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Abstract: As a new type of nonlinear electronic component, a memristor can be used in a chaotic
system to increase the complexity of the system. In this paper, a flux-controlled memristor is applied
to an existing chaotic system, and a novel five-dimensional chaotic system with high complexity and
hidden attractors is proposed. Analyzing the nonlinear characteristics of the system, we can find
that the system has new chaotic attractors and many novel quasi-periodic limit cycles; the unique
attractor structure of the Poincaré map also reflects the complexity and novelty of the hidden attractor
for the system; the system has a very high complexity when measured through spectral entropy.
In addition, under different initial conditions, the system exhibits the coexistence of chaotic attractors
with different topologies, quasi-periodic limit cycles, and chaotic attractors. At the same time, an
interesting transient chaos phenomenon, one kind of novel quasi-periodic, and weak chaotic hidden
attractors are found. Finally, we realize the memristor model circuit and the proposed chaotic system
use off-the-shelf electronic components. The experimental results of the circuit are consistent with
the numerical simulation, which shows that the system is physically achievable and provides a new
option for the application of memristive chaotic systems.

Keywords: memristor model; memristive chaos; hidden attractor; spectral entropy; multi-type
quasi-periodic

1. Introduction

Since the discovery of the first chaotic attractor by meteorological scientist Lorenz in 1963 [1],
scholars have continued to research and explore new chaotic systems composed of ordinary differential
equations. The most representative ones are three-dimensional continuous chaotic systems represented
by autonomous ordinary differential equations, such as the Lü system [2,3], Rössler system [4], Chen
system [5], and some other typical chaotic systems [6–11]. Various four-dimensional chaotic systems
or hyperchaotic systems can be obtained by adding linear or nonlinear state feedback controllers based
on three-dimensional chaotic systems [12–14]. In addition, various multi-wing or multi-scroll chaotic
systems can be obtained by modifying multi-segment linear or nonlinear functions to increase the
number of exponential two equilibrium points [15–18].

Distinguishing from the traditional chaotic system which has one or more unstable saddle
focal points, hidden attractors are a new type of attractor that has been proposed in recent years.
The traditional chaotic system is defined as a self-excited system, and its attractor is newly defined
as a self-excited attractor [19]. The hidden attractor is not excited by the unstable equilibrium point,
and its attraction basin does not intersect with any unstable equilibrium point, which is the biggest
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difference from the self-excited attractor [20]. The existence of hidden attractors is found in some stable
equilibrium [21–23], numerous equilibrium [24,25] or continuous chaotic or hyperchaotic systems with
no equilibrium [26,27]. The research of the hidden attraction system has become a new hotspot in the
field of non-linear dynamics. It has been shown that the occurrence of hidden attractors is always
connected with multistability [19], which exists in many practical engineering systems and may have
adverse effects on the system [28–30]. It is the first step to uncover all coexisting hidden attractors
and then apply an appropriate controlling scheme to keep the system on the desired attractor [19].
Studying the existence of coexisting hidden attractors is very important in engineering applications.

The memristor postulated by L.O. Chua in 1971 is the fourth passive circuit element in electronic
circuit theory [31]. The memristor is a two-terminal element, which is divided into magnetic flux and
electric charge [32]. Many scholars have shown great enthusiasm for research on the performance of
memristors; the memristor theory and its application research has become one of the most popular
research topics today. At present, a solid state implementation of memristor has been successfully
fabricated in Hewlett-Packard (HP) Labs [33]. However, the manufacturing technology is extremely
difficult to implement, resulting in a high cost of memristor, and it cannot be used for commercial
purposes. There is a good expectation that memristors will find use in a wide range of applications.
In addition, it is necessary to use off-the-shelf components, such as resistor (R), capacitor (C), inductor
(L), operational amplifier, analog multiplier, and other components to design a variety of equivalent
realization circuits for the memristor [34,35] until the memristor can be manufactured at a low cost. Itoh
and Chua replaced the Chua’s oscillator with a piece-wise linear function memristor, standardized the
diode in the Chua’s oscillator with a memristor [36], and thus obtained two types of memristor-based
chaotic oscillation circuits for the first time. Some scholars have proposed a memristor that possesses a
cubic nonlinear [37], a quadratic nonlinear characteristic, and some other improved models [16]. If these
models are introduced into a specific circuit, the behavior of the circuit exhibits extremely complex
nonlinear behavior, and even chaotic oscillations may occur [37–40]. The concept of memristors
greatly enriches the circuit theory, causing the circuit to have more nonlinear dynamical behavior [32].
As a kind of nonlinear device, memristor has very complex nonlinear behaviours. If it is used to
couple with the existing chaotic system, it will be more likely to produce chaotic behavior. It seems
that memristive chaotic systems are more suitable for applications in chaotic encryption and other
technologies [41], however, there is only a few literature on hidden chaotic systems implemented with
memristor models [41,42].

