is
important to review both procedures since they form the foundation of the newly developed statistical
partitioning heuristic discussed in the current paper. In the remainder of this paper, we will refer to
the two calibrating procedures as the calibration procedure and the extended calibration method. Since
both procedures contain strong similarities, they will sometimes be referred to as the two calibration
procedures. The new method that will be presented in the current study—which will be referred to
as a statistical partitioning heuristic—builds further on two currently known calibration methods in
literature. The new method still relies on this basic lognormal core assumption but now extends the
current calibration procedures with an automatic partitioning phase to define clusters of activities that
each has the same parameters values (average and standard deviation) for their lognormal distribution.
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This method will be discussed in Section 4. In the computational experiment of Section 5, the three
procedures will be tested on a set of 125 empirical projects (for which 83 could eventually be used
for the analysis), and their performance will be compared. It will be shown that the new statistical
partitioning heuristic outperforms the two other procedures but still contains some limitations that
can be used as guidelines for future research.

We believe that the contribution and relevance of the current calibration study are threefold.
First, and foremost, the current study presents an extended calibration method that allows the project
manager to test whether clusters of activities follow a lognormal distribution for their duration.
When this hypothesis is accepted, the procedure returns the values for the parameters of this
distribution (average duration and standard deviation) such that they can be used for forecasting the
future progress of a new project using Monte Carlo simulations. Such simulations can then be done
using data from the past rather than arbitrarily chosen numbers, which is often criticised in simulation
studies in the literature. Secondly, the calibration method is an extension of two previously published
methods that take the same two human biases (rounding and Parkinson) into account. The extensions
consist of mixing human expertise with automatic statistical testing, as well as allowing partitioning
during testing rather than treating the whole project as one cluster of identical activities. Finally, to the
best of our knowledge, this is the first study that calibrates data on such a large empirical dataset of
83 projects collected over several years.

Of course, our approach is only one possible approach of improving the accuracy of duration
estimates, and all results should be interpreted within this limitation. Moreover, implementing such
a procedure in practice requires a certain level of maturity for the project manager as it assumes
that historical data are readily available. Consequently, using the new calibration method might
require some additional effort as an initial investment to design a data collection methodology for past
projects. Finally, even when project data are available, our approach is only beneficial if past projects
are representative for future projects, which implies that some project characteristics are general and
typical for the company. Consequently, in case every project is unique and totally different from the
previous portfolio of projects, calibrating data would be of no use and relevance.

Of course, other studies in the academic literature have also aimed at estimating distribution
parameters. However, we believe our calibration method is the first approach that does this by taking
the two biases into account, and we therefore compare the new calibration method only with the
two other calibration procedures using the same two biases. We believe that, thanks to the automatic
nature of statistical testing in the new calibration method, our calibration method will contribute to a
better forecasting of new projects, and hence to reducing the inherent uncertainty of a project with a
minimum effort.

3. Calibration Procedures

This section gives a short summary of the two versions for calibrating data—the calibration
procedure and the extended calibration method—as discussed earlier. Both calibration procedures form the
foundation for the current paper, which is the reason why their main steps are repeated in Section 3.1.
After this summary, the main shortcomings and areas for improvements of the extended calibration
method are given in Section 3.2, and these limitations are then used to present the newly developed
statistical partitioning procedure in Section 4.

3.1. Summary of Procedure

The extended calibration method consists of five main building blocks which are graphically
summarised in Figure 2. Steps S1 to S4 are identical to the four steps of the original calibration
method, apart from some small technical modifications. The extended calibration method added a
fifth initialisation step S0 to these four steps to cluster data into so-called human partitions. As said,
these five steps (S0 to S4) are used as foundations for the new statistical partitioning heuristic discussed
later, which is the reason why they are reviewed here.
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Rounding (removing ties)
Repeat hypothesis test

Remove % of tardy points
Repeat hypothesis test

Hypothesis test
H0: RDi / PDi follows a lognormal distribution

Remove % on-time points
Repeat hypothesis test

Remove 
partition from 

database

Reject if p < α

Reject if p < α

Reject if p < α

Reject if p < α

1,000 iterations

Keep 
partition data in 

database

Accept if p ≥ α

Accept if p ≥ α

Accept if p ≥ α

Partition data
Human judgement

ase

Add 
project data

Partition 1 Partition 2 Partition 3

Repeat for each partition

Figure 2. Extended calibration method.
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Step 0 (S0). Human Partitioning

The starting point for developing the extended calibration method was inspired by the saying
that “data cannot replace human intuition”, and that human judgement and experience of the project
manager should be taken into account when evaluating data of past projects. Indeed, the original
calibration method was merely a sequence of statistical tests to calibrate data, and no human input
whatsoever about the project was taken into account. It is, however, well justified to state that the
wonders of the human brain, although not always very reliable and subject to biases, cannot simply
be replaced by a statistical data analysis, and the extension therefore mainly focused on taking this
“human expertise” into account. Consequently, in order to avoid potential users of the calibration
method from complaining that their human intuition would be completely ignored and replaced by
a black-box statistical analysis, the gap between the dark secrets of statistical testing and the human
expertise was narrowed by adding a human initialisation phase (S0) that must be executed prior to the
four remaining steps of the calibration method (S1 to S4).

This initialisation phase consists of a so-called managerial partitioning step that splits the project
data into different clusters (called partitions). The general idea is that the human expertise (the project
manager’s knowledge about the project data) should come before any statistical analysis to create
clusters of project data with identical characteristics. Treating these clusters separately in the remaining
steps S1 to S4, rather than analysing the project data as a whole, should give the statistical calibration
method more power to accept some of the project clusters, and reject others for the same project (rather
than simply accepting the project data or not). Consequently, the black box analysis of the statistical
calibration method is now preceded by a human input phase, and recognizes that activities of a project
do not always adhere to one and the same probability distributions. Hence, the main contribution of
the extension is that it assumes that computing probability distributions for activities is best done by
comparing clusters of completed activities in a project rather than treating the project data as one big
homogeneous dataset.

As mentioned earlier, the four remaining steps (S1 to S4) are copied from the original calibration
method, only slightly extended with some minor technical adaptations to increase the acceptance rate.
The only difference is that these four steps are now carried out on the different partitions separately,
instead of using the project data as a whole. Each of these partitions can now pass the lognormality test
(accepted partitions are assumed to contain activities with lognormal distribution, and are therefore
added to the project database) or not (rejected partitions are thrown away).

In a set of computational experiments, the authors have shown that the managerial partitioning is
a promising additional feature for calibrating data. Three managerial criteria have been taken into
account to split the project data into partitions. More precisely, the project data were split up based on
the work packages (WP) the activities belong to, the risk profile (RP) defined by the project manager as
well as the estimate for the planned duration (PD) of each activity. The extended calibration method
has been tested on 83 empirical projects taken from [21] (mainly construction projects) and results
show that the additional human partitioning step increased the acceptance rate to 97% of the total
created partitions.

The four remaining steps of the calibration method are now briefly summarized along the
following lines.

Step 1 (S1). Hypothesis Testing (Lognormal Core)

Testing clusters (or partitions) of data using the four-phased statistical calibration method aims
at creating a database of past project data (divided in clusters) in order to better understand and
analyse the behaviour of new projects. For each cluster of past project data, it is assumed that the
planned and real duration of its activities are known, and it is tested whether the durations of these
activities follow a certain predefined probability distribution. Indeed, if the distribution of activity
durations is known, its parameters can be estimated and used for analysis of a new project with similar
characteristics. The hypothesis test of S1 will be repeated in each of the following steps (S2 to S4)
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until a final acceptance or rejection is reached. A detailed outline of the hypothesis test is given in the
previously mentioned sources for the (extended) calibration method, and its main features are now
briefly repeated below.

