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Abstract: The center method, which was first proposed in Rev. Stat. Appl. 1997 by Cazes et al.
and Stat. Anal. Data Mining 2011 by Douzal-Chouakria et al., extends the well-known Principal
Component Analysis (PCA) method to particular types of symbolic objects that are characterized by
multivalued interval-type variables. In contrast to classical data, symbolic data have internal variation.
The authors who originally proposed the center method used the center of a hyper-rectangle in Rm

as a base point to carry out PCA, followed by the projection of all vertices of the hyper-rectangles
as supplementary elements. Since these publications, the center point of the hyper-rectangle has
typically been assumed to be the best point for the initial PCA. However, in this paper, we show
that this is not always the case, if the aim is to maximize the variance of projections or minimize the
squared distance between the vertices and their respective projections. Instead, we propose the use
of an optimization algorithm that maximizes the variance of the projections (or that minimizes the
distances between the squares of the vertices and their respective projections) and finds the optimal
point for the initial PCA. The vertices of the hyper-rectangles are, then, projected as supplementary
variables to this optimal point, which we call the “Best Point” for projection. For this purpose, we
propose four new algorithms and two new theorems. The proposed methods and algorithms are
illustrated using a data set comprised of measurements of facial characteristics from a study on
facial recognition patterns for use in surveillance. The performance of our approach is compared
with that of another procedure in the literature, and the results show that our symbolic analyses
provide more accurate information. Our approach can be regarded as an optimization method, as it
maximizes the explained variance or minimizes the squared distance between projections and the
original points. In addition, the symbolic analyses generate more informative conclusions, compared
with the classical analysis in which classical surrogates replace intervals. All the methods proposed
in this paper can be executed in the RSDA package developed in R.

Keywords: interval-valued variables; principal component analysis; symbolic data analysis; Best
Point method

1. The Center Method

Symbolic data were introduced by Diday in [1]. In contrast to classical data analysis, in which
a variable takes a single value, a variable in symbolic data can take a finite or infinite set of values:
For example, an interval variable can take an infinite set of numerical values that range from low
to high. As Principal Component Analysis (PCA) is one of the most popular multivariate methods
for dimension reduction, its extension to symbolic data is important. Many generalizations of PCA
have been developed and several studies have contributed to its extension to interval-valued data.
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Among the methods for this in the literature, two are the vertex method and the center method [2–4].
In [5], the authors introduced new PCA techniques in order to visualize and compare the structures of
interval data. Then, the authors of [6] proposed an approach that extended the classical PCA method
to interval-valued data by using symbolic covariance to determine the principal component space to
reflect the total variation in the interval-valued data. PCA has also been extended to histogram data in
a number of studies (see [7–11]).

Most of these methods were developed for interval matrices, where an interval matrix X is
defined as

X =


[a11, b11] [a12, b12] . . . [a1m, b1m]

[a21, b21] [a22, b22] . . . [a2m, b2m]
...

...
. . .

...
[an1, bn1] [an2, bn2] . . . [anm, bnm]

 , (1)

where aij ≤ bij for all i = 1, 2, . . . , n and j = 1, 2, . . . , m (others authors denote the interval[
aij, bij

]
by

[
xlo

ij , xup
ij

]
or
[

xij, xij

]
for all i = 1, 2, . . . , n and j = 1, 2, . . . , m). An interval

matrix can be considered a subset of a matrix Mn×m, which we denote by X, such that

X =

{
Z ∈ Mn×m | ∀i ∈ {1, 2, ..., n} , ∀j ∈ {1, 2, ..., m} , Zij ∈

[
aij, bij

]}
. In this case, Z ∈ X.

The center matrix of X is defined as

Xc =


Xc

11 Xc
12 . . . Xc

1m
Xc

21 Xc
22 . . . Xc

2m
...

...
. . .

...
Xc

n1 Xc
n2 . . . Xc

nm

 , (2)

where

Xc
ij =

aij + bij

2
. (3)

Here, Xc ∈ X for i = 1, . . . , n and j = 1, . . . , m; Xc
ij is a real number and not an interval. Thus, the center

matrix (2) is a classical matrix. The center principal component method starts from the center matrix;
in other words, classical PCA is applied to the center matrix Xc. Then, the kth principal components of
the centers are

Yc
(k) = Xcvc

k, (4)

where vc
k is the kth eigenvector of the variance–covariance matrix of Xc, defined in Equation (2). For

cases (rows) i = 1, . . . , n, the kth principal component for an interval variable is constructed as follows.
Let Yc

ik =
[
ylo

ik , yup
ik

]
be the interval principal component for an interval variable. Then,

ylo
ik = ∑

j∈J−c

(bij − X̄(j))v
c
kj + ∑

j∈J+c

(aij − X̄(j))v
c
kj, (5)

yup
ik = ∑

j∈J−c

(aij − X̄(j))v
c
kj + ∑

j∈J+c

(bij − X̄(j))v
c
kj, (6)

where J−c = {j|vc
kj < 0} and J+c = {j|vc

kj ≥ 0}. More details can be found in [2].
The dual problem in the center PCA method was introduced by Rodriguez in [12]. To generalize

duality relations, we let D be an interval matrix, defined as
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Dij =

 aij − X̄c
(j)√

nσ(j)
,

bij − X̄c
(j)√

nσ(j)

 ,

for i = 1, . . . , n and j = 1, . . . , m, with X̄c
(j) and σ(j) denoting the average and standard deviation

of column j, respectively. The formulas shown in Theorem 1 are thus obtained and can be used to
calculate the projections of interval variables.