Motivated by the research above, a new memristor-based chaotic system and its implementation
circuit are constructed in this work. A non-ideal flux-controlled, absolutely non-linear active memristor
model is introduced into an existing chaotic system [20]. The proposed system has the phenomenon of
a multi-type quasi-periodic limit cycle and multi-attractor chaotic attractors with various topologies,
which indicates that the system has numerous hidden attractors and the system is multi-stable.
The value of the system spectral entropy (SE) analysis with the parameter changes is about 0.87, which
fully outlines the high complexity of this memristive chaotic system. Since the equivalent realization
circuit for memristor and the memristive system both are implemented with some off-the-shelf
components, it is expected that the system will contribute greatly to further research and applications.

The rest of this paper is organized as follows. Section 2 describes the memristive chaotic
mathematical model and analyzes the nonlinear characteristics of the system in terms of phase diagram,
time domain diagram, power spectral density, Poincaré map, Lyapunov exponents (LEs), bifurcation
diagram, chaotic characteristic graph, and fractal dimension. The bifurcation diagram and the LEs
illustrate the extreme multi-stability associated with the initial conditions of the system. The phase
diagram reveals the behavior of the infinite number of attractors coexisting with the system. Section 2
also reveals there is a long-term transient anomalous transition behavior for stable chaos under certain
initial conditions. The information SE analysis of the memristive chaotic system is given in detail in
Section 3. In Section 4, an implementation circuit is designed using common circuit components. It is



Entropy 2019, 21, 1026 3 of 24

verified that there are infinite attractors and transient periodic dynamics behavior in memristor chaotic
systems, depending on the initial conditions. The conclusion is summarized in Section 5.

2. A New 5-D Memristive Chaotic System

2.1. Description of the New Memristive Chaotic System

In this paper, a non-ideal flux-controlled memory proposed in [43,44] is adopted. The mathematical
model of the memristor is  i = W(φ)u =

(
c + d

∣∣∣φ∣∣∣)u
dφ
dt = u−φ

(1)

where c and d are two positive constant parameters of the memristor, φ is the internal state variable of
the flux-controlled memristor, W(φ) is the conductivity of the memristor, u is the input voltage, and i
is the output voltage of the memristor, respectively. According to the flux-controlled theory, when
q(φ) is the amount of charge, Equation (2) is true. When c = 1, d = 0.1, and u is a sinusoidal wave
voltage with a frequency of 0.3334 Hz, Figure 1a shows the relationship between the magnetic flux and
charge of memristor, and Figure 1b shows the pinched hysteresis loop of voltage-current characteristics.
Specifically, it can be seen from Figure 1a that the curve passes through the origin in the plane of φ− q
and monotonically increases; the shape of the I-V characteristic curve is a typical pinched hysteresis
loop characteristic with the italics “8” as shown in Figure 1b. W(φ) = c + d

∣∣∣φ∣∣∣
q(φ) =

∫ φ
−∞

W(t)dt
(2)
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By introducing the memristor model of Equation (1) into the chaotic system shown in [20], a new
nonlinear system composed of a memristive model is constructed. The mathematical model of the
memristive system is 

dx
dt = ay + xz
dy
dt = −bx + yz
dz
dt = 1− x2

− y2

dw
dt = −gW(u)w + zw + e
du
dt = w− u

(3)
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where x, y, and z are the state variables of the system; w is the input voltage of the memristor; u is the
internal state variable of the memristor; and a, b, c, d, e, g are positive real parameters of the system.
The equilibrium points of system (3) can be solved by Equation (4).

ay + xz = 0
−bx + yz = 0
1− x2

− y2 = 0
−gW(u)w + zw + e = 0
w− u = 0

(4)

Equation (4) can be simplified and reorganized as{
ay2 + bx2 = 0
y2 + x2 = 1

(5)

Equation (5) has no solution since a and b are positive real parameters. Lyapunov exponents (Les)
is an effective means to quantitatively study chaotic systems. Its positive and negative values in a
certain direction indicate the degree of the average divergence or convergence within the adjacent
orbits of the attractor over a period of time. In order to solve the Les of the system (3) using Wolf
algorithm [45], the Jacobian matrix of system (3) is obtained as

J =


z a x 0 0
−b z y 0 0
−2x −2y 0 0 0
0 0 w z− g(c + d|u|) −gdw · sign(u)
0 0 0 1 −1


(6)

The system parameters are chosen as a = 1, b = 0.05, c = 1, d = 0.1, e = 1, and g = 1, and the
initial value is set as (x0, y0, z0, w0, u0) = (−1,−1, 0, 0, 1). Using the ode45 numerical solver, the Les
of the proposed chaotic system are LE1 = 0.034291, LE2 = −0.036091, LE3 = 0, LE4 = −0.93593, and
LE5 = −1.2806, respectively. Except for one positive and one zero Lyapunov exponent, the other Les
are negative, and the sum of all Lyapunov exponents is −2.21833. The Les show that the whole phase
volume of the system is exponentially shrinking rapidly, so the system is chaotic under the above
parameters. At this point, the Kaplan-Yorke dimension of the system is shown in Equation (7).