Testing variable: The ratio between the real duration RDi and the planned duration PDi for each
activity i is used as the test variable in each cluster. Obviously, when RDi/PDi < 1, activity i was
completed early, RDi/PDi = 1 signals on-time activities while, for RDi/PDi > 1, the activity i suffered
from a delay (these will be referred to as tardy activities).

Hypothesis test: The hypothesis is now that the testing variable RDi/PDi follows a lognormal
distribution for each activity i in the partition under study. This corresponds to testing whether
ln(RDi/PDi) follows a normal distribution or not.

Goodness-of-fit: To assess whether the hypothesis can be accepted or not, a three-phased approach
is followed. First, Pearson’s linear correlation coefficient R is calculated by performing a linear
regression of the test variable on the corresponding Blom scores [22]. The calculated R value can
then be compared to the values tabulated by Looney and Gulledge [23] to obtain a p-value. Finally,
the hypothesis is accepted when p ≥ α with α the significance level equal to e.g., 5%. Each cluster that
passes the test is added immediately to the database, while the remaining clusters will be subject to a
calibration procedure.

Calibration: If the hypothesis is not accepted (p < α), the project data of the cluster is not
immediately thrown away. Instead, the data will be calibrated, then put under the same hypothesis
test again, and only then a final evaluation and decision will be made. The term calibration is used
since it adapts/calibrates the data of a cluster by removing some of the data points. It assumes that
certain data points in the cluster are subject to human biases and mistakes, and should therefore not be
kept in the cluster, while the remaining points should be tested again in a similar way as explained
here in S1. Two biases are taken into account, one known as the Parkinson effect (S2 and S3) and another
to account for rounding errors (S4).

Steps 2/3 (S2 & S3). Parkinson’s Law

The (clusters of) project data consist of activity durations of past projects, and since the data are
collected by humans, they are likely to contain mistakes. Most of the project data used in the previously
mentioned studies are collected using the so-called project card approach of [24], which prescribes a
formal method to collect data of projects in progress, exactly to avoid these human input mistakes.
Nevertheless, people are and will continue to be prone to make errors when reporting numbers,
and possible mistakes due to optimism bias and strategic misinterpretations will continue to exist.

For this very reason, the (extended) calibration method takes the Parkinson effect into account
which states that work fills the allocated time. It recognizes that the reported RDi values are not always
accurate or trustful, and they might bias the analysis and the acceptance rate of the lognormality
hypothesis (S1). In order to overcome these biases, all on-time data points (S2) and a portion of the
tardy data points (S3) are removed from the cluster before a new hypothesis test can be performed.

Remove on-time points (S2): The procedure assumes that all on-time points are hidden earliness
points and should therefore be removed from the cluster. More precisely, all points that are falsely
reported as being completed on time, i.e., each activity with RDi/PDi = 1 in a cluster that did not
pass S1, are removed from the analysis. By taking this Parkinson effect into account, the cluster now
only contains early and tardy points. Before a new hypothesis test can be performed, the proportion of
tardy points should be brought back to the original proportion, as suggested in S3.

Remove tardy points (S3): The removal of these on-time points—that actually were assumed to
be early points—distort the real proportion of early versus tardy points in the data cluster, and this
distortion should be corrected first. Consequently, an equal portion of the tardy points must be removed
from the cluster too to bring the data back to the original proportion of early and tardy activities.
Note that the calculation of a proportion of tardy points to remove only defines how many tardy
activities should be removed from the cluster but does not specify which of these tardy points to
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remove. In the implementation of the original calibration procedure of [19], the tardy points were
selected at random, while in the extended calibration method of [20], the number of tardy points were
selected randomly for 1000 iterations and further analyses were carried out on these 1000 iterations to
have more stable results.

After the removal of all on-time points, and a portion of the tardy points, the hypothesis test of S1
is executed again on the remaining data in the cluster, now containing a reduced amount of activities.
The same goodness-of-fit criteria are applied as discussed in S1 and only when the hypothesis can not
be accepted does the procedure continue with S4. Obviously, the data points of accepted clusters are
added—as always—to the database.

Step 4 (S4). Coarse Time Interval

In a final phase, the remaining cluster data are corrected for possible rounding errors made by
the collector of the data of the activity durations. More precisely, data points with identical values
for the test variable RDi/PDi are assumed to be mistakenly rounded up or down, as the results
of the coarseness of the time scale that is used for reporting the activity durations. For example,
when planned values of activity durations are expressed in weeks, it is likely that the real durations are
also rounded up to weeks, even if the likelihood that the real duration was an integer number of weeks
is relatively low. Therefore, corrections for rounding errors are taken into account when calculating
average values of the Blom scores of these so-called tied points. More precisely, these tied points are
not merged to a single score value with weight one, but rather to a set of coinciding points to retain
their correct composite weight.

In the study of [20], different implementations of S4 have been tested, taking into account rounding
error correction with or without including S3 and S4. It has been shown that rounding correction
(S4)—although beneficial for calibrating data—is less important for accepting the hypothesis than
correcting the data for the Parkinson effect, which is the reason S4 will be taken into account only after
S3, as initially proposed in the original calibration procedure.

3.2. Limitations

Although the extended calibration procedure solved the limitations of the original calibration
method while retaining its most valuable aspects, the authors still mention some limitations for their
extended version, and argue that these limitations cannot be solved by minor adaptations to their
procedure only. However, they also have shown that managerial partitioning (S0) adds value to the
other four steps, and, hence, it would be wise not to throw away this idea. Therefore, in the current
study, we propose a novel methodology that is cast into a more comprehensive and more versatile
methodology called the statistical partitioning heuristic, which is presented in the next section. The six
limitations of the extended calibration method mentioned by [20] in their Section 4.2.4 are summarized
along the following lines.

• Limitation 1. Only on-time activities can be eliminated in S2. Moreover, if there are no on-time
activities in the project, any further analysis is impossible (the proportion x in S3 would per
definition also be zero so that no tardy points can be removed either) and no (better) fit can
be obtained. Note that early activities are never eliminated from the project in the calibration
procedures.

• Limitation 2. The p-value is the only measure that is applied to assess the goodness-of-fit, whereas
other measures exist that could also be utilized to this end and thus prove useful to calibrate data.

• Limitation 3. Partitioning can only be done based on managerial criteria (using the three criteria,
i.e., PD, WP and RP) and is thus influenced by human judgement.

• Limitation 4. The lognormality hypothesis is not tested for the tardy activities that are removed
in S3. This should be done, since these activities do not follow the pure Parkinson distribution
like the eliminated on-time activities in S2 do.
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• Limitation 5. S2 only allows the elimination of all on-time activities, whereas removing only a
fraction of them could be more optimal (i.e., better fit to the PDLC).

• Limitation 6. Although 1000 iterations are performed, the tardy points that are to be removed in
S3 are still chosen randomly within every iteration. Deviations in results, however minor, can thus
still occur.

In Section 4, the newly developed partitioning heuristic will be discussed, and it will also be shown
that the discussed limitations are implicitly taken into account. A summary of the discussed limitations
as well as how the new statistical partitioning heuristic has solved them are given in Figure 3.

