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Abstract: We study the dynamics of a system of overdamped Brownian particles governed by the
generalized stochastic Smoluchowski equation associated with a generalized form of entropy and
involving a long-range potential of interaction [P.H. Chavanis, Entropy 17, 3205 (2015)]. We first
neglect fluctuations and provide a macroscopic description of the system based on the deterministic
mean field Smoluchowski equation. We then take fluctuations into account and provide a mesoscopic
description of the system based on the stochastic mean field Smoluchowski equation. We establish the
main properties of this equation and derive the Kramers escape rate formula, giving the lifetime of a
metastable state, from the theory of instantons. We relate the properties of the generalized stochastic
Smoluchowski equation to a principle of maximum dissipation of free energy. We also discuss the
connection with the dynamical density functional theory of simple liquids.

Keywords: Fokker-Planck equations; free energy; generalized thermodynamics; instantons;
dynamical density functional theory

1. Introduction

The theory of Brownian motion started with the pioneering work of Einstein [1,2] (as noted
in [3], the premices of the theory of Brownian motion may be traced back to the beautiful paper of
Lord Rayleigh [4] on the dynamics of massive particles bombared by numerous small projectiles).
He showed that the probabilistic motion of a free Brownian particle in the overdamped limit can be
described by the ordinary diffusion equation

∂ρ

∂t
= D∆ρ, (1)

where ρ(r, t) denotes the probability density of finding the particle in r at time t. He also established
the following relation

D =
χkBT

m
(2)

between the diffusion coefficient, the mobility χ/m = 1/ξm of the Brownian particle (m is the mass
of the particle and ξ is the friction coefficient) and the temperature T. The same relation was obtained
independently by Sutherland [5]. It was also re-derived by Langevin [6] in a different manner. The Einstein
relation from Equation (2) is a simple example of the fluctuation–dissipation theorem in statistical mechanics.
Smoluchowski [7] considered an overdamped Brownian particle in a fixed external potential Φext(r) and
showed that the probability density ρ(r, t) satisfies the drift–diffusion equation

∂ρ

∂t
= ∇ · (D∇ρ + χρ∇Φext) . (3)

Entropy 2019, 21, 1006; doi:10.3390/e21101006 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/1099-4300/21/10/1006?type=check_update&version=1
http://dx.doi.org/10.3390/e21101006
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 1006 2 of 41

The Smoluchowski Equation (3) is a particular example of Fokker-Planck equations [8–11]. It describes
the diffusive motion of a Brownian particle (or an ensemble of non-interacting Brownian particles)
in an external potential. Since the particles are coupled to a thermal bath fixing the temperature, the
relevant statistical ensemble is the canonical ensemble. If we identify the equilibrium state of the
Smoluchowski equation with the Boltzmann distribution

ρeq(r) = A e−βmΦext(r), (4)

where β = 1/kBT is the inverse temperature, we immediately obtain the Einstein relation, Equation (2).
The Smoluchowski equation satisfies an H-theorem for the Boltzmann free energy and relaxes towards
the Boltzmann distribution from Equation (4). The Boltzmann distribution minimizes the Boltzmann
free energy under the normalization condition.

We now consider an ensemble of Brownian particles interacting via a binary potential u(|r− r′|).
For simplicity, we consider a potential with long-range interactions. For such potentials the mean
field approximation becomes exact in a proper thermodynamic limit N → +∞ (see reviews in [12,13]).
This is the situation considered in [14]. Starting from the N-body Smoluchowski equation, writing
the first equation of the canonical BBGKY hierarchy and implementing the mean field approximation,
which amounts to neglecting correlations, we find that the evolution of the average density of particles
ρ(r, t) is governed by the nonlinear mean field Smoluchowski equation [14]:

∂ρ

∂t
= ∇ · (D∇ρ + χρ∇Φ) , (5)

where the potential Φ(r, t) is given by

Φ(r, t) =
∫

ρ(r′, t)u(|r− r′|) dr′. (6)

Contrary to systems described by the ordinary Smoluchowski Equation (3) where the Brownian
particles move in a fixed external potential Φext(r), in the present situation the Brownian particles
move in a mean field potential Φ(r, t) that they create themselves. The equilibrium states of the mean
field Smoluchowski equation are given by the mean field Boltzmann distribution [14]:

ρeq(r) = A e−βmΦeq(r), (7)

where Φeq(r) is related to ρeq(r) through Equation (6). This leads to the self-consistency relation

ρeq(r) = A e−βm
∫

ρeq(r′)u(|r−r′ |) dr′ . (8)

This integral equation may have several solutions. Therefore, different equilibrium states (stable,
unstable and metastable) are possible. The mean field Smoluchowski Equation (5) satisfies an
H-theorem for the mean field Boltzmann free energy and relaxes towards a stable equilibrium
state, given by the mean field Boltzmann distribution from Equation (7), which is a (local)
minimum of the Boltzmann free energy at fixed mass. When several stable solutions exist,
their selection depends on a notion of basin of attraction [14]. The mean field Smoluchowski
Equation (5) appeared in different domains of physics such as electrolytes [15–18], systems with
long-range interactions [14,19–23], bacterial populations undergoing chemotaxis [24], kinetic theory
of adsorbates [25], superconductors [26,27], self-gravitating Brownian particles [28–43], directed
self-assembly of nanoparticles [44], 2D Brownian vortices [45,46], colloids at a fluid interface [47],
nucleation [48], the Brownian mean field (BMF) model [49], etc. These models are reviewed
in [50]. The Smoluchowski Equation (5) also describes the dynamics of simple liquids, for which
correlations must be taken into account, provided that the potential of interaction u(|r − r′|) is
replaced by an effective potential of interaction ueff(|r− r′|) = − kBT

m2 c(|r− r′|) related to the direct
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correlation function c(|r− r′|) [51–63] (for ultrasoft particles the mean field approximation applies
and ueff(|r− r′|) = u(|r− r′|) [64]). In this context, the self-consistency relation from Equation (8) was
first established by Kirkwood and Monroe [65,66]. The Smoluchowski equation is valid in the strong
friction limit ξ → +∞. More general equations taking inertial effects into account are considered
in [14,23,63,67,68].