Theorem 1. If the hyper-rectangle defined by the jth column of D in the ith principal component is projected
in the direction of vi, then the minimum and maximum values can be computed by Equations (7) and (8),
respectively.

rij =
m

∑
k=1,vkj<0

d
c
kivkj +

m

∑
k=1,vkj>0

dc
kivkj, (7)

rij =
m

∑
k=1,vkj<0

dc
kivkj +

m

∑
k=1,vkj>0

d
c
kivkj. (8)

The proof of this theorem can be found in [12,13].

2. The Best Point Method

Let X be an n×m matrix of interval variables and let Z ∈ X. If we apply PCA to a matrix Z, then
the kth principal component of Z for an observation ξu, with k = 1, . . . , s < m and i = 1, . . . , m, is

yZ
ik =

m

∑
j=1

(Zjk − Z̄(j))w
Z
kj

, (9)

where Z̄(j) is the average of the variable Z(j) (i.e., Z̄(j) =
1
n ∑n

i=1 Zij), and wZ
k = (wZ

k1
, . . . , wZ

km
) is the kth

eigenvector associated with the variance–covariance matrix of Z. It is clear that β(Z) = {wZ
1 , . . . , wZ

m}
is an orthonormal basis of Rm.

For the matrix X defined in (1), we let Xi =
(
[ai1, bi1] , . . . , [aim, bim]

)
for i = 1, . . . , n. Then, we

define the vertex matrix for an observation i as

Xv
i =



ai1 ai2 . . . aim
ai1 ai2 . . . bim
...

...
. . .

...
bi1 bi2 . . . aim
bi1 bi2 . . . bim


. (10)

Thus, the vertex matrix of X is
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Xv =




a11 a12 . . . a1m
...

...
. . .

...
b11 b12 . . . b1m


...

...
...

...
ai1 ai2 . . . aim
...

...
. . .

...
bi1 bi2 . . . bim


...

...
...

...
an1 an2 . . . anm

...
...

. . .
...

bn1 bn2 . . . bnm





. (11)

Next, the rows of the vertex matrix of X are projected as supplementary elements in the PCA of Z.
We define the supplementary vertex matrix as

X̃
v
i (Z) =



ai1−Z̄(1)√
nσ(1)

ai2−Z̄(2)√
nσ(2)

. . .
aim−Z̄(m)√

nσ(m)
ai1−Z̄(1)√

nσ(1)

ai2−Z̄2√
nσ(2)

. . .
aim−Z̄(m)√

nσ(m)

...
...

. . .
...

bi1−Z̄(1)√
nσ(1)

bi2−Z̄(2)√
nσ(2)

. . .
bim−Z̄(m)√

nσ(m)


, (12)

where σ(j) is the standard deviation of Z(j). To simplify this approach, we denote each row of the
matrix X̃v

i (Z) by x̃v
itj
(Z), with t = 1, . . . , 2mi , in which mi is the number of nontrivial intervals, and

j = 1, . . . , m. Then, the co-ordinates are obtained:

Ck(xv
ij
) =

m

∑
h=1

x̃v
ijh
(Z)wkh

, (13)

with j = 1, . . . , 2mi , in which mi is the number of nontrivial intervals. Then, the minimum and
maximum of the interval can be calculated:

Ỹv
ik = ỹik = [ỹaZ

ik , ỹbZ
ik ] with k = 1, . . . , s < m, (14)

and

ỹaZ
ik = min Ck(xv

ij
)

j=1,...,2mi

, (15)

ỹbZ
ik = max Ck(xv

ij
)

j=1,...,2mi

. (16)

The formulas in the following theorem allow us to compute Equations (15) and (16) much
more quickly.

Theorem 2. The co-ordinates of ỸvZ
ik can be found as follows:

ỹaZ
ik = ∑

j∈J−Z

(bij − Z(j))w
Z
kj
+ ∑

j∈J+Z

(aij − Z(j))w
Z
kj

,
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ỹbZ
ik = ∑

j∈J−Z

(aij − Z(j))w
Z
kj
+ ∑

j∈J+Z

(bij − Z(j))w
Z
kj

,

where J−Z = {j|wv
kj < 0}, J+Z = {j|wv

kj ≥ 0}, and Z(j) is the mean of the jth column.

Proof. Let Z ∈ X; then,

∀j, ∀i, Zij ∈ Xij =
[

aij, bij

]
. (17)

As aij and bij are supplementary elements in the PCA of Z, they must first be centered with respect
to the columns (variables) of Z. Thus,

∀i, ∀j, aij − Z(j), bij − Z(j). (18)

Then, from Equations (17) and (18),

∀i, ∀j, zij − Z(j) ∈ Xij − Z(j) =
[

aij − Z(j), bij − Z(j)

]
. (19)

• Case 1: ∀j, wZ
kj
> 0,

∀j, ∀i, wZ
kj

(
zij − Z(j)

)
∈ wZ

kj

[
aij − Z(j), bij − Z(j)

]
⇒ ∑

p
j=1

(
aij − Z(j)

)
wZ

kj
≤ ∑

p
j=1

(
zij − Z(j)

)
wZ

kj
≤ ∑

p
j=1

(
bij − Z(j)

)
wZ

kj
.