Figure 3. The limitations of the extended calibration procedure are used to provide solutions in the
statistical partitioning heuristic.

4. Partitioning Heuristic

The improved acceptance rate of the extended calibration method as well as its limitations have been
the main driving force to develop the new statistical partitioning heuristic. It integrates the hypothesis
testing approach of the original calibration method with the human partitioning philosophy of the
extended calibration method, and, consequently, follows a similar methodology as both calibration
procedures. The main difference is that the statistical partitioning method now partitions the project data
not only based on human input, but also using a statistical methodology, and this extension has resulted
in a number of significant modifications graphically summarized in Figure 4.

In this section, an overview of the newly developed partitioning method will be given subdivided
in three main subsections. Each of these three sections overcome (some of) the limitations that still
existed for the extended calibration procedure. We will not run through the solution approach in an
explicit stepwise manner as was done in Section 3.1, but rather show where the steps (S0 to S4) have
been incorporated and possibly adapted. In Section 4.3.3, the discussed limitations will be addressed
chronologically and referred to when and how a particular option of the statistical partitioning heuristic
solves them.

4.1. Human Partitioning

The procedure starts with an optional human partitioning step identical to the initialization
step S0 of the extended calibration method. Since managerial partitioning has shown to be relevant
for the acceptance rate of the extended calibration method, an additional non-human partitioning
phase—which is the reason the new procedure is referred to as statistical partitioning—will be added
to further split the human-based partitions into subpartitions. In the computational experiments
of Section 5, results of the statistical partitioning heuristic will be reported with and without the
managerial partitioning step S0.
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Figure 4. Graphical visualisation of partitioning heuristic.

4.2. Hypothesis Test

The hypothesis test (S1) of the statistical partitioning heuristic follows the same methodology as
in both calibration procedures, and it can incorporate the data correction for rounding errors or not
(S4). The test still assesses whether or not ln(RDij/PDij) is normally distributed by employing Blom
scores and the table of Looney and Gulledge. If the correction for rounding errors (S4) is also taken into
account, it still corresponds to the averaging of the Blom scores for all clusters of tied points. Therefore,
it is not necessary to elaborate on each aspect of the S0 and S4 procedures in detail.

Recall that the hypothesis (S1) was also tested in steps S2 and S3 of the calibration procedures,
after the removal of all on-time points and a portion of tardy points to incorporate the effect of
Parkinson. As a matter of fact, the major difference between the calibration procedures and the new
statistical partitioning method lies exactly in the treatment of the data for the Parkinson’s effect (S2
or S3). The (extended) calibration method aims at removing data from the project clusters to be
never used again (since it follows the Parkinson effect) and only continues the hypothesis testing
on the remaining portion of the data. However, the new statistical partitioning heuristic does not
automatically remove data points from the clusters, but, instead, aims at splitting each partition into
two separate clusters (subpartitions) and then continues testing the same hypothesis on both partitions.
This iterative process of splitting and testing continues until a certain stop criterion is met, and the
data of all created subpartitions that pass the test are kept in the database. More precisely, at a certain
moment during the search, each subpartition will be either accepted (i.e., the data follow a lognormal
distribution) or rejected (i.e., the data do not follow a lognormal distribution or the sample size of the
cluster has become too small). As shown in Figure 4, we have set the minimum sample size to 3 since
partitions containing too few points may get too easily accepted. The way partitions are split into
two subpartitions is defined by two newly developed statistical strategies (selection and stopping),
which will be discussed in the next section.
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4.3. Statistical Partitioning

In this section, it will be shown how the statistical partitioning heuristic iteratively creates
clusters of data with similar characteristics ((sub)partitions) based on statistical testing, similar to
the managerial partitioning approach that aims at creating data clusters based on human input.
Indeed, the statistical partitioning heuristic iteratively selects data points from a current partition
and splits them into two separate clusters, and this process is repeated for each created cluster until
a created subpartition can be accepted for lognormality. The specific way how these partitions are
split into subpartitions does now no longer require human input but will be done using two new
statistical strategies.

The so-called selection strategy defines which points of the current partition should be selected
for removal when splitting a partition. Each removed point will then be put in a first newly created
subpartition, while the remaining non-removed points are put in a second new partition, now with
less points than in the original partition. This process of removing data points from the original
partition continues until a certain stopping criterion is met as defined by the so-called stopping strategy.
Once the process stops, the original partition—which we will refer to as the base partition—will have
been split into two separate subpartitions that will both be subject to the hypothesis test again and—if
still not accepted—further partitioning. In the remainder of this manuscript, the term partition L will
be used to indicate the subpartition with the set of activities that have not been removed from the
base partition, while the set of activities that were eliminated from the partition and put in a newly
created subpartition is now referred to as partition P. It should be noted that the naming of the two
partitions P and L found its roots in the testing approach of the previously discussed calibration
procedures. Recall that steps S2 and S3 remove all on-time points and a portion of the tardy point
from a partition. These removed points are assumed to be a subject of the Parkinson effect (hence,
partition P) and are thus removed from the database. The remaining data points in the partition were
subject to further testing for the lognormal distribution (hence, partition L) and—if accepted—are
kept in the database. A similar logic is followed for the statistical partitioning heuristic, although the
treatment of the two partitions P and L now depends on the selection and stopping strategies that will
be discussed hereafter.

Both the selection strategy and the stopping strategy can be performed under two different settings
(standard or advanced), which results in 2 × 2 = 4 different ways the statistical partitioning heuristic
can be performed. Of course, these two strategies cannot work in isolation but will nevertheless be
explained separately in Section 4.3.1 and Section 4.3.2. A summary is given in Figure 5.

4.3.1. Selection Strategy

Recall that the partitioning heuristic splits up a partition into two new subpartitions. Partition P
contains all the points that are removed from the base partition, while partition L then contains all the
non-removed points (but now contains less data points compared to the base partition). The selection
strategy defines which points will be removed from the base partition and put in partition P, and which
points will be kept to create partition L, and can be done in a standard and advanced way.

The standard selection strategy does not differ very much from the (extended) calibration method,
and defines that only on-time points can be eliminated from the base partition. As a result, partition
P with the removed activities will then obviously exhibit a pure Parkinson distribution (since all
points are on time), and no further statistical partitioning will be performed for partition P. Partition
L can still consist of early, on-time and tardy points, and will be further used by the partitioning
heuristic. As shown in Figure 5, no further partitioning will be performed for partition P, and its data
are therefore thrown away (cf. STOP in Figure 5), but the specific treatment of partition L (ACCEPT or
CONTINUE) depends on the setting of the stopping strategy, which will be discussed in Section 4.3.2.
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Figure 5. The four settings for the two strategies.