The mean field Smoluchowski Equation (5) is a deterministic equation that ignores fluctuations.
If we now take fluctuations into account and use the theory of fluctuating hydrodynamics developed
by Landau and Lifshitz [69], we obtain the stochastic mean field Smoluchowski equation [14]:

∂ρ

∂t
= ∇ · (D∇ρ + χρ∇Φ) +∇ ·

(√
2χkBTρ R(r, t)

)
, (9)

Φ(r, t) =
∫

ρ(r′, t)u(|r− r′|)dr′, (10)

where R(r, t) is a Gaussian white noise satisfying 〈R(r, t)〉 = 0 and 〈Ri(r, t)Rj(r′, t′)〉 = δijδ(r −
r′)δ(t − t′). The stochastic mean field Smoluchowski Equation (9), which is a partial differential
stochastic equation, may be interpreted as a Langevin equation for the density field ρ(r, t). As we have
previously indicated, the deterministic mean field Smoluchowski Equation (5) may have several stable
equilibrium states. In the absence of fluctuations, the system relaxes towards one of these states and
stays there permanently. In the presence of fluctuations, the system undergoes random transitions
from one stable state to the other. Such switches can be described in terms of the stochastic mean
field Smoluchowski Equation (9) including a random forcing due to fluctuations [14]. The stochastic
term allows the system to jump from one equilibrium state to another. These properties have been
illustrated numerically by Chavanis and Delfini [70] for a model of self-gravitating Brownian particles
and bacterial populations presenting two symmetric metastable states. In that case, the system
experiences random transitions from one state to the other. The lifetime of the metastable states is
related to the Kramers escape rate formula which can be derived from the theory of instantons [70].
To the best of our knowledge, the stochastic Smoluchowski Equation (9) was first written down
in van Kampen’s book [71] (p. 349) referring to the papers of van Vliet [72,73] in 1971; this is
the oldest reference to that equation that we have found. It then appeared in different domains
of physics such as the theory of simple liquids [63,74–78], the kinetic theory of adsorbates [25],
systems with long-range interactions [14], 2D Brownian vortices [45], bacterial populations undergoing
chemotaxis [79], nucleation [48], self-gravitating Brownian particles [70], the BMF model [49], etc.
It can also be exported to other systems (electrolytes, superconductors, directed self-assembly of
nanoparticles, colloids at a fluid interface, etc.) as discussed in [50]. More general stochastic partial
differential equations taking inertial effects into account are considered in [14,63,79].

An important topic in statistical mechanics and kinetic theory that emerged over the last decades
concerns the notion of generalized thermodynamics pioneered by Tsallis [80]. It has been observed
in many occasions that the Boltzmann entropy does not provide a correct description of the system
under consideration and that other forms of entropies may be more relevant. In the context of
Brownian motion, the Boltzmann distribution emerges naturally from the Smoluchowski equation
when the particles have a constant diffusion coefficient and a constant mobility. This corresponds
to an “ideal” situation where the particles do not experience microscopic constraints. However,
one may encounter “complex” situations in which the particles are hampered in their motion by
some small-scale constraints (due to short-range interactions) so that the diffusion coefficient and the
mobility depend on the local density. In that case, the motion of the particles is biased, resulting in
anomalous diffusion or anomalous mobility. The corresponding generalized Smoluchowski equation
satisfies a canonical H-theorem for a generalized free energy and relaxes towards an equilibrium state,
different from the Boltzmann distribution, which minimizes the generalized free energy at fixed mass.
Initially, generalized thermodynamics and generalized Fokker-Planck equations were introduced in
relation to the Fermi–Dirac [81,82], Bose–Einstein [82–84] and Tsallis [85–90] entropies. This gave
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the impression that these entropies were special and that a generalized thermodynamical formalism
could be developed only for these functionals. However, it was shown later by [50,91–107] that
generalized thermodynamics and nonlinear Fokker-Planck equations could be extended to arbitrary
forms of entropic functionals (see reviews in [50,106,108,109]). In the situations described above,
generalized entropies arise because the system experiences small-scale constraints so that some
of the microstates are forbidden [50]. (As far as we know, the first “generalized entropy” was
introduced in 1908 by Ornstein [110] in relation to the van der Waals’ equation of state (see van
Kampen [111]). This entropy can be obtained from a combinatorial analysis taking into account
excluded volume effects. On the other hand, as discussed in [112], a functional equivalent to the
Tsallis entropy was introduced long ago in astrophysics by Ipser [113] in a dynamical (Vlasov) context
in relation to Eddington’s stellar polytropes [114]. Ipser [113] also introduced functionals of the
form S = −

∫
C( f ) drdv (where C( f ) is an arbitrary convex function of the distribution function

f (r, v)) that we now call “generalized entropies” [106]. Similar functionals (for the coarse-grained
distribution function f (r, v)) were introduced by Antonov [115] who called them “quasi-entropies”
(see reference [116]) and, independently, by Tremaine et al. [117] who called them “H-functions”.)

If we combine generalized thermodynamics [109], long-range interactions [12,13] and fluctuating
hydrodynamics [69], we obtain a generalized stochastic mean field Smoluchowski equation [50] given
by Equation (83) having a source of nonlinearity arising from the self-consistent mean field potential
(long-range interactions), a source of nonlinearity arising from the fact that the diffusion coefficient
and the mobility of the particles depend on the density itself (generalized thermodynamics) and a
stochastic (noise) term taking fluctuations into account (fluctuating hydrodynamics). In this paper,
we present a brief overview of this important equation stressing its main properties.

The paper is organized as follows. In Section 2, we consider a system of overdamped Brownian
particles with long-range interactions and show how a notion of generalized thermodynamics
emerges in the case where these particles experience small-scale constraints. In Section 3, we neglect
fluctuations and consider the generalized deterministic mean field Smoluchowski equation describing
the macroscopic dynamics of these systems. In Section 4, we take fluctuations into account and
consider the generalized stochastic mean field Smoluchowski equation describing the mesoscopic
dynamics of these systems. We derive the Kramers escape rate formula, giving the lifetime of a
metastable state, from the theory of instantons and make the connection with the maximum free energy
dissipation principle.

2. Generalized Thermodynamics

2.1. Generalized Free Energy

We consider a system of N overdamped Brownian particles in interaction in contact with a heat
bath fixing the temperature T. Such a dissipative system is described in statistical mechanics by the
canonical ensemble. We assume that the binary potential of interaction u(|r− r′|) is long-ranged so
that a mean field approximation can be implemented when N � 1. We also assume that the particles
experience microscopic constraints that affect their dynamics. Under these conditions, the relevant
thermodynamical potential is the generalized free energy (see reference [50] for a justification of the
generalized free energy functional F[ρ] from a microscopic approach. Note that we have ignored
additional constant terms depending on the temperature in the expression of F, E and S; see [50] for
more details)

F[ρ] = E[ρ]− TS[ρ], (11)

where

E[ρ] =
1
2

∫
ρΦ dr =

1
2

∫
ρ(r, t)u(|r− r′|)ρ(r′, t) drdr′ (12)



Entropy 2019, 21, 1006 5 of 41

is the mean field energy of interaction and

S[ρ] = − kB
m

∫
C(ρ) dr (13)

is a generalized entropy which takes into account the microscopic constraints acting on the particles
(short-range interactions). Because of these microscopic constraints the entropy S may differ from the
ideal Boltzmann entropy corresponding to C(ρ) = ρ ln(ρ/ρ∗). This leads to a notion of generalized
thermodynamics. For reasons that will become clear below we assume that C′′ > 0 so that C(ρ) is a
convex function. The generalized free energy can be written as

F[ρ] =
kBT
m

∫
C(ρ) dr +

1
2

∫
ρΦ dr (14)

or, more explicitly, as

F[ρ] =
kBT
m

∫
C(ρ) dr +

1
2

∫
ρ(r, t)u(|r− r′|)ρ(r′, t) drdr′. (15)

When the particles are submitted to an external potential Φext(r) we must include the contribution of
the external energy

Eext[ρ] =
∫

ρΦext dr (16)

in the expression of the free energy.