DKY = 4 +
LE1 + LE2 + LE3 + LE4

|LE5|
= 3.2677 (7)

Under the above parameters, the step size h = 0.001 and simulation time t = 2000 seconds, the
three-dimensional attractor phase diagrams and the two-dimensional attractor phase diagrams of the
system are shown in Figures 2 and 3, respectively. Among them, Figure 3f is the chaotic attractor on
the terminal voltage w and the current flowing i of the memristor on the plane of w− i for the chaotic
system, reflecting the nonlinear dynamic characteristics of the memristor element. It can be seen from
the attractor phase diagrams that the system has new hidden attractors which are different from other
chaotic systems. Since such attractors have not been reported in previous literature, the proposed
system enriches the types of hidden chaotic attractors and provides a broader option for the application
of memristor-based chaotic systems.
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The two graphs shown in Figure 4 are the power spectral density and time domain diagram of the
state variable x for the system (3). The power spectral density curve is continuous and has no sharp
peaks; the time series diagrams are aperiodic, which accords with the characteristics of chaos.
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Figure 4. Frequency spectrum and time series of x variable for system (2): (a) frequency spectrum; (b)
time series.

Here we continue to analyze the nonlinear behavior of System (3) using Poincaré map [46–48].
Figure 5 displays the Poincaré maps on the plane of x− y, y− u, y−w and x−w in z = 0 cross section.
The shape of the curve is composed of dense point sets, which shows that the system conforms to the
characteristics of a chaotic system. In addition, it can be clearly seen that these point sets constitute a
variety of graphic shapes, indicating that the attractors have extremely complicated folding behavior in
the phase space and the hidden attractor itself has a complex topological structure. The Poincaré maps
of the memristor-based hidden chaotic system are much more complex than any other Poincaré maps
reported in the previous literature, that is, the Poincaré map with such a complex structure has rarely
been reported in the existing literature. If the system is used as a signal generator, it will have a strong
application prospect in chaotic encryption, chaotic communication, and other engineering fields.
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2.2. Bifurcation Diagram with a as Varying Parameter

In order to uncover the relationship between system parameters and nonlinear behavior of system
dynamics, the research method of the bifurcation diagram for the proposed system will be adopted in
this section. At the same time, the Les and the attractor’s phase diagram are also used to graphically
analyze the nonlinear dynamic behavior of the system. Figures 6 and 7 depict the bifurcation diagram
and Les diagram, where fixing the system parameters, b = 0.05, d = 0.1, c = e = g = 1, and the
initial value (x0, y0, z0, w0, u0) = (−1,−1, 0, 0, 1), changing the value of parameter a, and a ∈ (0, 4).
With the increase of system parameter a, Figure 7 shows that the system is in the alternate change
from non-chaotic state to chaotic state, and the system is in a large range of a chaotic state.
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Figure 7. Les of system (2) versus a, when b = 0.05, d = 0.1, c = e = g = 1, (x0, y0, z0, w0, u0) =

(−1,−1, 0, 0, 1), and a ∈ (0, 4).

During a ∈ (0, 0.3761), the system has small positive maximum Les with almost no fluctuation,
and the system is in a weak chaotic state. The phase diagrams are shown in Figure 8, where a = 0.3,
LE1 = 0.0023524, LE2 = −0.0028756, LE3 = 0, LE4 = −1.0479, and LE5 = −1.0494.
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attractor on the y− z plane; (c) attractor on the y−w plane.

During a ∈ (0.3761, 0.6301), Figure 6 shows that the largest Les in this range fluctuate within a
very small range, indicating that the orbit formed by the trajectory of the system is slowly evolving.
Figure 9 represents the phase diagram when a = 0.4, which shows how the attractor with higher
recognition evolves from the attractor when a = 0.3.
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When a ∈ (0.6301, 0.7597), Figure 6 presents that there are several periodic windows in the system,
and the Les of the system approach to zero at the periodic window. Figures 10 and 11 show the phase
diagrams for a = 0.70 and a = 0.75, respectively. These phase diagrams show that the phase diagrams
corresponding to the two values are all quasi-periodic limit cycle states. Because the shape of these
two limit cycles is quite different, it indicates that the system has extremely complex and diverse
hidden attractors.
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In the range of a ∈ (0.7597, 1.0386), the bifurcation diagram of Figure 6 indicates that the system
is in a chaotic state, which has been demonstrated from Figure 2 to Figure 5 when a = 1 in the
previous discussion.