• Case 2: ∀j, wZ
kj < 0,

∀j, ∀i, wZ
kj

(
zij − Z(j)

)
∈ wZ

kj

[
bij − Z(j), aij − Z(j)

]
⇒ ∑

p
j=1

(
bij − Z(j)

)
wZ

kj
≤ ∑

p
j=1

(
zij − Z(j)

)
wZ

kj
≤ ∑

p
j=1

(
aij − Z(j)

)
wZ

kj
.

• Case 3: Let J−Z = {j|wkj
< 0} and J+Z = {j|wkj

≥ 0}.
For Case 1 applied to J+Z ,

∑
j∈J+Z

(
aij − Z(j)

)
wZ

kj
≤ ∑

j∈J+Z

(
zij − Z(j)

)
wZ

kj
≤ ∑

j∈J+Z

(
bij − Z(j)

)
wZ

kj
. (20)

For Case 2 applied to J−v ,

∑
j∈J+Z

(
bij − Z(j)

)
wZ

kj
≤ ∑

j∈J+Z

(
zij − Z(j)

)
wZ

kj
≤ ∑

j∈J+Z

(
aij − Z(j)

)
wZ

kj
. (21)

Therefore, from Equations (20) and (21), we obtain

∑
j∈J−Z

(
bij − Z(j)

)
wZ

kj
+ ∑

j∈J+Z

(
aij − Z(j)

)
wZ

kj

≤ ∑n
j=1

(
zij − Z(j)

)
wZ

kj

≤ ∑j∈J−Z

(
aij − Z(j)

)
wZ

kj
+ ∑j∈J+Z

(
bij − Z(j)

)
wZ

kj
.

Therefore,



Entropy 2019, 21, 1016 6 of 14

ỹaZ
ik = ∑

j∈J−Z

(
bij − Z(j)

)
wZ

kj
+ ∑

j∈J+Z

(
aij − Z(j)

)
wZ

kj
,

ỹbZ
ik = ∑

j∈J−Z

(
aij − Z(j)

)
wZ

kj
+ ∑

j∈J+Z

(
bij − Z(j)

)
wZ

kj
.

The following theorem provides the co-ordinates in the variable space; this is a dual relationship.
We need to center and standardize the matrix Z.

Z̃ij =
Zij − Z̄(j)√

nσ(j)
.

Next, we next focus on the matrix Z̃ = Z̃ij ∀i, ∀j. Let z̃j be the jth column of Z̃, with (z̃j)t · z̃i =

R(i, j) ≤ 1. Then, the interval matrix is centered and standardized with respect to Z:

X̃(Z) =



[
a11−Z̄(1)√

nσ(1)
,

b11−Z̄(1)√
nσ(1)

] [
a12−Z̄(2)√

nσ(2)
,

b12−Z̄(2)√
nσ(2)

]
. . .

[
a1m−Z̄(m)√

nσ(m)
,

b1m−Z̄(m)√
nσ(m)

]
...

...
. . .

...[
ai1−Z̄(1)√

nσ(1)
,

bi1−Z̄(1)√
nσ(1)

] [
ai2−Z̄(2)√

nσ(2)
,

bi2−Z̄(2)√
nσ(2)

]
. . .

[
aim−Z̄(m)√

nσ(m)
,

bim−Z̄(m)√
nσ(m)

]
...

...
. . .

...[
an1−Z̄(1)√

nσ(1)
,

bn1−Z̄(1)√
nσ(1)

] [
an2−Z̄(2)√

nσ(2)
,

bn2−Z̄(2)√
nσ(2)

]
. . .

[
anm−Z̄(m)√

nσ(m)
,

bnm−Z̄(m)√
nσ(m)

]


. (22)

To facilitate the analysis, we define

(X̃(Z))ij =

[
aij − Z̄(j)√

nσ(j)
,

bij − Z̄(j)√
nσ(j)

]
= [aZ

ij , bZ
ij ].

The inertia matrix Z̃Z̃t is symmetric and positive semidefinite, so all its eigenvectors are
orthogonal and its eigenvalues are real and nonnegative. We let vZ

1 , vZ
2 , . . . , vZ

s denote the s eigenvectors

of Z̃Z̃t associated with eigenvalues λ1, λ2, . . . , λs ≥ 0. Then, V(Z) =
[
vZ

1 |vZ
2 | . . . |vZ

s

]
is defined as a

matrix of the size n× s whose columns are the eigenvectors of Z̃Z̃t. We can compute the co-ordinates
of the variables in the correlation circle as Z̃tV, and we can then compute the ith column of Z in the jth
principal component (in the vZ

j direction) using Equation (23).

rZ
ij =

m

∑
k=1

Z̃kivZ
kj. (23)

The next theorem proves the duality relation of any matrix that belongs to an interval matrix.