2.2. Minimum Free Energy Principle

The canonical probability density of the distribution ρ(r) at statistical equilibrium is

Peq[ρ] =
1

Z(T)
e−F[ρ]/kBTδ(M[ρ]−M), (17)

where

Z(T) =
∫

e−F[ρ]/kBT Dρ (18)

is the partition function determined by the normalization condition
∫

P[ρ]Dρ = 1. The free energy
is F(T) = −kBT ln Z(T). In the limit N → +∞, the density ρ(r) of the system is strongly peaked
around the “most probable state” which is the global minimum of the free energy F[ρ] at fixed mass
M =

∫
ρ dr. Therefore, the equilibrium state of the system in the canonical ensemble is the solution of

the minimization problem:

min
ρ(r)

{F[ρ] | M[ρ] = M}. (19)

This is the canonical version of the maximum entropy principle (Boltzmann principle) that holds in
the microcanonical ensemble for isolated systems evolving at fixed mass and energy. For N � 1,
the partition function and the free energy can be approximated by

Z(T) ' e−F[ρ∗ ]/kBT and F(T) ' F[ρ∗], (20)

where ρ∗(r) is the solution of Equation (19). This formula can be interpreted as a large deviation result.
The extrema of the generalized free energy at fixed mass are determined by the variational principle

δF− µ

m
δM = 0, (21)
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where µ is a Lagrange multiplier taking into account the mass constraint. It can be identified with
the chemical potential in thermodynamics. The variational principle from Equation (21) leads to the
Gibbs relation

δF
δρ

=
µ

m
. (22)

An extremum of free energy at fixed mass ρ(r) is a (local) minimum of free energy at fixed mass
if, and only if,

δ2F =
1
2

∫
δ2F

δρ(r)δρ(r′)
δρ(r)δρ(r′) drdr′ > 0 (23)

for all perturbations δρ that conserve mass. This is the condition of thermodynamical stability in the
canonical ensemble.

The statistical equilibrium state of the system is dominated by the global minimum of free energy
at fixed mass. It corresponds to a fully stable state. Local minima of free energy at fixed mass are
metastable states. We will see that metastable states may be very relevant for systems with long-range
interactions because they have very long lifetimes scaling as eN , where N is the number of particles
in the system [118]. By contrast, maxima or saddle points of free energy at fixed mass are unstable
equilibrium states and must be discarded.

2.3. Thermodynamical Equilibrium States

For a generalized free energy of the form of Equation (14), the thermodynamical equilibrium
states determined by Equation (22) are given by

kBT
m

C′(ρ) + Φ =
µ

m
(24)

or, equivalently, by

C′(ρ) = −βmΦ + α, (25)

where

α =
µ

kBT
(26)

is a constant. Since C is a convex function, this equation can be reversed to give

ρ(r) = F(βmΦ(r)− α), (27)

where

F(x) = (C′)−1(−x) (28)

is a monotonically decreasing function. Therefore, at statistical equilibrium, the density is a
monotonically decreasing function ρ = ρ(Φ) of the potential (we assume T > 0). (We note that
Equation (27) determines the equilibrium density–potential relation ρ(Φ) = F(βmΦ− α) in terms of
the generalized entropy C(ρ) through Equation (28). Inversely, the generalized entropy is determined
by the equilibrium density–potential relation through the relation

C(ρ) = −
∫ ρ

F−1(x)dx, (29)
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where F−1 is the reciprocal of F.) We have the identity

ρ′(Φ) = − βm
C′′(ρ)

< 0. (30)

Substituting Equation (6) into Equation (25), we find that the equilibrium density ρ(r) is determined
by an integral equation of the form

C′[ρ(r)] = −βm
∫

ρ(r′)u(|r− r′|) dr′ + α. (31)

The Lagrange multiplier α is obtained from the condition
∫

ρ dr = M. Alternatively, substituting
Equation (27) into Equation (6), we find that the equilibrium potential Φ(r) is determined by an
equation of the form

Φ(r) =
∫

u(|r− r′|)F[βmΦ(r′)− α] dr′, (32)

which is the standard Hammerstein form of nonlinear integral equations.
Bibliographic note: The integral Equation (31) was introduced in full generality in [97]. However,

a particular form of this equation associated with the van der Waals equation of state appears in a
paper of van Kampen [111].

2.4. Thermodynamical Stability

For a generalized free energy of the form of Equation (14), the condition of thermodynamical
stability from Equation (23) takes the form

δ2F =
kBT
m

∫
C′′(ρ)

(δρ)2

2
dr +

1
2

∫
δρδΦ dr > 0 (33)

for all perturbations δρ that conserve mass. Using Equation (30), the condition of thermodynamical
stability can also be written as

−
∫

(δρ)2

ρ′(Φ)
dr +

∫
δρδΦdr > 0 (34)

for all perturbations δρ that conserve mass.
Remark: In the presence of a fixed external potential Φext(r), the foregoing equations remain valid

provided that Φ is replaced by Φ + Φext. In the absence of self-interaction (Φ = 0), there is a unique
equilibrium state given by ρ(r) = F(βmΦext(r)− α). Since the second variations of the free energy
δ2F = −Tδ2S = (kBT/2m)

∫
C′′(ρ)(δρ)2 are always positive when C is convex, this equilibrium state

is the global minimum of F[ρ] at fixed mass. Therefore, it is always thermodynamically stable. In the
presence of self-interaction, the term 1

2

∫
δρδΦ dr in Equation (33) may be negative so that the stability

of the equilibrium state is not granted. It may be either stable or unstable. This demands a specific
study depending on the potential of interaction.

3. Macroscopic Description: Average Dynamics

3.1. Generalized Deterministic Mean Field Smoluchowski Equation

We consider the mean field Smoluchowski Equation (5) but we allow the diffusion coefficient
D and the mobility χ to depend on the local density ρ(r, t). This leads to the generalized mean field
Smoluchowski equation

∂ρ

∂t
= ∇ · (Dh(ρ)∇ρ + χg(ρ)∇Φ) , (35)
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where the potential Φ(r, t) is given by Equation (6). The generalized mean field Smoluchowski equation
can be written more explicitly as

∂ρ

∂t
= ∇ ·

[
Dh(ρ)∇ρ + χg(ρ)∇

∫
ρ(r′, t)u(|r− r′|) dr′

]
. (36)

Here, h(ρ) and g(ρ) are positive functions of the density. These notations are chosen so that the usual
Smoluchowski equation with a constant diffusion D and a constant mobility χ is recovered for h(ρ) = 1
and g(ρ) = ρ. The functions h(ρ) and g(ρ) take into account microscopic constraints (excluded volume
effects, steric hindrance, lattice, crowded environments, etc.) that act on the particles at small scales
and modify their dynamics. As we shall see, these functions are related to the generalized entropy
introduced in Section 2 (or inversely). When the particles are submitted to an external potential Φext(r)
we must add its contribution in Equation (35) by making the substitution Φ(r, t)→ Φ(r, t) + Φext(r).