In the range of a ∈ (1.0386, 1.1782), there is a positive LEs in Figure 7, hence, the system behaves
as a chaotic state. When a = 1.17, we calculate the LEs, LE1 = 0.0010416, LE2 ≈ LE3 ≈ 0, LE4 = −1.021,
and LE5 = −1.0893, respectively. Figure 12 is a phase diagram when a = 1.17. We are surprised to
find a very interesting hidden attractor from the phase diagram, as shown in Figure 12. The shape of
the attractor is different from the ones when a = 1, and these attractors have never been reported in
previous literature, reflecting the novelty and diversity of system attractors. The new attractor further
illustrates that the system has very complex nonlinear behavior.

When a ∈ ( 1.1782, 1.2179), Figures 6 and 7 show the existence of quasi-periodic limit cycles in the
system, and the largest Les equals to zero at a = 1.2149.

When a ∈ ( 1.2179, 1.8804), Figure 7 shows that the system has large positive Les, so the system is
in a chaotic state. Figure 13 is a phase diagram of the system at a = 1.28, in this case, LE1 = 0.034289,
LE2 = −0.033743, LE3 = 0, LE4 = −0.78208, and LE5 = −1.6299. The shapes of the hidden attractors
shown in the Figure 13 are also different from the ones analyzed earlier, which further confirms the
novelty and diversity of the hidden attractors in the memristive system.
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Figure 13. Projections of 2-D phase diagram with parameter a = 1.28: (a) attractor on the x− z plane;
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When a ∈ (1.8804, 1.9651), Figure 6 shows that there is a transition from a non-chaotic state to a
chaotic state. At a = 1.891 and a = 1.89678, the phase diagrams of the system are shown as Figures 14
and 15, respectively, which demonstrates that the system evolves from non-chaotic state to chaotic
state. Under this condition, the shapes of the quasi-periodic limit cycle and chaotic attractor exhibited
are different from the ones discussed above. Therefore, the system has a myriad of hidden attractors
when increasing the value of a. It reflects the strong randomness and high complexity of the system
after the introduction of memristors.
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Figure 15. Projections of 2-D phase diagram with parameter a = 1.89678: (a) attractor on the x − z
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Figure 6 illustrates when a ∈ ( 1.9651, 2.4981), the system is in a chaotic state. During a ∈
( 2.4981, 2.8597), we can see from Figure 6 that the system behaves as a complex bifurcation. During this
range, the system has small Les shown as in Figure 7, and the system is in the transition stage from
non-chaotic state to a chaotic state. Figures 16 and 17 are the phase diagrams of the system at
a = 2.56 and a = 2.65, respectively. In the meantime, phase diagrams also show the transition
from quasi-periodic limit cycle to a chaotic state. The shape of the attractor is different from that of
the previous one, which proves that there are numerous hidden attractors and complex topological
structures with the change of system parameters. For the range of a ∈ (2.8597, 4), the bifurcation
diagram reveals that the system is in a chaotic state.
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(b) attractor on the y− z plane; (c) attractor on the y−w plane.
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Based on the above analysis, the shape of the novel quasi-periodic limit cycles and novel attractors
of the system have never been reported in existing literature. According to the new chaotic system
standard guidelines that “The system should exhibit some behavior previously unobserved” [49],
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proposed by Sprott, J., C., we could conclude that the system is a new chaotic system. And the
occurrence of many quasi-periodic attractors with a single parameter variation is also very rare in
other hidden chaotic systems. All these simulations prove that the system has innumerable hidden
chaotic attractors and extremely complex attractor topology, which greatly enriches the types of chaotic
attractors and provides theoretical support for engineering applications in communication security.

2.3. Analysis of Multi-Stability

Keeping the system parameters unchanged, it is important to analyze the influence of the initial
value of the system on the dynamic behavior of the memristor-based chaotic system with hidden
attractors. The system parameters in this section are a = 1, b = 0.05, d = 0.1, c = e = g = 1.The bifurcation
diagram and LEs diagram of the system at different initial values O0 = (x0, y0, z0, w0, u0) = (u, 0, 0, 0, 0)
and initial value O1 = (x0, y0, z0, w0, u0) = (u, u, 0, 0, 0) are shown in Figures 18 and 19, respectively.
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(x0, y0, z0, w0, u0) = (u, u, 0, 0, 0), and u ∈ [0, 4]: (a) bifurcation diagram; (b) Les graph.