Theorem 3. If the hyper-rectangle defined by the jth column of X̃(Z) in the ith principal component is projected
in the direction of vi, then the maximum and minimum values can be obtained by Equations (24) and (25),
respectively.

rij =
m

∑
k=1,vkj<0

bZ
kivkj +

m

∑
k=1,vkj>0

aZ
kivkj, (24)

rij =
m

∑
k=1,vkj<0

aZ
kivkj +

m

∑
k=1,vkj>0

bZ
kivkj. (25)
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Proof. The proof of this theorem is similar to the proof of Theorem 2.

In the above, we prove that pẑij ∈ [rij, rij] and that rij and rij are a combination of the projections
of the vertices of the hyper-rectangle Rm. We can form duality relations between the eigenvectors of
Z̃Z̃t and Z̃tZ̃: Both matrices have the same s positive eigenvalues λZ

1 , λZ
2 , . . . , λZ

s , and if uZ
1 , uZ

2 , . . . , uZ
s

are the first s eigenvectors of Z̃tZ̃, then the relations between the eigenvectors of Z̃Z̃t and Z̃tZ̃ can be
computed by Equations (26) and (27):

uZ
` =

Z̃tvZ
`√

λ`
for ` = 1, 2, . . . , s. (26)

vZ
` =

Z̃uZ
`√

λ`
for ` = 1, 2, . . . , s. (27)

Above, we provide the theory to apply PCA to all matrices Z ∈ X. Now, we aim to find a matrix
Z∗ ∈ X that is optimal for one of two criteria: (1) The minimization of the square of the distance from
the vertices of the hypercubes to the principal axes of Z, or (2) the maximization of the variance of the
first components of Z. We develop these concepts in the following two sections.

2.1. Minimizing the Square of the Distance from the Hypercube Vertices to the Principal Axes of Z

Let X be an interval of an n×m matrix, Z ∈ X, and β(Z) = {wZ
1 , . . . , wZ

s }, with s ≤ m and wZ
i

eigenvectors of the variance–covariance matrix of Z. We let Xv denote the vertex matrix of X and
N = ∑n

i=1 2mi , in which mi is the number of nontrivial intervals for case ξi. Then, the centered and
standardized vertex matrix with respect to Z has the following form:

X̃v(Z) =




a11−Z̄(1)√

nσ(1)

a12−Z̄(2)√
nσ(2)

. . .
a1m−Z̄(m)

σ(m)

...
...

...
...

b11−Z̄(1)√
nσ(1)

b12−Z̄(2)√
nσ(2)

. . .
b1m−Z̄(m)√

nσ(m)


...

...
...

...
an1−Z̄(1)√

nσ(1)

an2−Z̄(2)√
nσ(2)

. . .
anm−Z̄(m)√

nσ(m)

...
...

...
...

bn1−Z̄(1)√
nσ(1)

bn2−Z̄(2)√
nσ(2)

. . .
bnm−Z̄(m)√

nσ(m)





. (28)

Let ϕ(Z) : X→ R+ ∪ {0} be the function defined by

ϕ(Z) =
N

∑
i=1

∥∥∥X̃v
i (Z)− Prβ(Z)(X̃v

i (Z))
∥∥∥2

, (29)

where‖.‖ is the Euclidean norm. To compute ϕ(Z), we propose Algorithm 1:
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Algorithm 1 The computation of ϕ.
Require: X an n×m matrix of intervals, Z ∈ X, s number of principal components.
Ensure: ϕ(Z).
1: Apply PCA to Z.
2: β = {w1, . . . , ws}, with s ≤ m and wi eigenvectors of the variance–covariance matrix

of Z.
3: Compute the vertex matrix of X (Xv).
4: Compute the vertex matrix of the centered and standardized X with respect to Z

(X̃v(Z)).
5: ϕ(Z) = ∑N

i=1

∥∥∥X̃v
i (Z)− Prβ(Z)(X̃v

i (Z))
∥∥∥2
.

6: return ϕ(Z).

As Z ∈ X, X is a finite union of compact sets and ϕ(Z) is a continuous function, ϕ always reaches
the minimum and the maximum. In this case, the aim is to obtain the matrix Z that minimizes the
distance to the vertex matrix Xv. The problem that we aim to solve is

Minimize ϕ(Z) =
N

∑
i=1

∥∥∥X̃v
i (Z)− Prβ(Z)(X̃v

i (Z))
∥∥∥2

Subject to Z ∈ X.
(30)

Definition 1. The matrix Z ∈ X that solves Problem 30 is the optimal matrix with respect to distance, which is
denoted by Zϕ.

To perform the optimization that computes Zϕ, we propose Algorithm 2:

Algorithm 2 Computation of the Best Matrix with respect to the distances of the vertices.
Require: X a symbolic matrix of intervals of dimension n × m, Z ∈ X, s number of

principal components, TOL is the variation tolerance between iterations, and N
is the maximum number of iterations.

Ensure: ˜YVZϕ.
1: Consider Z = Xc, the center matrix 2, to be the initial value.
2: Get Zϕ by means of optimization algorithm

(
initialvalue = Z,function = ϕ(Z), TOL, N

)
.