The generalized mean field Smoluchowski Equation (35) can be written under the conservative form

∂ρ

∂t
= −∇ · J, (37)

where

J = − (Dh(ρ)∇ρ + χg(ρ)∇Φ) (38)

is the diffusion current. The structure of Equation (37) expresses the local conservation of mass.
It guarantees the conservation of the total mass M =

∫
ρ dr provided that the normal component of

the current at the boundary vanishes.
Bibliographic note: The generalized deterministic mean field Smoluchowski Equation (35) was

introduced in full generality in [97,102] (see reviews in [50,106]). However, particular forms of
this equation (associated with the Fermi–Dirac entropy in configuration space) appeared earlier
in the context of 2D turbulence [119–121], lattice gases with long-range interactions [21], kinetic
theory of adsorbates [25] and bacterial populations undergoing chemotaxis [122]. The generalized
deterministic mean field Smoluchowski Equation (35) can be applied to various systems (electrolytes,
chemotaxis, superconductors, self-gravitating Brownian particles, 2D vortices, directed self-assembly of
nanoparticles, colloids at a fluid interface, nucleation, BMF model, etc.) as discussed in [50,106,123–125].
For example, the generalized deterministic mean field Smoluchowski Equation (35) has been studied
in the context of self-gravitating Brownian particles and bacterial populations [34,126,127] (it has
been studied specifically with the Tsallis entropy in [128–131] and with the Fermi–Dirac entropy
in [102,123,132]), 2D vortices [133–135] and colloids at a fluid interface [47]. More general equations
taking inertial effects into account are considered in [35,63,97–101,106,136,137].

3.2. Generalized Langevin Equation

The generalized mean field Smoluchowski Equation (35) can be rewritten as

∂ρ

∂t
= ∇ · [∇(D(ρ)ρ) + χ(ρ)ρ∇Φ] , (39)

where D(ρ) is a density-dependent diffusion coefficient and χ(ρ) is a density-dependent mobility
defined by

Dh(ρ) =
d

dρ
[D(ρ)ρ] , χ(ρ) = χ

g(ρ)
ρ

. (40)

The generalized mean field Smoluchowski Equation (39) can be obtained from the generalized mean
field Langevin equation
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dr
dt

= −χ(ρ)∇Φ +
√

2D(ρ)R(t), (41)

where R(t) is a Gaussian white noise satisfying 〈R(t)〉 = 0 and 〈Ri(t)Rj(t′)〉 = δijδ(t− t′). We note
that the noise is multiplicative since it depends on the position r through the function D(ρ(r, t)).
To obtain the generalized mean field Smoluchowski Equation (39) from the generalized mean field
Langevin Equation (41), we must use the Ito prescription for the noise (if we use the Stratonovich
prescription we must account for a spurious drift term).

3.3. Generalized Einstein Relation

An equilibrium state of the generalized mean field Smoluchowski Equation (35) satisfies the
condition J = 0 (a stationary solution ∂tρ = 0 of the generalized mean field Smoluchowski equation
satisfies the condition ∇ · J = 0. An equilibrium state satisfies the stronger condition J = 0. In this
paper, we consider boundary conditions such that ∇ · J = 0 implies J = 0. As a result, a stationary
solution is an equilibrium solution), leading to

D
χ

h(ρ)
g(ρ)
∇ρ +∇Φ = 0. (42)

We require that an equilibrium state of the generalized mean field Smoluchowski equation is a
thermodynamical equilibrium state as defined in Section 2. Taking the gradient of Equation (25) we get

kBT
m

C′′(ρ)∇ρ +∇Φ = 0. (43)

Comparing Equations (42) and (43), we obtain the generalized Einstein relation

D
χ

h(ρ)
g(ρ)

=
kBT
m

C′′(ρ). (44)

We can always define the parameters D and χ in the generalized mean field Smoluchowski
Equation (35) so that the following relations

D =
χkBT

m
(45)

and

C′′(ρ) =
h(ρ)
g(ρ)

(46)

are satisfied individually. In this manner, the ordinary Einstein relation from Equation (2) is preserved
in the generalized thermodynamical framework. On the other hand, Equation (46) determines the
generalized entropy from Equation (13) in terms of the functions h(ρ) and g(ρ) appearing in the
generalized Smoluchowski Equation (35). (Inversely, the generalized entropy C(ρ) does not determine
h(ρ) and g(ρ) individually, but only their ratio h(ρ)/g(ρ). This means that we can construct an
infinity of generalized Smoluchowski equations associated with the same entropy. For example, the
two equations of Section 3.4 are different but they are associated with the same entropy.) For ideal
systems for which h(ρ) = 1 and g(ρ) = ρ, we find that C′′(ρ) = 1/ρ, returning the Boltzmann entropy
C(ρ) = ρ ln(ρ/ρ∗). Examples of generalized entropies are given in Appendix A and in [50,106,108,109].
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3.4. Particular Forms of the Generalized Smoluchowski Equation

If we take h(ρ) = 1 and g(ρ) = 1/C′′(ρ), the generalized Smoluchowski Equation (35) can be
expressed in terms of the generalized entropy under the form

∂ρ

∂t
= ∇ ·

(
D∇ρ +

χ

C′′(ρ)
∇Φ

)
. (47)

In that case, we have a constant diffusion D(ρ) = D and a density-dependent mobility χ(ρ) =

χ/(ρC′′(ρ)).
If we take g(ρ) = ρ and h(ρ) = ρC′′(ρ), the generalized Smoluchowski Equation (35) can be

expressed in terms of the generalized entropy under the form

∂ρ

∂t
= ∇ ·

(
DρC′′(ρ)∇ρ + χρ∇Φ

)
. (48)

In that case, we have a constant mobility χ(ρ) = χ and a density-dependent diffusion D(ρ) =

Dρ[C(ρ)/ρ]′. Note that the condition D(ρ) ≥ 0 requires that [C(ρ)/ρ]′ ≥ 0 (this condition, which
corresponds to a positive pressure – see Appendix A – is not strictly compulsory). This gives a
constraint on the possible forms of C(ρ).