For the initial value of O0 = (x0, y0, z0, w0, u0) = (u, 0, 0, 0, 0), it is interesting that the bifurcation
graphs are axisymmetric about the vertical axis during u ∈ (−4, 0) and u ∈ (0, 4). Readers who are
interested could test symmetry by themselves. The bifurcation diagram at u ∈ (0, 4), as shown in
Figure 18a and the corresponding Les, is depicted in Figure 18b. In order to reflect the Les more
clearly, only the range of LEs ∈ (−0.06, 0.06) is given in Figures 18b and 19b. As for the part of
LEs ∈ (−2.5,−0.06), it is not given. It can be seen from the two bifurcation diagrams that there are
different bifurcation shapes and countless attractors for the proposed system corresponding to different
initial values.

Figure 20 gives the projection of hidden attractors for the system (3) on the y− z phase plane with
different initial values. The blue curve of Figure 20a corresponds to the initial value of (0.51, 0.51, 0, 0, 0);
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the Les are LE1 = 0.013492, LE2 = 0, LE3 = −0.017959, LE4 = −0.98013, and LE5 = −1.1965, respectively.
The system is in a chaotic state with hidden attractors; the red curve corresponds to the initial value
of (3.34, 3.34, 0, 0, 0); the Les of the system are LE1 = −0.0080971, LE2 = 0, LE3 = −0.0014535,
LE4 = −0.73827, and LE5 = −2.0881. The phase diagram shows that the system is in a quasi-periodic
state, and the attractor is formed by a high density curve. The green curve corresponds to the
initial value of (0.01, 0, 0, 0, 0), the system is in the cycle limit cycle state. In Figure 20b, the blue
curve corresponds to the initial value of (3, 3, 0, 0, 0), the corresponding Les are LE1 = 0.032934,
LE2 = 0, LE3 = −0.035035, LE4 = −0.78493, and LE5 = −1.7115, and the system is in the chaotic
state; the red curve corresponds to the initial value of (0.9711, 0.9711, 0, 0, 0), the corresponding Les are
LE1 = −0.0027992, LE2 = LE3 = 0, LE4 = −1.0162, and LE5 = −1.1027; the system is in quasi-periodic
state. The green curve corresponds to the initial value of (1.922, 0, 0, 0, 0); the Les of the system are
LE1 = 0.0017476, LE2 = 0, LE3 = −0.0012311, LE4 = −1.0485, and LE5 = −1.0662, the system is in a
weak chaotic state.
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Based on the analysis of the two values of O0 and O1, we find different initial values have a great
influence on the dynamic behavior of the system (3).

In order to reflect more clearly the sensitivity of the memristive system, which is more susceptible
to the initial value, Figure 21 shows the multi-stable nonlinear dynamic behavior distribution of chaotic
for the system (3) at x0 ∈ (0, 5) and y0 ∈ (0, 5) when the initial value is (x0, y0, 0, 0, 1). In the range
of maximum Lyapunov index from −0.0009 to 0.0541, the different dynamic behavior of the system
corresponds to different colors as marked in Figure 21. There are obvious boundaries between chaotic
and non-chaotic regions in the figure. When the system is under different initial conditions, the system
exhibits a quasi-periodic state, weak chaotic state, chaotic state and so on. This indicates that there is
complex multi-attractor coexistence in the system.

From the analysis of Figures 20 and 21, we could easily find the coexistence of multiple
attractors, which indicates that the system has numerous multiple attractors, and there is multi-stability
phenomena. Specifically, figures show the coexistence of chaotic attractors with different topologies
and the coexistence of quasi-periodic limit cycles and chaotic attractors. At the same time, there is a
quasi-periodic limit cycle and multi-attractor phenomenon of chaotic attractors with various topologies.
These simulations and calculations prove that the proposed memristive chaotic system has very rich
and complex hidden dynamics. In addition, it should be pointed out that the above analysis is only two
numerical examples for different initials, since there are infinite cases of initial value and the dynamic
multi-stability characteristics of the system are much more complicated than what is exhibited. Due to
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the limitation of workload, no more detailed analysis and discussion will be made here, and further
research may be conducted later.
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2.4. Analysis of Transient Chaos

A transient chaotic state is a special kind of chaotic state which refers to the phenomenon that
under some certain parameters the system gradually evolves into the periodic state from a chaotic
state after a long observation period [50–52]. The phenomenon of transient chaos discussed in this
section does not occur in the original hidden system [20].