In the advanced selection strategy, not only on-time, but rather all activities are potential candidates
to be selected for removal, and thus both the resulting partitions L and P can now contain early, on-time
and tardy points. This approach is called advanced since it is fundamentally different than the approach
taken by the calibration procedures (S2 and S3). The most important implication of the advanced
setting is that partitions in which not all activities are on time can now be created automatically. Indeed,
the base partition will be split by eliminating activities from it, put them in partition P and keep the
remaining activities in partition L until L attains (optimal) fit (this optimal fit will be defined by the
stopping strategy discussed in the next section). The set of removed activities (partition P), however,
can now contain both on-time and early/tardy activities (just as partition L) and will thus most likely
not exhibit a trivial pure Parkinson distribution (as was the case for the on-time activities of partition P
under the standard selection strategy). Therefore, this partition P of removed activities should also
undergo a hypothesis test and possibly a partitioning phase, and so should all later partitions that are
created as a result of this consecutive application of the partitioning heuristic. In that way, there is an
automatic creation of partitions—hence the name statistical partitioning heuristic for the method—that
should comprise activities that are similar to each other. Unlike the initial managerial partitioning
step, no human judgement has interfered with this type of partitioning, which, from now on, we will
call it for this reason statistical partitioning. Managerial criteria are thus no longer the sole basis for
dividing activities into partitions, which addresses limitation 3 in Section 3.2. Nevertheless, managerial
partitioning can of course still be performed in combination with the partitioning heuristic, just like for
the calibration procedures.
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While the set of activities to be removed from the base partition differs between the standard
(only on-time points) and advanced (all points) selection strategy, the partitioning heuristic still needs
to determine the sequence in which these activities are removed until a stopping criterion is met.
Indeed, in contrast to the calibration procedures, the statistical partitioning heuristic needs to select
which activity to eliminate in every partitioning step. The term partitioning step is used for an iteration
of the partitioning heuristic in which one activity is removed. Thus, if there were 10 partitioning
steps for a particular project or partition (under certain settings), then 10 activities were eliminated
from that project or partition. For this purpose, the procedure calculates the residuals for all activities
in the base partition. The residuals ei are calculated as the deviations between the empirical values
ln(RDi/PDi) and the linear regression line of those values on the corresponding Blom scores. As a
heuristic approach—hence the name statistical partitioning heuristic—the activity i with the biggest
residual ei in the base partition is selected for elimination (and put in partition P), since it is expected
that this would yield the strongest improvement in the goodness of fit (since the created partitions will
be subject to a new hypothesis test again).

4.3.2. Stopping Strategy

The selection strategy defines how the base partition is split into two different partitions by
iteratively removing data points (activities) from it to create partitions L and P. Despite the fact that
this selection mechanism controls the sequence of points to be removed using the calculation of the
residuals, it does not define any stopping criterion during this iterative removal process. To that
purpose, the statistical partitioning heuristic also introduces two different versions for the stopping
strategy. When the stopping criteria are satisfied, the removal of activities is stopped, and the resulting
partitions (L and P) are then the subject to a new partitioning iteration (i.e., they go back to S1 first
before they possibly can be split further).

The standard stopping strategy employs the p-value to define the stopping criterion. More specifically,
the elimination of activities stops when p reaches or exceeds the significance threshold α = 0.05 for
partition L. Since the p-value is also the condition for accepting the lognormality hypothesis in step S1,
this implies that the lognormality test is automatically accepted for this partition L, and all its activities
are assumed to follow the lognormal distribution. In this case, no further partitioning is necessary
for partition L and all its data points are added to the database (cf. ACCEPT in Figure 5). The data
points in partition P are treated differently, and the treatment depends on the option in the selection
strategy. Indeed, since the partitioning heuristic is always applied anew to the newly created partitions,
every partition P that is created should go back to step S1 and should be tested for lognormality if
the advanced selection strategy is chosen. However, under the standard selection strategy, partition P
only contains on-time points, and these points will obviously exhibit a pure Parkinson distribution.
In this case, no further statistical partitioning will be performed and the data points are removed from
the project (cf. STOP in Figure 5).

In the advanced stopping strategy, the statistical partitioning is no longer limited to the use of the
p-value as the only measure for goodness-of-fit, but the activity removal halts when SEY (or R2

a as
a secondary stopping criterion) does no longer improve. Indeed, it applies the standard error of
the regression SEY as the main basis for assessing the fit, since SEY is the preferred measure for this
according to literature. The formula for SEY is given below:

SEY =

√
∑n

i=1 e2
i

n − 2
. (1)

The denominator is the number of activities in the partition n minus 2 since there are two
coefficients that need to be estimated in our case, namely the intercept and the slope of the regression
line. SEY is also chosen as the primary optimization criterion. By this, we mean that we deem the fit to
the PDLC to be improved when the removal of the selected activity has decreased the SEY. Obviously,
the lower the SEY, the better the fit. A perfect fit is obtained when all data points are on the regression
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line, so then all residuals are per definition zero, which, through Equation (1), implies that SEY is
also zero in such a case. However, in about 20% of the cases, the partitioning heuristic did not reach
the optimal SEy when only that SEy was considered as optimization criterion; it got stuck in a local
optimum. To get out of this local optimum, we added the adjusted R2 or R2

a as a secondary stopping
criterion, which—although a very straightforward approach—proved to be a highly effective solution
to the problem. Indeed, after adding R2

a as a secondary optimization criterion, only 1% of the projects
did not attain their optimal SEy. For completeness, we mention the utilized formula for R2

a with respect
to the standard coefficient of determination:

R2
a = 1 − n − 1

n − 2
(1 − R2). (2)

Notice that, unless R2 = 1, R2
a is always smaller than R2. In our context, we need to employ

R2
a instead of R2 to allow comparison of regression models with different numbers of observations

(activities indeed get removed from the original data set). Just like for the p-value, the higher the R2
a,

the better the fit, with a maximum of 1 to reflect a perfect fit.
As mentioned before, the two settings for the stopping strategy should be used in combination

with the two settings for the selection strategy, and it is important to draw the attention to the two
fundamental differences with the calibration procedures. First, the treatment of the Parkinson points
is fundamentally different. Recall that all on-time points are removed in the calibration procedures
since they are assumed to be the result of the Parkinson effect. In the standard selection strategy,
the procedure also removes on-time points, but it is no longer so that the only possibility is to remove
all on-time points from the project. The partitioning heuristic allows the elimination of just a fraction
of the on-time points in order to get a better fit (defined by the stopping strategy, i.e., p-value or SEY).
The rationale behind this is that not all on-time points are necessarily the result of the Parkinson effect,
as the calibration procedures implicitly assume. Some activities are actually on time and should thus
effectively be part of partition L. Secondly, not only on-time points are removed, but also early and
tardy points are now subject to removal. While the calibration procedures only remove a portion of
tardy points to bring the number early, on-time and tardy points back to the original proportions,
the statistical partitioning heuristic takes a different approach, and removes both early, and on-time as
well as tardy points (under the advanced selection strategy) until the stopping criterion is satisfied.
Such an approach creates partitions (L and P) that contain all kinds of activities (early, on-time and
tardy) that must be subject to further partitioning, if necessary, and this is fundamentally different than
the approach taken by the calibration procedures.

4.3.3. Solutions

In this section, we briefly come back to the discussion of the limitations of the extended calibration
procedure of Section 3.2. It will be shown that all the limitations are now solved by using a combination
of the two options for the selection and stopping strategies. A summary of these solutions is also given
in the right column of Figure 3.

First of all, thanks to the implementation of the selection strategy, three of the six limitations have
been solved, as follows:

• Solution 1. The calibration procedures only removed on-time (S2) and tardy (S3) activities from
the project. This is no longer true in the statistical partitioning heuristic. The advanced selection
strategy states that all activities are selectable for removal, thus also the early and tardy ones.
Early activities could never be eliminated from the project in the calibration procedures.