3: Get ˜YVZϕ Use Theorem 2.
4: return ˜YVZϕ .

2.2. Maximizing the Variance of the First Components

Let X be an interval matrix of dimension n×m, Z ∈ X, and β(Z) = {wZ
1 , . . . , wZ

s }, with s ≤ m
and wZ

i eigenvectors of the variance–covariance matrix of Z and λ(Z) = λZ
1 , . . . , λZ

s denoting the set
of associated eigenvalues of the variance–covariance matrix of Z. We define the function Λ(Z, s) :
X×N→ R+ as Λ(Z, s) = ∑s

i=1 λZ
i . To compute Λ(Z, s), we propose Algorithm 3:

Algorithm 3 The computation of Λ.
Require: X an n × m symbolic matrix of intervals of dimension Z ∈ X, s number of

principal components.
Ensure: Λ(Z, s).
1: Apply PCA to Z.
2: λ(Z) = λZ

1 , . . . , λZ
s set of associated eigenvalues of the variance–covariance matrix

of Z.
3: Λ(Z, s) = ∑s

i=1 λZ
i .

4: return Λ(Z, s).
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As above, since Z ∈ X and X is the finite union of compact sets with s number of principal
components, Λ(Z, s) is a continuous function and, thus, always reaches the minimum and the
maximum. In this case, the aim is to obtain the matrix Z that maximizes the accumulated inertia in the
first s principal components. The problem that we want to solve is

Maximize Λ(Z, s) =
s

∑
i=1

λZ
i

Subject to Z ∈ X.
(31)

Definition 2. The matrix Z ∈ X that solves Problem 31 is the optimal matrix with respect to inertia, denoted
by ZΛ.

To perform the optimization that computes ZΛ, we propose Algorithm 4:

Algorithm 4 The computation of the Best Matrix with respect to inertia.
Require: X an n × m symbolic matrix of intervals of dimension, Z ∈ X, s number of

principal components.
Ensure: ỸVZΛ.
1: Consider Z = Xc, center matrix 2, as the initial value.
2: Get ZΛ by means of the optimization algorithm

(
initialvalue = Z, function = Λ(Z, s)

)
.

3: Get ỸVZΛ using Theorem 2.

4: return ˜YVZΛ .

3. Experimental Evaluation: The Application to Facial Recognition

Automatic facial recognition has recently gained momentum, especially in the context of security
issues such as access to buildings, and in the context of monitoring and continued surveillance.
A well-known application of facial recognition is its incorporation in the iPhone X. According to
Apple’s support website, the technology that enables facial ID is some of the most advanced hardware
and software that has ever been created. The TrueDepth camera captures accurate facial data by
projecting and analyzing over 30,000 invisible dots to create a facial depth map, while also capturing an
infrared image. These images are transformed into a mathematical representation, which is compared
with registered facial data. In both R and Python, a significant number of libraries, such as the
videoplayR package, have also been developed for facial recognition. The link below contains more
details: http://www.stoltzmaniac.com/facial-recognition-in-r/.

As described in this section, we applied all the proposed methods using p = 6 interval-valued
variables in a data set of m = 27 faces for a total of 27,000 photos. The data set was taken from [14],
in which the authors investigated facial characteristics for detection purposes in a surveillance study.
In this study, the center PCA method in [4] was applied, as shown in Figure 1. The data are provided
in Table 1.

The data set contains measurements of p = 6 random variables designed to identify each face:
The length spanned by the eyes X1 (distance AD in Figure 1), the length between the eyes X2 (distance
BC), the length from the outer right eye to the upper-middle lip at point H between the nose and
mouth X3 (distance AH), the corresponding length for the left eye X4 (DH), the length from point
H to the outside of the mouth on the right side X5 (EH), and the corresponding distance to the left
side of the mouth X6 (GH). For each facial image in this facial recognition process, salient features,
such as the nose, mouth, and eyes, are located using morphological operators. The boundaries of the
located elements are extracted by using a specific active contour method based on Fourier descriptors,
which incorporates information about the global shape of each object. Finally, the specific points
delimiting each extracted boundary are located, and the distance is measured between a specific pair
of points, as represented by the random variables in Figure 1. This distance measure is expressed as

http://www.stoltzmaniac.com/facial-recognition-in-r/
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the number of pixels in a facial image. As there is a sequence of such images, the actual measured
distances are interval-valued variables. Thus, for example, the eye span distance X1 for case HUS1 is
X1 = [168.86, 172.84] for this series of images. Notably, different conditions of alignment, illumination,
pose, and occlusion cause variation in the distances extracted from different images of the same person.
The study that generated the data set involved nine men and three sequences for each subject for a
total of m = 27 cases. The complete data set is provided in Table 1.

Figure 1. Random variables for facial description.

Table 1. Faces data set.