3.5. Gradient Flow

The connection between the generalized mean field Smoluchowski Equation (35) and the
generalized free energy from Equation (14) is made clear by writing the Smoluchowski equation
as a gradient flow. Taking the functional derivative of the generalized free energy from Equation (14)
with respect to the density, we get

δF
δρ

=
kBT
m

C′(ρ) + Φ. (49)

Its gradient is

∇ δF
δρ

=
kBT
m

C′′(ρ)∇ρ +∇Φ. (50)

On the other hand, the Smoluchowski current from Equation (38) can be written as

J = −χg(ρ)
(

D
χ

h(ρ)
g(ρ)
∇ρ +∇Φ

)
. (51)

Using the generalized Einstein relation from Equation (44), we get

J = −χg(ρ)
[

kBT
m

C′′(ρ)∇ρ +∇Φ
]

. (52)

Comparing Equations (50) and (52), we observe that

J = −χg(ρ)∇ δF
δρ

. (53)

This equation shows that the Smoluchowski current is proportional to the gradient of the functional
derivative of the free energy (see Section 3.8). This is called a gradient flow. Substituting Equation (53)
into Equation (37), we find that the generalized mean field Smoluchowski equation can be written as

∂ρ

∂t
= ∇ ·

[
χg(ρ)∇ δF

δρ

]
. (54)
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This gradient flow formulation is very general. In particular, the properties derived below are valid for
an arbitrary form of free energy functional F[ρ] which is not necessarily of the form of Equation (14).

3.6. Equilibrium States

An equilibrium state of the gradient flow Equation (54) satisfies the condition J = 0, leading to

δF
δρ

=
µ

m
, (55)

where µ is a constant of integration. Comparing Equation (55) with Equation (22), we see that
an equilibrium state of the gradient flow equation is an extremum of free energy at fixed mass
(thermodynamical equilibrium state). When the free energy is given by Equation (14), Equation (55)
reduces to Equation (24) and we can directly check that it is an equilibrium solution of Equation (35)
by using the generalized Einstein relation from Equation (44).

3.7. H-Theorem

The gradient flow Equation (54) implies that the free energy decreases monotonically with time
provided that χg(ρ) is positive. Indeed, the rate of dissipation of free energy is given by

Ḟ =
∫

δF
δρ

∂ρ

∂t
dr = −

∫
δF
δρ
∇ · J dr =

∫
J · ∇ δF

δρ
dr. (56)

To get the last equality, we have integrated by parts and assumed that the normal component of the
current vanishes on the boundary. Substituting Equation (53) into Equation (56) we obtain

Ḟ = −
∫ J2

χg(ρ)
dr i.e. Ḟ = −

∫
χg(ρ)

(
∇ δF

δρ

)2
dr. (57)

Therefore Ḟ ≤ 0 and Ḟ = 0 if, and only if, J = 0. This is the canonical ensemble version of the
H-theorem. We have therefore established that

Ḟ ≤ 0, Ḟ = 0 ⇔ J = 0. (58)

A functional that satisfies these properties is called a Lyapunov functional. Using Lyapunov’s direct
method, one can show that an equilibrium state ρ(r) of Equation (54) is (linearly) dynamically stable if,
and only if, it is a (local) minimum of F at fixed mass. Maxima and saddle points of F at fixed mass are
linearly unstable. Furthermore, if F is bounded from below, the H-theorem implies that the system
converges towards a stable equilibrium state for t → +∞. If the free energy possesses several local
minima, the choice of the equilibrium state depends on a complicated notion of basin of attraction (for
self-gravitating Brownian particles [28,29] the free energy is not bounded from below. In that case, the
system can either relax towards a local minimum of free energy F at fixed mass – when it exists – or
collapse to a Dirac peak [30], leading to a divergence of the free energy F(t) → −∞). According to
the preceding results, we conclude that dynamical stability with respect to the generalized mean field
Smoluchowski equation and generalized thermodynamical stability in the canonical ensemble coincide.

Remark: As discussed in [106,135] the generalized mean field Smoluchowski Equation (35)
can provide a numerical algorithm to construct dynamically stable steady states of the mean field
barotropic Euler equation, mean field Kramers equation, Vlasov equation and 2D Euler-Poisson
equations. This numerical algorithm may be useful because it is not always easy to compute steady
states of these equations and make sure that they are dynamically stable.
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3.8. Onsager’s Linear Thermodynamics

If we define a time-dependent chemical potential by the relation

µ(r, t)
m

≡ δF
δρ

, (59)

we find that µ(r, t) is uniform at equilibrium. Indeed, the Gibbs relation from Equation (22) can be
written as

µ(r, t) = µ (equilibrium). (60)

On the other hand, the current from Equation (53) associated with the gradient flow Equation (54) can
be written as

J = − 1
m

χg(ρ)∇µ(r, t). (61)

It is proportional to the gradient of the chemical potential. The coefficient of proportionality is a
density-dependent mobility. Since the chemical potential is uniform at equilibrium, the current
vanishes: J = 0. A linear relation of the form J = −λ∇µ between the current and the chemical
potential is the simplest relation that we can imagine in order to have J = 0 at equilibrium. Such a
linear relationship is expected to be always valid close to equilibrium where the gradient of µ is small.
This relation is similar to Ohm’s law for electrical condition, Fourier’s law for heat conduction and
Fick’s law for diffusion.

These relations correspond to Onsager’s linear thermodynamics [138,139]. This is a phenomenological
approach saying that, close to equilibrium, the currents are proportional to the “thermodynamic
forces” that cause them. The thermodynamic forces (or “restoring forces”) are equal to the derivative
of the “thermodynamic potential” so that they vanish at equilibrium where the thermodynamic
potential is extremum. In the present case, the thermodynamic potential is the free energy F and the
thermodynamic force is ∇(δF/δρ). This formulation implies the H-theorem. Indeed, the rate of free
energy is (see Equation (56))

Ḟ =
∫

J · ∇ δF
δρ

dr. (62)

If we relate the current J linearly to the thermodynamic force ∇(δF/δρ) so that

J = −χ(r, t)∇ δF
δρ

, (63)

we get the H-theorem Ḟ ≤ 0 provided that χ > 0. Note that Onsager’s linear thermodynamics does not
give the expression of χ(r, t). In the present situation, Equation (53) is consistent with Onsager’s linear
thermodynamics with χ(r, t) = χg(ρ). For a free energy F[ρ] of the form of Equation (14), Onsager’s
linear thermodynamics yields the generalized Smoluchowski Equation (35). This shows that Onsager’s
linear thermodynamics can be valid even if we are far from equilibrium since there is no restriction on
the validity of the Smoluchowski equation.

3.9. Maximum Free Energy Dissipation Principle

The current from Equation (53) can be obtained from a variational principle called the maximum
free energy dissipation principle. At equilibrium, the density ρ(r) minimizes the free energy F[ρ] at
fixed mass M (see Section 2). This minimum free energy principle is the canonical ensemble version of
the maximum entropy principle introduced by Boltzmann. It characterizes the most probable state of
a system at statistical equilibrium. In a similar manner, out-of-equilibrium, the current J maximizes
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the rate of free energy dissipation −Ḟ[J]− Ed[J]. This maximum free energy dissipation principle is
the canonical ensemble version of the maximum entropy production principle (for isolated systems
described by the microcanonical ensemble, the increase of entropy during the evolution must be the
highest while conserving the energy: Ṡ maximum at fixed energy. For dissipative systems described
by the canonical ensemble, the decrease of free energy during the evolution must be the highest: -Ḟ
maximum). It describes the most probable course of an irreversible process. It can be viewed as a
variational formulation of Onsager’s linear thermodynamics (see Section 3.8).