• Solution 4. The calibration procedures never apply the lognormality hypothesis to the removed
tardy activities (S3). However, such a test should be performed, since these tardy activities do
not follow the pure Parkinson distribution like the eliminated on-time activities in S2 do. Hence,
there is no reason why these tardy points should automatically be removed from the database,
and, therefore, they are subject to a new hypothesis test in the statistical partitioning heuristic.
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• Solution 6. Thanks to the use of the ei criterion, 1000 iterations are no longer necessary (S3).
Instead, the statistical partitioning heuristic always selects the exact same set of activities for
elimination, since it now relies on the ei calculations. Since calculations of residuals are invariable,
the created partitions would be exactly the same for every simulation run.

Secondly, the stopping strategy has been proposed in the way as described earlier to solve two
other limitations:

• Solution 2. The p-value is no longer the one and only measure that is applied to assess the
goodness-of-fit. Instead, the advanced stopping strategy relies on two other measures—SEY and
R2

a—that can also be utilized to assess the goodness-of-fit.
• Solution 5. The Parkinson treatment of data points (S2) only allows the elimination of all on-time

activities, whereas removing only a fraction of them could be more optimal, i.e., leading to a
better fit to the PDLC.

Finally, the design of two different options (standard or advanced) for the selection and the
stopping strategies is new and solves the last and most important limitation, as follows:

• Solution 3. The extended version of the calibration procedure added project data partitioning as
a promising feature to accept lognormality, but this new feature could only be performed based
on managerial criteria influenced by human judgement. The statistical partitioning heuristic has
followed the same logic, but transformed it into a statistical, rather than managerial, partitioning
approach. Statistical partitioning is not subject to human (mis-)judgement and not victim to
human biases but does not exclude the option of human partitioning as an initialisation step
(S0). In the computational experiments of Section 5, it will be shown that human and statistical
partitioning lead to a higher acceptance rate of project data.

5. Computational Results

This section shows the results of a set of computational experiments on the same set of projects
as used in [20]. All projects are taken from the database of [21] which consisted—at the time of
introducing this database—of 51 projects. Additional projects have been added later, and has resulted
in a database of 125 projects from companies in Belgium. Twenty-eight projects did not contain
authentic time tracking data, and were removed from the analysis (97 left), and 14 projects only
contained activities that ended exactly on time (which are assumed to be subject to the Parkinson
effect). Hence, 83 remaining projects were used in the extended calibration study and will also be
used in the computational experiments of the current paper. The average values for six summary
statistics of these 83 projects were published in the extended calibration procedure study and are
therefore not repeated here. However, Figure 6 displays a summary of the 83 projects used for the
analysis. The top graph shows that more than 70% of the projects come from the construction industry,
followed by almost 25% IT projects. The bottom graph displays the real time/cost performance of the
projects. The graph shows that the database does not contain projects in the bottom right quadrant
(over budget and ahead of schedule), but the three other quadrants contain projects with different
degrees of earliness/lateness and budget underruns and overruns.

The results of our computational experiment are divided between three sections. In Section 5.1,
all projects are used to test the statistical partitioning heuristic without using managerial partitioning,
while Section 5.2 makes use of a subset of these projects, now also adding managerial partitioning to
the tests. Finally, Section 5.3 is added with a list of limitations of the statistical partitioning heuristic
that can be used as guidelines for future research in this domain.

First of all, it is very important to note that the statistical partitioning heuristic still relies on
the p-value to determine whether or not a certain partition follows the PDLC. The reason for this is
twofold. First, it allows us to compare the results of the partitioning heuristic to those of the calibration
procedures—in which p was the only goodness-of-fit measures that was considered. In addition,
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second, the only other eligible measure SEY does not provide a uniform basis for comparison between
projects or partitions, as its numerical value strongly depends on—and can thus vary greatly with—the
input values from the data set (i.e., the ln(RDi/PDi) values). In other words, no universal fit threshold
can be set for SEY. This also explains why we will focus more on the p-values than on the SEY results
in upcoming discussions.
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Figure 6. Empirical project database used for the analysis. (a) Sector of the 83 projects (mainly
construction projects); (b) Project time/cost performance.

Secondly, it should also be stressed that SEY always remains the main stopping criterion when
applying the partitioning heuristic under the advanced stopping strategy. Therefore, we did not
include the R2

a values in the two tables with computation results, since they are only of secondary
importance. Average SEY values are mentioned in the tables because of their prime role in the stopping
strategy of the statistical procedure.
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Finally, we consider eight different settings for the statistical partitioning heuristic, and, since each
of them can be performed with or without managerial partitioning, the results had to be divided over
two tables. Table 1 shows the outcomes for the application of the statistical partitioning heuristic to
our database under the eight different settings without using human partitioning as an initialization
step. A second table will show similar results, but now adding a human partitioning step prior to
the statistical partitioning steps (Table 2). The eight settings reflect the choices that must be made for
hypothesis testing (Section 4.2) and for the selection and stopping strategies of Sections 4.3.1 and 4.3.2.
Each choice can be set to either 0 or 1. To represent these different settings in Tables 1 and 2, the code
format rounding–selection–stopping is introduced as follows:

• The hypothesis test (S1) can be performed with (1) or without (0) rounding (S4), and will further
be abbreviated as rounding = 0 or 1.

• The selection strategy can be set to standard (0) or advanced (1), and will be abbreviated as
selection = 0 or 1.

• The stopping strategy can also be set to be standard (0) or advanced (1), abbreviated as
mboxemphstopping = 0 or 1.

As a result, the eight settings for the parameters (rounding–selection–stopping) are then equal to
(0-0-0), (1-0-0), (0-0-1), (1-0-1), (0-1-0),(1-1-0), (0-1-1), (1-1-1).

5.1. Without Managerial Partitioning

Table 1 displays the results for the statistical partitioning heuristic without managerial partitioning
under the eight different settings. The table is split up in four main rows ((a) to (d)), and will be
explained along the following lines.

Table 1. Results for the partitioning heuristic without managerial partitioning.

Partitioning Setting
(Rounding–Selection–Stopping)

(0-0-0) (1-0-0) (0-0-1) (1-0-1) (0-1-0) (1-1-0) (0-1-1) (1-1-1)
(a) # partitions (total) 83 83 83 83 195 145 249 215

# partitions (avg/p) - - - - 2.3 1.7 3.0 2.6
# partitions (max) - - - - 5 3 6 5
1 partition [%] - - - - 13 36 4 6
2 partitions [%] - - - - 51 53 25 42
3 partitions [%] - - - - 25 11 47 40
4 partitions [%] - - - - 10 0 17 11
5 partitions [%] - - - - 1 0 6 1
6 partitions [%] - - - - 0 0 1 0

(b) # partitioning steps 2566 2177 2771 2634 1361 365 1705 771
/project 31 26 33 32 16 4 21 9

(c) % act / partition L 62 73 54 59 - - - -
% act / partition P 38 27 46 41 - - - -

(d) avg. SEY 0.271 0.229 0.250 0.212 0.257 0.191 0.264 0.139
avg. p 0.075 0.193 0.280 0.479 0.219 0.362 0.461 0.731
accepted partitions [%] 61 72 61 72 90 95 86 94

(a) # partitions: This part displays the number of created partitions (total, average per project and
maximum) as well as the percentage of projects with one up to six created partitions. All 83 available
projects are considered for every setting of the partitioning heuristic. The total number of activities
over these projects amounts to no less then 5068 activities (or an average of 61 activities per project),
which can be deemed quite an extensive empirical dataset. Remark that the total number of partitions
is equal to the number of considered projects for the settings with selection = 0 (shown in the first four
(-, 0 ,-) settings). Indeed, when only on-time points can be eliminated, partition P per definition follows



Entropy 2019, 21, 952 21 of 28

a pure Parkinson distribution and should therefore not explicitly be considered. We thus only look at
partition L for evaluating the partitioning heuristic with selection = 0. When selection = 1 (shown in
the last four columns), on the other hand, the partitions created by removing any (i.e., not necessarily
on-time) activity from the initial project do no longer trivially adhere to the pure Parkinson distribution.
Therefore, all created partitions are considered explicitly in these cases. This explains why the number
of partitions in Table 1 is bigger than 83 for settings with selection = 1.