When the parameters are a = b = 0.05, c = e = g = 1, and d = 0.1, the initial value is
(x0, y0, z0, w0, u0) = (−1,−1, 4, 4, 4); the transient behavior is shown in Figure 22, and the observation
time is t = 8000 seconds. In Figure 22a, the blue curve color corresponds to t ∈ (0, 2000), and the
red curve corresponds to t ∈ (2000, 8000). Under the above initial value and parameters, and during
t ∈ (0, 2000), the system LEs are LE1 = 0.0043476, LE2 = 0, LE3 = −0.0015311, LE4 = −1.0434, and
LE5 = −1.7777, respectively. The system appears as a weak chaotic state, and the projections of phase
diagram for the hidden chaotic attractors in the x− y− u space and on the x− u plane are respectively
shown as Figure 22b,c. Compared with Figure 3d, it is found that the hidden attractors are very
different at this time, and they belong to novel and interesting attractors.
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Figure 22. Time series and phase diagram of attractors for transient chaotic: (a) time series of z when
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During t ∈ (2000, 8000), the periodic phenomena can be seen from the time domain diagram of
Figure 22a, and the LEs of the system can be quantitatively calculated to be LE1 = LE2 = LE3 = 0,
LE4 = −1.0451, and LE5 = −1.7766, respectively. Therefore, the system is in a quasi-periodic state,
and the projections corresponding to the hidden periodic state attractors on the x − y − u space
and x − u plane are illustrated in Figure 22d,e. The quasi-periodic attractor is different from the
quasi-periodic attractor that appears earlier: The quasi-periodic attractor evolves from chaotic attractor
to quasi-periodic attractor in the process of transient chaos. The shape of the attractor is quite different
from the quasi-periodic attractor seen before, and it is a more representative, novel and interesting
quasi-periodic attractor. The new quasi-periodic attractor is also an unexpected discovery during
analyzing transient chaos.

3. Entropy Analysis for Memristive Chaotic Systems

In the above analysis, we have learned that the system composed of memristors with hidden
attractors has abundant nonlinear dynamic behaviors. In this section, we will quantitatively evaluate
the complexity of the system (3) by means of information SE. The detailed SE algorithm is studied in
the literature [20,53]. As an excellent algorithm in structural complexity, SE algorithm is a powerful
measure of the chaotic characteristics of the system and can better measure the structural complexity
of the high-dimensional chaotic system as a whole. Therefore, we adopt the SE algorithm to value the
structural complexity of the system in terms of parameters and initial values.
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3.1. SE Analysis Depending on Parameters

In Section 2.2, the abundant nonlinear dynamic characteristics of the system are analyzed in
detail with the variation of system parameter. It was proved that the change of system parameter a
can greatly affect the dynamic characteristics of the system and then affect the nonlinear complexity
of the system. The effect of changes in parameters a and b on SE will be quantitatively analyzed in
this section. In order to ensure the consistency of system parameters, system parameters are fixed as
c = e = g = 1, d = 0.1, and initial value (x0, y0, z0, w0, u0) = (−1,−1, 0, 0, 1). The variation of SE with
system parameters a and b is plotted as shown in Figure 23.
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Figure 23. SE with different a and b: (a) SE vs. a (b = 0.05); (b) SE vs. b ( a = 1) .

When b = 0.05 and a ∈ (0, 4), the change of SE is shown in Figure 23a, where there are large
fluctuations in the curve, indicating that the change of a has a great impact on structural complexity.
The maximum SE of the system fluctuates slightly around 0.55 with the change of a. The amplitude
change of the trend for the whole curve is completely consistent with Figures 6 and 7, which further
verifies the correctness of the previous analysis.

When a = 1 and b ∈ (0, 4), the change of SE is shown in Figure 23b, where few periodic windows
exist, reflecting that the system is insensitive to parameter changes. That is to say, with the change of b,
the system has a large continuous chaotic interval and a large non-chaotic interval. So it is convenient to
obtain the hidden chaotic state of the system, which provides the possibility for engineering application.
In addition, the SE value of the system in Figure 23b fluctuates within a very small range around
0.87, which is obviously larger than the SE shown in Figure 23a. In Liu’s original system [20], the
value of SE is 0.78. It can be seen that the complexity of the system is greatly improved due to the
introduction of the memristor. Such high complexity is rarely reported in related literature. In the
memristor-capacitor-based chaotic system proposed by Ning Wang et al., the SE is about 0.82 with R
varying [54]. And in Fractional-Order 4D Hyperchaotic Memristive designed by Jun Mou et al., the SE
value is about 0.6 [55]. In other chaotic systems, SE is in the range of 0.5–0.8 [56–67].