The rate of dissipation of free energy is given by (see Equation (56))

Ḟ =
∫

J · ∇ δF
δρ

dr. (64)

We introduce the dissipation function

Ed =
∫ J2

2χg(ρ)
dr. (65)

Let us determine the current J which maximizes the rate of free energy dissipation −Ḟ[J]− Ed[J] with
the convention that the density ρ(r, t) is prescribed. Therefore, we consider the maximization problem

max
J

{
−Ḟ[J]− Ed[J]

}
. (66)

The extrema of free energy dissipation are determined by the variational principle

δ(−Ḟ− Ed) = 0. (67)

There is a single extremum given by

J = −χg(ρ)∇ δF
δρ

, (68)

corresponding to the Smoluchowski current from Equation (53). Since

δ2(−Ḟ− Ed) = −
∫

(δJ)2

2χg(ρ)
dr ≤ 0, (69)

we find that the Smoluchowski current from Equation (68) maximizes the dissipation of free energy.
Using Equation (68) we obtain the relation

Ḟ = −2Ed, (70)

which is equivalent to Equation (57). Therefore, the dissipation function equals half the rate of
dissipation of free energy. We also introduce the dual dissipation function

E∗d =
1
2

∫
χg(ρ)

(
∇ δF

δρ

)2
dr. (71)

We note that E∗d [ρ] is a functional of the density ρ while Ed[J] is a functional of the current J.
Using Equation (68) we obtain the relation

Ḟ = −2Ed = −2E∗d . (72)

Bibliographic note: the maximum entropy production principle was introduced by
Onsager [138,139] to derive his famous reciprocal relations in irreversible processes. It finds its origin in
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the work of Lord Rayleigh [140,141]. It was used in the context of 2D turbulence and stellar dynamics
to derive relaxation equations associated with the theory of violent relaxation [119,120,133–135].
It was also used in the context of generalized thermodynamics to derive generalized Fokker-Planck
equations [97,102,106].

3.10. Equivalence between Dynamical and Thermodynamical Stability

In this section, we derive a simple relation that establishes a direct equivalence between dynamical
and thermodynamical stability for the generalized Smoluchowski equation. Let us consider a small
perturbation δρ around an equilibrium state of the generalized Smoluchowski Equation (54). We write
the time dependence of the perturbation as δρ ∼ eλt. The perturbation is damped exponentially
when λ < 0 (stable equilibrium) or increases exponentially when λ > 0 (unstable equilibrium).
The linearized Smoluchowski equation can be written as

λδρ = −∇ · δJ (73)

with

δJ = −χg(ρ)∇
∫

δ2F
δρ(r)δρ(r′)

δρ(r′, t) dr′. (74)

The second variations of free energy are given by

δ2F =
1
2

∫
δ2F

δρ(r)δρ(r′)
δρ(r, t)δρ(r′, t) drdr′. (75)

Substituting Equation (73) into Equation (75) we get

λδ2F = −1
2

∫
drdr′

δ2F
δρ(r)δρ(r′)

δρ(r′, t)∇ · δJ. (76)

Integrating by parts, we find that

λδ2F =
1
2

∫
drdr′ δJ · ∇ δ2F

δρ(r)δρ(r′)
δρ(r′, t) = −1

2

∫
(δJ)2

χg(ρ)
dr, (77)

where we have used Equation (74) to obtain the second equality. On the other hand, the second
variations of the rate of free energy dissipation from Equation (57) around the equilibrium are

δ2 Ḟ = −
∫

(δJ)2

χg(ρ)
dr, (78)

and they are clearly negative. Combining Equations (77) and (78), we finally obtain the following relation
(this relation was first obtained in Appendix B of [106] for a free energy of the form of Equation (15).
The present calculation extends its domain of validity to an arbitrary functional F[ρ].)

2λδ2F = δ2 Ḟ ≤ 0. (79)

This relation shows that a steady state of the generalized Smoluchowski Equation (54) is linearly
dynamically stable (λ < 0) if, and only if, it is a (local) minimum of free energy at fixed mass (δ2F > 0).
Therefore, dynamical and generalized thermodynamical stability coincide.

Remark: If we repeat the above calculation by using

∂δρ

∂t
= −∇ · δJ (80)
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instead of Equation (73), we obtain

d
dt
(δ2F) = δ2 Ḟ (81)

instead of Equation (79). On the other hand, if we take the derivative of δ2F and use ∂tδρ = λδρ, we get

d
dt
(δ2F) = 2λδ2F. (82)

From Equations (81) and (82) we recover Equation (79).

4. Mesoscopic Description: Stochastic Dynamics

4.1. Generalized Stochastic Mean Field Smoluchowski Equation

The generalized mean field Smoluchowski Equation (54) is a deterministic equation that ignores
fluctuations. It describes the macroscopic evolution of the system through the ensemble average
density ρ(r, t). In practice, there are fluctuations around the average dynamics. They arise from the
thermal noise and from finite N effects. In reference [50] (see also [14]), we have derived a generalized
stochastic Smoluchowski equation from the theory of fluctuations developed by Landau and Lifshitz
(see [69], chapter XVII). It describes the mesoscopic evolution of the system through the coarse-grained
density ρ(r, t) (in the following, we drop the bar on ρ to simplify the notations). It can be written as

∂ρ

∂t
= ∇ ·

[
χg(ρ)∇ δF

δρ

]
+∇ ·

[√
2χkBTg(ρ)R(r, t)

]
, (83)

where R(r, t) is a Gaussian white noise satisfying 〈R(r, t)〉 = 0 and 〈Ri(r, t)Rj(r′, t′)〉 = δijδ(r −
r′)δ(t− t′). We note that, in general, the noise term is multiplicative since it depends on the density
through the function g(ρ). This is the case, in particular, for ideal systems for which g(ρ) = ρ. On the
other hand, the function h(ρ) does not appear in the noise term. (The noise term is independent of
ρ when g(ρ) = 1. For h(ρ) = ρ, corresponding to a normal diffusion, the condition g(ρ) = 1 leads
to C(ρ) = ρ2/2, i.e., S = − 1

2

∫
ρ2 dr. This is a Tsallis entropy of index γ = 2.) We also note that

Equation (83) relies on a mean field approximation, valid for N � 1, since it involves the mean field
free energy from Equation (15). However, the noise keeps track of finite N effects since it scales as
1/
√

N after a proper normalization (see Appendix A of [70] and Appendix B of [63]).
The generalized stochastic Smoluchowski Equation (83) can be interpreted as a stochastic Langevin

equation for the density ρ(r, t). The corresponding Fokker-Planck equation for the probability density
P[ρ, t] of observing the density ρ(r, t) at time t is

∂P
∂t

[ρ, t] = −
∫

dr
δ

δρ(r)

{
∇ · χg(ρ)∇

[
kBT

δ

δρ(r)
+

δF
δρ(r)

]
P[ρ, t]

}
. (84)