The row with the average number partitions per project (avg/p) also shows interesting results.
In contrast to the situation where selection = 0, there can be more (or less) than two partitions when
selection is set to 1. There is a logical correspondence between the average number of partitions and the
average number of partitioning steps per project (part (b) of the table). Indeed, the more partitioning
steps that are executed, the greater the chance that an extra partition is created. As such, setting
(0-1-1), which exhibited the highest number of partitioning steps for selection = 1 (1705), also yields
the most partitions per project, namely three on average. The minimum is observed for setting (1-1-0)
(1.7 partitions per project), which also clearly showed the least partitioning steps (365). Notice that this
minimum is less than 2, which means that, under this setting, there are a lot of projects for which the
PDLC is accepted (i.e., p > 0.05) even without elimination of a single activity, so that all activities fit
the proposed distribution as a whole. This is largely due to the beneficial influence of accounting for
the rounding effect through the appropriate averaging of Blom scores. When we want to optimize the
fit (i.e., further decrease SEY), however, activities will need to be eliminated, thus producing at least
one extra partition. This explains why, for the setting (1-1-1), there is on average almost one partition
more per project than for setting (1-1-0) (2.6 compared to 1.7).

Furthermore, the maximum number of partitions over all projects is also displayed in Table 1,
together with the grouping of the projects according to the number of partitions in which they
are divided by executing the partitioning heuristic under different settings. A maximum of six
partitions—which is in itself still not too much to become inconvenient to work with—only occurs for
one project under setting (0-1-1). This is also the only setting for which there are more projects with
three partitions than there are with two partitions, the latter clearly being the most common case and
in correspondence with the situation where selection = 0 (with per definition only one partition L and
one partition P).

(b) # partitioning steps: When further going down the rows in the table, we see that settings with
selection = 1 require significantly fewer partitioning steps than settings with selection = 0. This means
that a potential fit can be obtained much faster by allowing all activities (i.e., early, on-time and tardy)
to be removed from the base partition, which indicates a first advantage of the partitioning heuristic
with respect to the calibration procedures. For setting (1-1-0), for example, an average project only
needs four partitioning steps. Obviously, when the advanced stopping strategy is used (stopping = 1),
the number of necessary partitioning steps increases from 4 to 9. Conversely, accounting for rounding
(rounding = 1) appears to have a decreasing effect on the required number of partitioning steps, i.e.,
from 16 to 4 and from 21 to 9, which is assumed to be a positive effect given that a lower number of
partitions means bigger clusters of data with similar characteristics.

(c) % activities / partition: For selection = 0, we observe that partition L of an average project
comprises between half (54%) and three quarters (73%) of the total activities, depending on the other
selected options. This implies that up to about half of the activities (46%) were removed from the base
partition and put in partition P (for setting (0-0-1)), which is quite a considerable portion provided
that all these eliminated activities had to be on time. This indicates that a great part of the activities
of the considered real-life projects were reported as being on time, which supports the existence of
the Parkinson effect (and the rounding effect in second instance) and therefore the relevance of the
applied methodologies (i.e., the calibration procedures and the partitioning heuristic to validate the
PDLC). Note that no values are reported for the settings with selection = 1 since, in these cases,
even the partition P is subject to further hypothesis testing, possibly resulting in several new partitions.
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The division of these partitions into new partitions until the stopping criterion is met is shown by the
values for the % activities in each partition under part (a) of this table.

(d) Goodness of fit: More importantly, one can observe that the setting (1-1-1) clearly yields
the biggest p-value and thus the best fit to the PDLC. This p-value is significantly larger than
that of the optimum for the extended calibration procedure when no managerial partitioning is
executed (0.731 >> 0.385; the latter value is not shown in the table but is the maximum value
of the extended calibration procedure found in Table 2 of [20]), and even larger than the overall
optimum that occurs when applying initial partitioning according to RP and S4 (0.731 > 0.606; the
latter value is the overall maximum p-value found in the previously mentioned study). It can thus
already be stated that the statistical partitioning heuristic performs better than the extended calibration
procedure, also by comparing the percentages of accepted partitions (or projects) without execution
of managerial partitioning (maxima: 95% > 81% for the extended calibration procedure). Moreover,
accounting for the rounding effect (rounding = 1) always appears to be beneficial for the validation
chance of the PDLC. Similarly, there is a clear advantage of allowing every activity to be eliminated
(selection = 1) instead of only the on-time points (selection = 0), supported by both p-values and
accepted partitions’ percentages.

We now mention a couple of qualitative reasons why a better performance is observed for
selection = 1 than for selection = 0. First of all, the biggest residual in a certain partitioning step
will always be at least as big—and most likely bigger—in the former case than in the latter, since the
algorithm can choose from all activities when selection = 1 and not just from the on-time fraction.
Eliminating an activity with a bigger residual means a stronger decrease of SEY and thus a faster
evolution towards the acceptance of the PDLC. This also explains why selection = 1 requires fewer
partitioning steps than selection = 0, as mentioned earlier.

Secondly, although Table 1 did not yet consider managerial partitioning, there is statistical
partitioning when setting selection to 1. This means that—in contrast to what is the case for the
calibration procedures or when putting selection to zero—the early and tardy activities that show very
diverse characteristics for their durations can now be assigned to different partitions for which specific
distribution profiles can be defined, instead of obstinately trying to fit a single distribution profile to a
set of activities that are just too heterogeneous. A good illustrative example is given by the detection of
clear outliers in the project data discussed in [20] while validating their extended calibration procedure.
These authors propose two straightforward criteria to select outliers, and compare their approach
with the approach taken in the empirical validation of the original calibration procedure [19]. In their
empirical validation of the original calibration procedure, the authors eliminated 66 activities from
the set of projects as clear outliers, but they did not explicitly state how they did this. Using the two
proposed criteria to detect outliers for the extended calibration procedure has resulted in the detection
of the same 66 activities as being clear outliers, except for one project. This project (ID C2014-03) also
had clear outliers when these two new criteria were used, but these outliers were not detected in the
first empirical validation study. In the extended calibration study, it was therefore argued that failing
to identify and eliminate clear outliers could lead to serious distortions in the results as a motivation
for why the two criteria should always be strictly applied. This is, however, is no longer as valid
as it was when the statistical partitioning heuristic was used. Using the newly proposed selection
and stopping strategies, non-removed outliers would obviously exhibit the biggest residuals and
thus automatically be put in a separate partition and could then no longer impede the validation of
the PDLC for the other activities (and the resulting partition should be automatically removed from
the project database). This also implies that it would no longer be a huge problem to not identify
and eliminate the clear outliers beforehand, since the procedure would do this automatically when
selection = 1. The partitioning heuristic therefore becomes less prone to human error and prevents
biased outcomes resulting from such errors, which of course is an advantage of the partitioning
heuristic with respect to the calibration procedures and supports the applicability and robustness of
the former.
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5.2. With Managerial Partitioning

Table 2 presents more similar results than the previous table, but now with the managerial
partitioning step as an initialization carried out prior to the statistical partitioning algorithm. The table
no longer considers all eight settings for the statistical partitioning heuristic, but fixes the rounding
value to 1 because this was shown to have a positive effect on both the partitioning efficiency (i.e.,
fewer partitioning steps) and, foremost, goodness-of-fit (i.e., higher p-value). In addition, the stopping
option is also fixed to 1, since this obviously produces the better p-values compared to stopping = 0.
Moreover, the former setting in fact incorporates the latter, since, up to the point where p becomes
greater than 0.05, both approaches run completely parallel. In contrast, the value for the selection option
is not fixed, since the experiments are set up to assess its influence in combination with managerial
partitioning. The settings that are included in Table 2 are thus reduced to (1-0-1) and (1-1-1). Although
Table 2 (with managerial partitioning) contains more information than Table 1 (without managerial
partitioning), the former will be discussed less extensively than the latter, as many aspects have already
been addressed. Rather, we now focus on the most notable results and differences.