Therefore, the high complexity of hiding the chaos using the memristor can provide a safer
key for communication, which is of great theoretical significance for the development of chaotic
security technology.
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3.2. Entropy Analysis of Chaotic Behavior

The nonlinear characteristics of memristor-based chaotic systems are related to many parameters.
In the previous discussion, the characteristics of memristive chaotic systems are all for the case of
single parameter change. In this subsection, the characteristics of chaotic systems are analyzed with the
participation of two parameter variables at the same time. From the previous analysis, it can be seen
that the change of system parameters and initial values is an important factor affecting the dynamic
behavior of the system, which in turn affects the chaotic and SE distribution of the system. Therefore,
it is of great significance to study the SE distribution of a chaotic system under the interaction of
system parameters or initial values. Here, the system parameters c = e = g = 1 and d = 0.1 remain
unchanged. The chaotic SE distribution of the system under the interaction of parameters a and b, and
the change of initial value (x0, y0, 0, 0, 0) is shown in Figure 24. Figure 24a is a chaotic characteristic
distribution when a ∈ (0, 4), b ∈ (0, 4); the initial value is (−1,−1, 0, 0, 1), and Figure 24b is a chaotic
characteristic SE distribution when x0 ∈ (0, 4), y0 ∈ (0, 4), a = 1, and b = 0.05.
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Figure 24. SE distribution of the system under different conditions: (a) the interaction of parameters a
and b; (b) the interaction of initial values x0 and y0.

Figure 24a reflects the SE distribution of the chaotic system under the interaction of parameters a
and b. Except for a small part of the area having relatively light color distribution on the diagonal line,
most of the other parts are red, dark red and black. This shows that the system is in a state of chaos
within a large area and has a high degree of complexity under the combined action of parameters.
Fixing the value of parameter a or b and looking along the direction of another variable, we can find
that the color in the graph is fragmented. And the color in each interval is continuous, indicating that
the dynamic behavior of the system is different when a parameter changes, which is highly consistent
with the bifurcation diagrams.

The color distribution of Figure 24b is more dispersive than that of Figure 24a. In addition to
three small areas with lighter colors, the whole area is mainly red and dark red, and the entire red
area is mixed with a lot of small black spots. The black distribution color is scattered. This indicates
that even when small initial values x0 and y0 change, there is a mutual transition between chaos and
non-chaos, which indicates that the system is extremely sensitive to the initial value, and the system
has multi-stability. Moreover, the diversity of colors in the figure also proves that the system has
numerous hidden attractors.
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In summary, Figure 24 quantitatively analyzes the nonlinear dynamic characteristics of
memristor-based hidden chaotic systems from the point of view of chaotic SE distribution. The actual
system parameters are much more complex than what we discussed. Therefore, the non-linear dynamic
characteristics of the system are extremely rich, and there are numerous hidden attractors in the system.

4. Circuitry Realization of Memristor-Based Chaotic System

The dynamic characteristics and complexity of the memristor system are studied in the previous
sections. This section will verify the achievability of the system by studying the design of the chaotic
circuit. As we all know, achievable circuits in the system are the guarantee for applying theory to
engineering applications. It means that in the nonlinear chaotic system, chaotic circuit is the core of
chaos widely used in information science, and it is the technical basis for applying chaos to engineering
fields such as secure communication and synchronous control. From this point of view, we will focus on
the implementation of chaotic circuits based on memristors in this section. There are three methods to
realize a chaotic circuit, including an individualized scheme, modular scheme and improved modular
scheme [20]. Compared with the modular scheme, the individualized scheme requires less circuitry
components but requires some prior experiences. The improved modular scheme can determine the
circuit parameters through mathematical models. This section will use an improved modular scheme
to implement the chaotic circuit.

4.1. Equivalent Circuit implementation for Memristor

Because the fabrication price of memristors is too high to be widely used in commerce at present,
it is very attractive to employ off-the-shelf components to equal the memristor model. That is to say,
the first step is to realize the mathematical model (1) using common circuit elements. After that, we
design the chaotic circuit corresponding to the state Equation (3) by using the memristor model.

Observing the state of the variable phase diagrams or time domain graphs of the system, we can
find that the state variables w and u are beyond the linear range of the integrated amplifiers. Therefore,
the variable compression processing is required using Equation (8). After compression, system (3)
becomes Equation (9). 

x = ux

y = uy

z = uz

w = 10uw

u = 10uu

(8)



dux
dt = auy + uxuz

duy
dt = −bux + uyuz

duz
dt = 1− ux

2
− uy

2

duw
dt = −W(10uu)uw + uzuw + 0.1e

duu
dt = uw − uu

(9)

In order to match the circuit parameters, a time constant of τ0 is introduced, and τ0 = RC. Then
the relationship of τ and t is t = 1

τ0
τ, so there is dτ = τ0dt = RCdt. Therefore, the corresponding circuit

equation is shown as (10), where g1, g2, g3, g4, and g6 are multiplier gains, and Ra and Rb are the
branch resistors of uy and ux, respectively.
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RC dux
dτ = R