This functional Fokker-Planck equation relaxes towards the canonical distribution from Equation (17)
provided that we use the Ito prescription for the noise (see Appendix B). Actually, the form of the noise
can be determined precisely in order to recover the canonical distribution at equilibrium. (As discussed
in Section 2, we are considering a notion of “generalized thermodynamics” in the sense that the entropy
S[ρ] may be different from the ideal Boltzmann entropy S[ρ] = ρ ln(ρ/ρ∗). However, we still assume
that the equilibrium distribution Peq[ρ] is given by an exponential (Boltzmann) function of the free
energy as in Equation (17). A true generalization of thermodynamics would be obtained by replacing
the Boltzmann-Gibbs distribution Peq[ρ] ∝ e−βF[ρ] by a q-distribution Peq[ρ] ∝ e−βF[ρ]

q (Tsallis), or an
even more general distribution. This would amount to changing the noise term in Equation (83) by
allowing it to depend on P[ρ, t].)
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Remark: The stochastic mean field Smoluchowski Equation (83) introduced in [14,50] is fundamentally
different from Dean’s equation [77] (see Appendix C). The Dean Equation (A96) is an exact equation
satisfied by the discrete density ρd(r, t) = ∑i mδ(r − ri(t)) which is a sum of Dirac distributions.
It involves the exact free energy Fd = kBT

m
∫

ρd(ln ρd − 1) dr + 1
2

∫
ρd(r, t)u(|r − r′|)ρd(r′, t) drdr′

constructed with the discrete density ρd(r, t). It is equivalent to the N-body stochastic Langevin
Equation (A77) or to the N-body Smoluchowski Equation (A78), describing a system of Brownian
particles in interaction and, as such, it contains the complete information on the dynamics of the
particles (similarly to the Liouville equation or to the Klimontovich equation for Hamiltonian systems
of particles in interaction). It is not clear whether the Dean equation is well-defined mathematically
(because of the presence of δ-functions). Furthermore, on a physical point of view, it is not clear
whether this “exact” equation can be used on an operational basis. Indeed, since it is equivalent to
the N-body stochastic Langevin equations, it contains “too much” information on the system. In this
sense, it is of little use since it encodes the position of all particles; it is simpler to follow the particle
trajectories directly by integrating the Langevin Equation (A77). By contrast, the stochastic mean
field Smoluchowski Equation (83) applies to a coarse-grained (smooth) density ρ(r, t) which is more
easy to handle in explicit calculations. For ideal systems with long-range interactions, it involves the
mean field free energy F = kBT

m
∫

ρ(ln ρ− 1) dr + 1
2

∫
ρ(r, t)u(|r− r′|)ρ(r′, t) drdr′ constructed with the

coarse-grained density ρ(r, t). Many authors refer to the Dean equation while they actually consider
the stochastic mean field Smoluchowski Equation (83)—or its counterpart Equation (A100) in the
theory of simple liquids (see Appendix C)—which describes a coarse-grained mesoscopic dynamics
(see Appendix B of [63] for a more complete discussion). This mesoscopic equation can be obtained
from the Landau-Lifshitz theory of fluctuating hydrodynamics as shown in [14,50]. On the other hand,
for “complex” systems (described by a generalized entropy) for which g(ρ) 6= ρ, it does not seem
feasible to derive a stochastic equation of the form of Equation (83) directly from Dean’s microscopic
approach while this remains possible from the theory of fluctuating hydrodynamics [50]. This clearly
shows that the generalized stochastic mean field Smoluchowski Equation (83) is fundamentally
different from the Dean equation.

Bibliographic note: The generalized stochastic mean field Smoluchowski Equation (83) was
introduced in full generality in [50]. However, a particular form of this equation (associated with
the Fermi–Dirac entropy in configuration space) appeared earlier in the context of the kinetic theory of
adsorbates [25]. The generalized stochastic mean field Smoluchowski Equation (83) can be applied to
other systems (electrolytes, chemotaxis, superconductors, self-gravitating Brownian particles, 2D vortices,
directed self-assembly of nanoparticles, colloids at a fluid interface, nucleation, BMF model, etc.) as
discussed in [50]. More general equations taking inertial effects into account are considered in [63].

4.2. Derivation of the Kramers Formula from the Instanton Theory

In this section, we calculate the escape rate Γ of a system of Brownian particles in interaction
across a barrier of free energy by using the instanton theory. This provides a justification of the Kramers
formula giving the typical lifetime of a metastable state. We assume that the free energy functional F[ρ]
has a local minimum ρM(r) (metastable state) and a global minimum ρS(r) (stable state) separated by a
maximum or a saddle point ρU(r) (unstable state). We have seen that Equation (83) can be interpreted
as a Langevin equation. In the absence of noise, the evolution is deterministic and the density relaxes
to one of the minima of the potential as implied by the H-theorem (see Section 3.7). In the presence of
noise, the density switches back and forth between the two minima (attractors). When the noise is
weak (the weak noise limit corresponds to T → 0 and/or N → +∞ [70]), the transition between the
two minima is a rare event. One important problem is to determine the rate Γ for the density profile,
initially located in the metastable state ρM(r), to cross the barrier of free energy and reach the stable
state ρS(r).
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The probability of the path ρ(r, t) is

P[ρ(r, t)] ∝ e−S[ρ(r,t)]/kBT , (85)

where S is a generalized Onsager-Machlup functional [142]. In the weak noise limit, using Equation (83),
it is given by

S[ρ(r, t)] = −1
4

∫
dt
∫

dr
(

∂ρ

∂t
−∇ ·

[
χg(ρ)∇ δF

δρ

])
(∇χg(ρ)∇)−1

(
∂ρ

∂t
−∇ ·

[
χg(ρ)∇ δF

δρ

])
. (86)

The functional S may be called an action by analogy with the path-integrals formulation of quantum
mechanics (the temperature T plays the role of the Planck constant h̄ in quantum mechanics) [143].
It can be written as S =

∫
L dt where L is the corresponding Lagrangian. The probability density to

observe the system with the profile ρ2(r) at time t2 given that it had the profile ρ1(r) at time t1 is

P[ρ2(r), t2|ρ1(r), t1] =
∫
Dρ e−S[ρ]/kBT , (87)

where the integral runs over all paths satisfying ρ(r, t1) = ρ1(r) and ρ(r, t2) = ρ2(r). For a given
initial condition ρ0(r) at t = t0, the probability density P[ρ(r), t] ≡ P[ρ(r), t|ρ0(r), t0] to observe the
system with the profile ρ(r) at time t satisfies the functional Fokker-Planck Equation (84). In the weak
noise limit, the typical paths explored by the system are concentrated close to the most probable
path. In that case, a steepest-descent evaluation of the path integral is possible. The path integral is
dominated by the most probable path. To determine the most probable path, we have to minimize the
Onsager-Machlup functional S[ρ(r, t)], i.e., we have to solve the minimization problem

min
ρ(r,t)

{S[ρ(r, t)]}. (88)

The equation for the most probable path ρc(r, t) that connects two attractors is called an
“instanton” [144]. It is obtained by cancelling the first order variations of the action:

δS = 0. (89)