Case X1 = AD X2 = BC X3 = AH X4 = DH X5 = EH X6 = GH

FRA1 [155.00, 157.00] [58.00, 61.01] [100.45, 103.28] [105.00, 107.30] [61.40, 65.73] [64.20, 67.80]
FRA2 [154.00, 160.01] [57.00, 64.00] [101.98, 105.55] [104.35, 107.30] [60.88, 63.03] [62.94, 66.47]
FRA3 [154.01, 161.00] [57.00, 63.00] [99.36, 105.65] [101.04, 109.04] [60.95, 65.60] [60.42, 66.40]

HUS1 [168.9,172.84] [58.55,63.39] [102.83,106.53] [122.38,124.52] [56.73,61.07] [60.44,64.54]
HUS2 [169.8,175.03] [60.21,64.38] [102.94,108.71] [120.24,124.52] [56.73,62.37] [60.44,66.84]
HUS3 [168.8,175.15] [61.4,63.51] [104.35,107.45] [120.93,125.18] [57.2,61.72] [58.14,67.08]

INC1 [155.3,160.45] [53.15,60.21] [95.88,98.49] [91.68,94.37] [62.48,66.22] [58.9,63.13]
INC2 [156.3,161.31] [51.09,60.07] [95.77,99.36] [91.21,96.83] [54.92,64.2] [54.41,61.55]
INC3 [154.5,160.31] [55.08,59.03] [93.54,98.98] [90.43,96.43] [59.03,65.86] [55.97,65.8]

ISA1 [164,168] [55.01,60.03] [120.28,123.04] [117.52,121.02] [54.38,57.45] [50.8,53.25]
ISA2 [163,170] [54.04,59] [118.8,123.04] [116.67,120.24] [55.47,58.67] [52.43,55.23]
ISA3 [164,169.01] [55,59.01] [117.38,123.11] [116.67,122.43] [52.8,58.31] [52.2,55.47]

JPL1 [167.1,171.19] [61.03,65.01] [118.23,121.82] [108.3,111.2] [63.89,67.88] [57.28,60.83]
JPL2 [169.1,173.18] [60.07,65.07] [118.85,120.88] [108.98,113.17] [62.63,69.07] [57.38,61.62]
JPL3 [169,170.11] [59.01,65.01] [115.88,121.38] [110.34,112.49] [61.72,68.25] [59.46,62.94]

KHA1 [149.3,155.54] [54.15,59.14] [111.95,115.75] [105.36,111.07] [54.2,58.14] [48.27,50.61]
KHA2 [149.3,155.32] [52.04,58.22] [111.2,113.22] [105.36,111.07] [53.71,58.14] [49.41,52.8]
KHA3 [150.3,157.26] [52.09,60.21] [109.04,112.7] [104.74,111.07] [55.47,60.03] [49.2,53.41]

LOT1 [152.6,157.62] [51.35,56.22] [116.73,119.67] [114.62,117.41] [55.44,59.55] [53.01,56.6]
LOT2 [154.6,157.62] [52.24,56.32] [117.52,119.67] [114.28,117.41] [57.63,60.61] [54.41,57.98]
LOT3 [154.8,157.81] [50.36,55.23] [117.59,119.75] [114.04,116.83] [56.64,61.07] [55.23,57.8]

PHI1 [163.1,167.07] [66.03,68.07] [115.26,119.6] [116.1,121.02] [60.96,65.3] [57.01,59.82]
PHI2 [164,168.03] [65.03,68.12] [114.55,119.6] [115.26,120.97] [60.96,67.27] [55.32,61.52]
PHI3 [161,167] [64.07,69.01] [116.67,118.79] [114.59,118.83] [61.52,68.68] [56.57,60.11]

ROM1 [167.2,171.24] [64.07,68.07] [123.75,126.59] [122.92,126.37] [51.22,54.64] [49.65,53.71]
ROM2 [168.2,172.14] [63.13,68.07] [122.33,127.29] [124.08,127.14] [50.22,57.14] [49.93,56.94]
ROM3 [167.1,171.19] [63.13,68.03] [121.62,126.57] [122.58,127.78] [49.41,57.28] [50.99,60.46]
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It is important to note that the data in Table 1 are aggregated. There are 27 interval-valued cases;
if each case is drawn from a sequence of 1000 images, then there are 27,000 classical point observations
in R6. An underlying assumption of the standard classical analysis is that all 27,000 observations
are independent. However, this is not the case in this data set. The data values for each face form a
set of 1000 dependent observations. Therefore, if we were to use each image as a statistical unit by
performing classical analysis, then we would lose information about the dependence contained in the
27,000 observations. The resulting principal component analysis would look for axes that maximize the
variability across all 27,000 images, regardless of whether some images belong to the same sequence.
In contrast, as interval-valued observations are obtained from each sequence, the Best Point method
extracts the principal component axes that maximize the variability in each interval (i.e., those that
maximize the internal variability), thereby retaining information on the dependency among the 1000
images in each sequence.

Comparison between the Center, Vertex, and Best Point Methods

We applied the vertex, center, and best point principal component methods to the data in Table 1.
The Best Point principal component method was run with two different goals: (1) To minimize the
squared distance and (2) to maximize the variance. From this point, the Best Point principal component
method that minimizes the squared distance was designated as the Best Point Distance, and the Best
Point principal component method that maximizes the variance was designated as the Best Point
Variance. Table 2 shows the first two principal components generated by the four methods.

Table 2. Comparison of the first two principal components from the four methods.