Table 2. Results for the partitioning heuristic with managerial partitioning.

Partitioning Setting
(Rounding–Selection–Stopping)

(1-0-1) (1-1-1)
PD (x4) PD (x5) WP RP PD (x4) PD (x5) WP RP

(a) # projects 83 83 53 21 83 83 53 21
avg. # activities 61 61 72 42 61 61 72 42
tot. # activities 5068 5068 3796 887 5068 5068 3796 887

(b1) # partitions (human) 232 213 426 65 232 213 426 65
# partitions (avg/p) 2.8 2.6 8.0 3.1 2.8 2.6 8.0 3.1
# partitions (max) 4 4 26 * 6 4 4 26 * 6
1 partition [%] 4 6 36 0 4 6 36 0
2 partitions [%] 32 40 45 24 32 40 45 24
3 partitions [%] 45 46 8 52 45 46 8 52
4 partitions [%] 19 8 7 19 19 8 7 19
5 partitions [%] 0 0 2 0 0 0 2 0
6 partitions [%] 0 0 2 5 0 0 2 5

(b2) # subpartitions (statistical) - - - - 423 399 631 117
# subpartitions (avg/p) - - - - 5.1 4.8 11.9 5.6
# subpartitions (max) - - - - 4 4 5 4
1 subpartition [%] - - - - 40 37 59 34
2 subpartitions [%] - - - - 40 41 35 54
3 subpartitions [%] - - - - 18 19 4 11
4 subpartitions [%] - - - - 2 3 1 1
5 subpartitions [%] - - - - 0 0 1 0

(c) tot. # partitioning steps 2150 2246 835 348 689 751 555 182
/project 26 27 16 17 8 9 10 9

(d) % act. partition L 79 78 90 77 - - - -
% act. partition P 21 22 10 23 - - - -

( f ) avg. SEY 0.161 0.171 0.196 0.101 0.108 0.130 0.146 0.088
avg. p 0.614 0.589 0.658 0.741 0.774 0.756 0.783 0.811
accepted (sub)partitions [%] 88 85 92 95 97 94 97 97

* For partitioning criterion WP, a different scale applies for the next six rows: 1 / 2 / 3 / 4 / 5 / 6 partition(s)
should be regarded as 1-5/6-10/11-15/16-20/21-25/26-30 partitions, respectively.

(a) # Projects: A first difference is the number of projects that are considered. This is no longer
always 83 because, for some projects, the two of the three criteria for managerial partitioning were not
defined by the project manager (i.e., the WPs and/or RPs of the activities were not known, cf. S0 of
Section 3.1). The total number of activities that are considered is thus also less than 5068 for WP and
RP as partitioning criteria, however, still adequate with a total number of activities of 3796 and 887.
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(b) # partitions: The number of partitions (human) displayed in the table reflects the number of
partitions that are created by performing managerial partitioning according to the different criteria.
This is the initial partitioning operation (i.e., before executing the actual partitioning heuristic),
and obviously yields the same partitions for both selection values. On the other hand, subpartitions
are created by performing statistical partitioning and are therefore only present when selection = 1.
In that case, each of the partitions obtained from managerial partitioning is further divided into smaller
partitions—therefore called subpartitions—using the statistical partitioning heuristic. This means that
each project in fact goes through two consecutive partitioning phases when the partitioning heuristic
is applied with setting (1-1-1) and including managerial partitioning. The number of subpartitions
is obviously larger than the number of partitions, and even reaches 631 over 53 projects for the WP
criterion. This comes down to almost 12 subpartitions per project, which might be a bit much to be
practical and less relevant since this implies an average of only six activities per subpartition. However,
this is not a problem when one of the other managerial criteria is applied, with an average of about five
subpartitions per project. The main reason is that project managers apparently define way too much
WPs, on average eight per project, with an excessive maximum of 26 WPs for one project. This issue
could be resolved by stimulating project managers to limit the number of identified WPs through
consideration of higher-level classification criteria.

(c) # partitioning steps: The number of partitioning steps do not fundamentally differ between
the two tables and the table still shows that the setting with selection = 1 requires significantly fewer
partitioning steps than the setting with selection = 0. Furthermore, the introduction of managerial
partitioning does not seem to increase the average number of partitioning steps (this remains about 9
(between 8 and 10) for (1-1-1) like in Table 1), which means that the computational effort to partition
the data remains just as low.

(d) % activities / partition: The percentage of activities per partition differs between the two
tables. For the setting with selection = 0, partition L on average still comprises about 80% (between
77% and 79% as shown in row ‘% act partition L’) of the initial activities, and even 90% for the WP
criterion. This is much more than the 59% for (1-0-1) without managerial partitioning from Table 1.
Hence, in order to obtain a fit to the PDLC, a far smaller portion of (on-time) activities needs to be
removed from the managerial partitions than was the case for the complete project. This indicates
that the application of managerial partitioning criteria is indeed relevant and beneficial, and that the
definition of them by project managers should thus be stimulated.

( f ) Goodness of fit: The absolute best fit so far in this research is obtained by applying the
partitioning heuristic with setting (1-1-1) in combination with managerial partitioning according to the
criterion that already proved most profitable in an earlier study, namely RP. The average p-value of
0.811 is significantly higher than the maximum for the extended calibration procedure, which is 0.606
for partitioning step S4 preceded by managerial partitioning according to—also—RP. The percentage
of accepted partitions is equal and very high (97%) for both, so we can conclude that the partitioning
heuristic outperforms the calibration procedures, regardless even of its qualitative benefits concerning
flexibility and robustness. Therefore, we will no longer consider the (extended) calibration procedure
in the rest of the discussion.