Ra
uy + g1uxuz

RC
duy
dτ = − R

Rb
ux + g2uyuz

RC duz
dτ = 1− g3ux

2
− g4uy

2

RC duw
dτ = −W(10uu)uw + g6uzuw + 0.1e

RC duu
dτ = uw − uu

(10)

According to the circuit Equation (10), the memristor equation in the memristive chaotic circuit
can be obtained as {

i = W(10uu)uw = (c + 10d|uu|)uw
duu
dt = uw − uu

(11)

The memristor unit circuit Equation (12) is designed by the memristor Equation (11), that is,
R
Rc

= c = 1, Rg5
Rd

= 10d = 1, where g5 is the multiplier gain. If R = 10kΩ, g5 = 1, then Rc = Rd = 10kΩ.
Therefore, the memristor model circuit designed with the help of the basic theory of the circuit is
shown in Figure 25, where the absolute equivalent circuit is shown in Figure 25b. As can be seen from
the schematic diagram, we use the operational amplifier, analog multiplier, and other components to
realize the analog circuit of the non-ideal flux-controlled memristor unit. The absolute circuit consists
of two operational amplifiers, a diode and two linear resistors. RS = 200kΩ was adopted in our design. i = R

(
1

Rc
+

g5
Rd
|uu|

)
uw

duu
dt = 1

RC (uw − uu)
(12)
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4.2. Circuit of Memristive Chaotic System

The previous subsection has solved the realization problem of the memristor model circuit. Based
on the memristor model, we will design a chaotic system circuit containing a memristor in this
subsection. By applying Kirchhoff’s law, the nature of the integrated operational amplifier, and the
constraint relationship between the voltage and current of the capacitor, the circuit of the memristive
chaotic system can be built in Figure 26. Here we take R = 10kΩ, C = 33nF. Because R

Ra
= a = 1, and

R
Rb

= b = 0.05, Ra = 10kΩ, Rb = 200kΩ. The gain of all multipliers in the circuit diagram is 1, i.e.,
g1 = g2 = g3 = g4 = g5 = g6 = 1.
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4.3. Circuit simulation of Memristive Chaotic System

As we all know, the performance of Multisim software is very close to that of the actual component;
the circuit performance of the circuit built by Multisim can approximately represent the actual circuit.
Multisim has an obvious advantage over the PSIM software. According to the schematic of the
five-dimensional chaotic system shown in Figure 26, the simulation circuit using the components
constructed in the Multisim software is given in Figure 27. The circuit is mainly composed of operational
amplifier TL082, multiplier AD633, diode 1N4148, a linear resistor, and a capacitor. In Figure 27, the
power supply voltage of the operational amplifier is ±15V; the gain of all multipliers is 1; and ux, uy,
uz, uw, and uu are consistent with the variables in the circuit Equation (9).
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The Multisim simulation result observed by the oscilloscope for the chaotic system is presented in
Figure 28. These results are in good agreement with numerical simulations calculated with Matlab,
indicating that the hidden chaotic system composed of memristor is physically achievable.
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5. Conclusions

In this paper, a non-ideal flux-controlled memristor model and its circuit are introduced into the
four-dimensional chaotic system, and a novel and unbalanced five-dimensional chaotic system without
an equilibrium point is realized.

By analyzing the nonlinear behavior in terms of the equilibrium point, phase diagram, power
spectral density map, time domain graph, LEs graph, and poincaré map, it is proved that the system
has hidden chaotic characteristics. In the process of analysis, it is surprising to find that the Poincar
map of the system presents a unique and complex structure different from that reported in other
literature. Then, by focusing on the bifurcation diagram and LEs under different parameters of the
system, it is found that the system has multiple quasi-periodic limit cycles and chaotic attractors if a
certain parameter is changed. These attractors have never appeared in previous volumes and belong
to new hidden attractors. After that, by studying the influence of parameter on system complexity,
it is found that the value of SE can reach about 0.87, which is very rare in other chaotic systems.
At the same time, the chaotic behavior of SE is analyzed by using the contour line method. It is found
that the memristor-based hidden chaotic system has a very sensitive initial value, multi-stability and
innumerable hidden attractors. That is to say, under different initial conditions, the memristive system
exhibits the coexistence of chaotic attractors with different topological structures, quasi-periodic limit
cycles, chaotic attractors, and the multi-attractor phenomena of quasi-periodic limit cycles and chaotic
attractors with different topological structures. These nonlinear characteristics prove that the system
has a very high complexity after introducing memristors.

In addition, we also find novel and interesting quasi-periodic and chaotic attractors that are
different from other attractors in transient chaos. Finally, the consistency of theoretical analysis
and numerical simulation results is verified by the design of an analog circuit. The physical
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realization of the memristor-based hidden chaotic system provides a possibility for its application in
engineering technology.
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