Vertex Center Best Point Distance Best Point Variance

Cases PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

FRA1 [1.61,2.66] [0.27,1.57] [-2.97,-1.75] [0.24,1.72] [−2.21,−1.39] [0.24,1.25] [−2.83,−1.57] [0.45,1.87]
FRA2 [1.03,2.49] [−0.11,1.61] [−2.73,−1.11] [−0.2,1.79] [−2.09,−0.93] [−0.06,1.29] [−2.57,−0.92] [0.01,1.95]
FRA3 [0.81,2.99] [−0.4,1.88] [−3.29,−0.86] [−0.52,2.08] [−2.49,−0.73] [−0.29,1.48] [−3.15,−0.73] [−0.31,2.21]
HUS1 [−1.1,0.24] [0.39,2.05] [−0.37,1.16] [0.38,2.28] [−0.19,0.86] [0.28,1.58] [−0.24,1.34] [0.47,2.31]
HUS2 [−1.41,0.4] [0.56,2.65] [−0.58,1.48] [0.59,2.98] [−0.33,1.11] [0.42,2.04] [−0.42,1.66] [0.66,2.97]
HUS3 [−1.42,0.24] [0.43,2.52] [−0.4,1.51] [0.46,2.82] [−0.21,1.13] [0.33,1.94] [−0.22,1.63] [0.53,2.8]
INC1 [2.29,3.77] [−0.67,1.23] [−4.07,−2.38] [−0.9,1.29] [−3.11,−1.95] [−0.53,0.95] [−3.97,−2.23] [−0.55,1.56]
INC2 [1.35,3.66] [−2.05,0.92] [−3.91,−1.21] [−2.51,0.93] [−3.02,−1.22] [−1.63,0.7] [−3.8,−0.97] [−2.02,1.22]
INC3 [1.86,4.02] [−1.2,1.41] [−4.33,−1.84] [−1.5,1.47] [−3.34,−1.61] [−0.94,1.08] [−4.14,−1.67] [−1.08,1.77]
ISA1 [−2.01,−0.8] [−1.83,−0.46] [0.88,2.24] [−2.06,−0.48] [0.66,1.61] [−1.42,−0.34] [0.75,2.15] [−2.11,−0.59]
ISA2 [−1.86,−0.37] [−1.71,−0.08] [0.39,2.04] [−1.93,−0.07] [0.32,1.51] [−1.32,−0.07] [0.26,1.95] [−1.99,−0.19]
ISA3 [−2.11,−0.41] [−1.84,−0.12] [0.44,2.36] [−2.09,−0.11] [0.34,1.7] [−1.43,−0.09] [0.35,2.32] [−2.1,−0.21]
JPL1 [−0.92,0.36] [0.54,2.03] [−0.57,0.89] [0.67,2.38] [−0.29,0.73] [0.43,1.59] [−0.7,0.79] [0.49,2.14]
JPL2 [−1.17,0.34] [0.48,2.37] [−0.59,1.17] [0.58,2.76] [−0.25,0.93] [0.37,1.84] [−0.76,1.1] [0.43,2.47]
JPL3 [−0.93,0.52] [0.5,2.28] [−0.78,0.92] [0.59,2.64] [−0.4,0.73] [0.38,1.78] [−0.89,0.91] [0.45,2.43]

KHA1 [−0.39,1.18] [−3.08,−1.46] [−1.1,0.64] [−3.51,−1.65] [−1.01,0.25] [−2.34,−1.09] [−1.21,0.58] [−3.32,−1.56]
KHA2 [−0.15,1.46] [−3.17,−1.32] [−1.43,0.39] [−3.65,−1.5] [−1.23,0.05] [−2.42,−0.98] [−1.52,0.37] [−3.41,−1.39]
KHA3 [−0.25,1.71] [−2.95,−0.72] [−1.73,0.47] [−3.39,−0.82] [−1.42,0.13] [−2.26,−0.52] [−1.83,0.43] [−3.18,−0.72]
LOT1 [−0.61,0.74] [−2.51,−0.87] [−0.79,0.74] [−2.86,−0.98] [−0.6,0.47] [−1.91,−0.64] [−0.94,0.66] [−2.82,−1.01]
LOT2 [−0.4,0.69] [−1.94,−0.62] [−0.77,0.47] [−2.2,−0.69] [−0.55,0.31] [−1.47,−0.44] [−0.91,0.36] [−2.21,−0.75]
LOT3 [−0.34,0.82] [−2.12,−0.7] [−0.93,0.41] [−2.44,−0.78] [−0.64,0.26] [−1.63,−0.51] [−1.09,0.33] [−2.41,−0.85]
PHI1 [−1.51,−0.22] [0.56,1.84] [0.11,1.57] [0.72,2.18] [0.14,1.19] [0.49,1.47] [0.05,1.53] [0.59,1.97]
PHI2 [−1.66,0.09] [0.33,2.29] [−0.27,1.74] [0.45,2.69] [−0.1,1.3] [0.3,1.82] [−0.35,1.67] [0.32,2.46]
PHI3 [−1.38,0.25] [0.25,2.25] [−0.45,1.44] [0.36,2.67] [−0.22,1.07] [0.25,1.8] [−0.62,1.4] [0.24,2.39]