However, the mentioned p-value of 0.811 is not exceedingly higher than that for partitioning
setting (1-1-1) combined with either of the other managerial criteria (p ranging from 0.756 to
0.783) or even without managerial partitioning (p = 0.731; see Table 1), and also the partitioning
setting (1-0-1) combined with managerial partitioning according to—again—RP comes close with
a p of 0.741. The reason for this is that a combination of managerial partitioning and statistical
partitioning (which occurs when selection = 1) should in fact be seen as a ‘double’ optimization.
Both partitioning approaches already perform very well separately, but combining them takes the
distribution fitting another (small) step closer to ‘optimal’ partitioning. Furthermore, managerial and
statistical partitioning do not only perform well on their own; they are mutually also quite comparable.
To show this, we need to compare the partitioning heuristic with setting (1-1-1) (so without advanced
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statistical partitioning) and no managerial partitioning (see Table 1) and that with setting (1-0-1) (so
without advanced statistical partitioning) and managerial partitioning according to RP (see Table 2).
Remarkably, both exhibit almost identical p-values (0.731 versus 0.741) and accepted partitions
percentages (94% versus 95%). This observation is in fact hugely promising, as it indicates that we can
just perform the partitioning heuristic with inclusion of the statistical partitioning (i.e., set selection
to 1) and still obtain very relevant partitions without requiring realistic input for managerial criteria
(i.e., WPs or—even better—RPs accurately defined by the project manager). Statistical partitioning
is no longer—or at least far less—prone to human judgement and bias than managerial partitioning.
In the latter case, project managers indeed need to accurately define the WPs or RPs, otherwise the
resulting partitions would be faulty and unrealistic anyhow. It might be beneficial to bypass this
uncertain human factor, and thus create a more solid and trustworthy methodology for categorizing
activities into risk classes and assigning specific distribution profiles to them. The partitioning heuristic
developed in this section allows just this. Apart from the discussion of either managerial or statistical
partitioning (or both) being preferred, our results clearly show that it is essential to create partitions
for a project in order to obtain decent fits of the activity durations to the PDLC.

5.3. Limitations

Notwithstanding the substantial improvements of the statistical partitioning heuristic with respect
to the calibration procedures, some extensions to the procedure itself and to the related research could
still be made in the future. We now present a few limitations of the current research and propose
several potential advances that could be made in these areas.

1. The statistical partitioning heuristic—as the name itself indicates—is still a heuristic and therefore
produces good but not (always) optimal results. Indeed, removing the activities with the biggest
residuals ei as long as the SEY of the considered base partition (put in partition L) decreases
is a plausible and logical approach. However, it is not optimal for multiple reasons. First,
it is no certainty that the biggest residual always designates the best activity to eliminate (i.e.,
which produces the biggest decrease of SEY). Second, it is not assessed what the future impact (i.e.,
over multiple partitioning steps) of this removal would be on the remaining activities in partition
L (e.g., maybe it would be more optimal to remove two other high-residual activities instead
of that with the biggest residual, but the algorithm does not analyse this). In addition, third,
when removing an activity from partition L, it becomes part of another partition (i.e., partition
P), but we do not check the influence of this operation on partition P (for all we know, it could
deteriorate the SEY there). In addition, then there still is the issue of SEY being susceptible to
lapse into a local optimum, which we now—also heuristically—addressed by considering R2

a as
a secondary optimization criterion. The ultimate goal would be to develop an algorithm that
divides the activities of a project into partitions that all pass the lognormality test (with possible
exception of some clear outliers), and moreover, show an average SEY over all partitions that
is as low as possible (or a p-value that is as high as possible). The advanced algorithm could,
for example, contain a fine-tuning stage in which activities can be shifted from one partition
to another in order to further improve the overall SEY or p. Furthermore, a limit could be set
for the minimal allowed partition size, to make the partitions themselves more meaningful and
comparison with partitions from similar future projects more workable. We have now set the
minimum size of each partition arbitrarily to 3.

2. The employed project database is large for an empirical data set, but still rather limited in
comparison to simulation studies using artificial project data. Therefore, the database should ever
be further expanded, so that future empirical studies based on it can keep increasing their validity
and generalizability.

3. Currently, we only considered the initial partitioning according to one managerial criterion at
a time. This could be extended to the application of multiple consecutive criteria. For example,
the PD criterion could be performed after the project has already been partitioned according to
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RP. In that way, we get even more specific partitions that should exhibit activities that are more
strongly related. Furthermore, the extra managerial partitioning could be applied together with
or instead of the statistical partitioning (i.e., if selection = 1).

4. Furthermore, the managerial partitioning criteria should not stay limited to PD, WP and RP.
These are perhaps some of the most obvious and logical criteria, but there can still be others
that might show even greater distinctive power for dividing a project into adequate partitions.
These extra managerial partitioning criteria could be harvested from more empirical research,
for example, into the drivers of project success. If those drivers could be reliably identified for a
particular kind of project, they could also provide a good basis for grouping similar activities that
thus show similar risks (and should therefore belong to the same partition).

6. Conclusions

Studies have shown that, just like any physical system, projects have entropy that must be
managed by spending energy, and this process of energy is called project management. In order to
manage the project uncertainty, accurate estimates for activity duration are crucial in order to make
informed decisions. This paper presents a new statistical method to better estimate the average and
variability of the activity duration distributions in order to help project manager to better manage the
project uncertainty (entropy) with the lowest possible effort (energy).

The new statistical calibration method extends two existing calibration methods using an
automatic partitioning heuristic. The main objective of such an extension is to improve the ability to
define distribution profiles for a project’s activity duration that represent as accurately as possible the
stochastic nature of the activities. The underlying assumption is that the lognormal distribution is the
most appropriate distribution for modelling activity durations, but the parameters for this distribution
cannot be easily extracted from empirical data due to hidden earliness and rounded values for the
reported activity durations. These procedures were utilized as a starting point for developing a much
more extensive calibration procedure, which has programmed in C ++ and empirically validated on
the dataset consisting of more than 5000 activities. These input data come from the real-life project
database created by [21] and is freely available at www.or-as.be/research/database.

The previous calibration methods have shown promising results, but also some limitations,
and these are also discussed in the current study. First, the original calibration procedure of [19] did
not allow the project to be divided into partitions of activities that intrinsically adhere to the same
distribution profile. For this reason, [20] have proposed an extended calibration method by introducing
the ability of managerial partitioning using human input such as planned duration, the structure of
the work breakdown structure or the risk profiles defined for each activity. This extended calibration
method proved extremely favourable and confirmed that partitioning is a promising direction for
proving the realism of the lognormal distribution for activity duration. Despite this improvement,
managerial partitioning is based on criteria defined by the project manager, and, as the project manager
is a human being, these criteria are susceptible to bias in human judgement.

To bypass this problem, we developed a completely new approach in the current study which
we called the statistical partitioning heuristic. It is foremost a statistical procedure in contrast to the
managerial procedure that requires human input. Moreover, the partitioning approach, which was
shown to be promising in the extended calibration study, is kept as a heuristic tool (i.e., there are other
ways of doing the partitioning) in the best possible—but not necessarily optimal—way. Consequently,
in statistical partitioning, well-chosen activities that do not fit within a certain partition are eliminated
from that partition and assigned to another, which is then also adapted until a fit is reached. The results
obtained from this are very good, and almost perfectly match those from performing managerial
partitioning in the extended calibration method.

This observation is certainly advantageous, as it suggests that equally adequate partitions can
be obtained through the proposed statistical procedure without being susceptible to human bias or,
moreover, requiring the definition of managerial criteria. Since project managers are now always

www.or-as.be/research/database
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able, or willing, to define values for the managerial criteria for all activities, an automatic procedure
can replace their cumbersome task. It is therefore advised to perform the statistical partitioning
heuristic with the incorporation of advanced selection and stopping strategies for receiving the most
appropriate and trustworthy distribution profiles for the activity durations. However, when it is certain
that the managerial criteria have been properly defined, managerial partitioning can be executed in
combination with (in fact, prior to) the statistical partitioning. Despite the promising results in this
study, future research topics can be derived from Section 5.3, since addressing the limitations of the
current automatic partitioning heuristic could indeed further advance our research.
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