ROM1 [−3.45,−2.19] [−1.2,0.29] [2.41,3.84] [−1.27,0.44] [1.74,2.74] [−0.89,0.26] [2.39,3.84] [−1.38,0.26]
ROM2 [−3.63,−1.85] [−1.3,0.97] [1.96,4.04] [−1.39,1.2] [1.49,2.89] [−0.98,0.79] [1.94,4.06] [−1.5,0.99]
ROM3 [−3.57,−1.48] [−1.33,1.31] [1.53,3.98] [−1.44,1.58] [1.17,2.83] [−1,1.06] [1.57,4.04] [−1.5,1.39]

Figure 2 compares the data in Table 1 with the principal planes generated by the vertex, center,
Best Point Distance, and Best Point Variance principal component methods. The plots of these, along
with the first principal component (PC1) and second principal component (PC2) axes, are shown in
Figure 2. The proximity of the three sequences for the three faces for each individual can be readily
observed, which validates their within-subject coherence. Furthermore, with all four methods, the
same four classes of faces were distinguished. Faces {INC, FRA} can be regarded as one class, faces
{HUS, PHI, JPL} and {ISA, ROM} constitute two other classes, and faces {LOT, KHA} form the fourth
class. Of the four principal planes in the graph, those corresponding to the Best Point Distance and
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Best Point Variance methods show much better separation of the face classes, which results in superior
facial classification. In other words, the proposed methods more accurately predicted the individual in
the photo.

Figure 2. Principal component analysis (PCA) comparison.

Numerical analysis results confirm that the separation of classes from the Best Point Distance and
Best Point Variance methods was much better than that from the other methods. Table 3 compares
the accumulated variance of the vertex, center, Best Point Distance, and Best Point Variance principal
component methods. The better methods are clearly Best Point Distance and Best Point Variance,
which, in the third principal component, reached 91.25% and 99.72% of the accumulated variance,
respectively; both of which were far superior to the results of the center and vertex methods.

As shown in Table 4, for the criterion of the minimum distance between the corners of the original
hyper-rectangles in Rm and the principal components, the Best Point Distance method outperformed
the other methods, with a minimum distance of 6676.43. This distance was significantly less than the
distances obtained by the other methods.

In Table 5, we show the correlation of the original variables and the first principal component
generated by the vertex, center, Best Point Distance, and Best Point Variance methods. For all variables
except for X6, the correlation was stronger with Best Point Distance or Best Point Variance. It can be
inferred that the original variables were better represented by the PC1 component of the Best Point
Distance and Best Point Variance methods. Interestingly, the correlation of the PC1 component from the
Best Point Distance and Best Point Variance methods was stronger with the variables for the upper part
of the face. The same result was generated if the correlations of the original variables were analyzed
with respect to the other principal components of Best Point Distance and Best Point Variance.
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Table 3. Comparison of the variance resulting from different methods using facial recognition data.

Vertex Center Best Point Distance Best Point Variance

PC1 42.67% 46.47% 45.49% 56.01%
PC2 72.64% 80.53% 81.05% 88.31%
PC3 83.35% 89.65% 91.25% 99.72%
PC4 91.28% 95.06% 95.80% 99.85%
PC5 96.86% 98.96% 99.28% 99.97%
PC6 100.00% 100.00% 100.00% 100.00%

Table 4. Comparison of the distances resulting from different methods in facial recognition data.

Vertex Center Best Point Distance Best Point Variance

10368.00 12719.64 6676.43 12457.09

Table 5. Correlation between the first component of each method and the variables.

X1 = AD X2 = BC X3 = AH X4 = DH X5 = EH X6 = GH

Vertex-PC1 0.64 0.49 0.84 0.89 −0.47 −0.43

Center-PC1 0.61 0.47 0.83 0.88 −0.52 −0.47

BestPointDistance-PC1 0.65 0.48 0.84 0.90 −0.46 −0.43

BestPointVariance-PC1 0.63 0.49 0.80 0.88 −0.55 −0.43

4. Conclusions

This work focused on improving the center and vertex principal component methodology for
interval-valued data. Compared with classical methods, symbolic methods based on interval-valued
variables have important advantages, such as improved computational complexity due to reduced
execution times, as small data tables are used. For example, for the facial recognition example, a table
was passed from 27,000 cases to only 1 of 27 cases. In addition, symbolic methods allow for much
better handling and interpretation of data variability. In the facial recognition scenario, the variation in
the distances that measure different variables from one photo to another of the same person (such as
the variation in the distance of the eyes X1 from one photo to another) was due to the variation in the
angle at which the photo was taken.

The Best Point methods proposed in this paper considerably improved both the center method
and the vertex method. This is because Best Point Variance maximized the variance explained by
the components and Best Point Distance minimized the squared distance between the vertices of the
hyper-rectangles and their respective projections. As shown in the tables above, this led to a substantial
improvement in all the quality indices used in principal component analysis. The result is better data
clustering and, therefore, better prediction.

In future works, a consensus between the Best Point Variance and Best Point Distance methods
could be constructed by applying a multiobjective optimization method to the functions ϕ and Λ.
Finally, all the proposed algorithms for executing symbolic analyses of interval-valued data are
available in the RSDA package in R (see [15]).
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