In the weak noise limit, the transition probability from one state to the other is dominated by the most
probable path:

P[ρ2(r), t2|ρ1(r), t1] ' e−S[ρc ]/kBT . (90)

This formula can be interpreted as a large deviation result (we note the analogies between
Equations (85), (87), (88) and (90) and Equations (17)–(20)). It provides an approximate solution
of the functional Fokker-Planck Equation (84). On the other hand, it can be shown that the escape rate
of the system over the barrier of free energy is given by

Γ ∝ e−S[ρc ]/kBT , (91)

where S[ρc] is the action of the most probable path (instanton) that connects the metastable state to the
stable state. In the limit of weak noise, and for a stochastic process that obeys a fluctuation–dissipation
relation, it can be shown that the most probable path between the metastable state and the stable state
must necessarily pass through the saddle point (playing the role of a “critical droplet” in problems of
nucleation). Once the system reaches the saddle point it may either return to the initial metastable
state or reach the stable state. In the latter case, it has crossed the barrier of free energy. One can show
that the instanton satisfies the equation



Entropy 2019, 21, 1006 18 of 41

∂ρ

∂t
= ±∇ ·

[
χg(ρ)∇ δF

δρ

]
(92)

with the boundary conditions ρ(r,−∞) = ρM(r) and ρ(r,+∞) = ρS(r). We note that the most
probable path corresponds to the deterministic gradient driven dynamics, Equation (54), with a sign ±
(considering the solution with the sign +, which corresponds to the downhill solution – see below – we
see that the most probable path coincides with the ensemble average path). The physical interpretation
of Equation (92) is the following. Starting from the metastable state, the most probable path follows
the time-reversed dynamics against the free energy gradient up to the saddle point; beyond the saddle
point, it follows the forward-time dynamics down to the stable state. According to Equations (86) and
(92), the action of the most probable path corresponding to the transition from the saddle point to the
stable state (downhill solution corresponding to Equation (92) with the sign +) is zero while the action
of the most probable path corresponding to the transition from the metastable state to the saddle point
(uphill solution corresponding to Equation (92) with the sign −) is non zero. This is to be expected
since the descent from the saddle point to the stable state is a “free” descent that does not require
thermal noise; it thus gives the smallest possible value of zero of the action. By contrast, the rise from
the metastable state to the saddle point is a rare event that requires thermal noise. The action for the
uphill solution is

S[ρ(r, t)] =
∫

dt
∫

dr ∂ρ
∂t (∇χg(ρ)∇)−1

(
∇ ·

[
χg(ρ)∇ δF

δρ

])
=

∫
dt
∫

dr ∂ρ
∂t

δF
δρ

=
∫

dt dF
dt = ∆F,

(93)

where ∆F = F[ρU ]− F[ρM] is the barrier of free energy between the metastable state and the unstable
state. The total action for the most probable path connecting the attractors is therefore Sc = S[ρ−c ] +
S[ρ+c ] = ∆F + 0 = ∆F. It is determined solely by the uphill path. The instanton solution gives the
dominant contribution to the transition rate for a weak noise. Therefore, the rate for the system to pass
from the metastable state to the stable state (escape rate) is

Γ ∝ e−∆F/kBT . (94)

This is the celebrated Arrhenius (or Kramers) formula stating that the transition rate is inversely
proportional to the exponential of the barrier of free energy divided by kBT. (This formula can be
simply obtained as follows. The probability of observing the density ρ(r) is ∝ e−βF[ρ]. Therefore,
the probability for the system initially prepared in the metastable state to form a “critical droplet”
(unstable state ρU) and then reach the stable state ρS is ∝ e−β(F[ρU ]−F[ρM ]). The typical lifetime of a
metastable state may then be estimated by tlife ∼ eβ∆F, where ∆F = F[ρU ]− F[ρM] is the barrier of
free energy between the metastable state and the unstable state.) The typical lifetime of a metastable
state is tlife ∼ Γ−1. For systems with long-range interactions, the free energy scales as N so the typical
lifetime of a metastable state scales as

tlife ∝ eN∆ f /kBT . (95)

Therefore, for systems with long-range interactions, the metastable states are very relevant since their
lifetime scales as eN with N � 1 [70,118]. Therefore, metastable states are stable in practice. Only very
close to the critical point where ∆ f → 0 does their lifetime decrease substantially.

Bibliographic note: A general path-integrals formalism determining the escape rate of a particle
moving in a potential V(x) in the weak noise limit has been developed by Bray et al. [145].
Their theory accounts for white noises for which S[xc] = ∆V (Kramers) and for exponentially
correlated noises for which S[xc] 6= ∆V. The instanton theory has been formalized by Freidlin and
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Wetzel [146] in relation to the theory of large deviations [147]. It has been applied to various systems
such as scalar fields described by the Ginzburg-Landau equation [145,148], interacting magnetic
moments [149], nucleation [48], two-dimensional fluid flows [150] and Brownian particles with
long-range interactions [70].

4.3. Relation to the Principle of Maximum Dissipation of Free Energy

It is interesting to discuss the relation between the instanton theory (see Section 4.2) and the
principle of maximum dissipation of free energy (see Section 3.9). The Onsager-Machlup functional
defined by Equation (86) can be expanded under the form

S =
1
2

∫
(Ed + E∗d + Ḟ) dt, (96)

where

Ed = 1
2

∫ ∂ρ
∂t (∇χg(ρ)∇)−1 ∂ρ

∂t dr
= 1

2

∫
∇ · J(∇χg(ρ)∇)−1∇ · J dr

= 1
2

∫ J2

χg(ρ) dr,
(97)

E∗d = 1
2

∫
∇ ·

[
χg(ρ)∇ δF

δρ

]
(∇χg(ρ)∇)−1∇ ·

[
χg(ρ)∇ δF

δρ

]
dr

= 1
2

∫
χg(ρ)

(
∇ δF

δρ

)2
dr,

(98)

and

Ḟ = − 1
2

∫ ∂ρ
∂t (∇χg(ρ)∇)−1∇ ·

[
χg(ρ)∇ δF

δρ

]
dr

− 1
2

∫
∇ ·

[
χg(ρ)∇ δF

δρ

]
(∇χg(ρ)∇)−1 ∂ρ

∂t dr

=
∫ ∂ρ

∂t
δF
δρ dr

= −
∫
∇ · J δF

δρ dr
=

∫
J · ∇ δF

δρ dr

(99)

are the dissipative functions and the rate of free energy introduced in Section 3.9. Equation (96)
is the counterpart of Equation (4–18) of Onsager and Machlup [142]. The minimization of the
Onsager-Machlup functional S with respect to variations on J (at fixed ρ) is therefore equivalent
to the maximization of −Ḟ− Ed. This returns the principle of maximum dissipation of free energy of
Section 3.9 leading to the deterministic Smoluchowski Equation (54). This corresponds to the downhill
instanton solution for which we have Ḟ = −2Ed = −2E∗d and S = 0. On the other hand, for the uphill
instanton solution corresponding to the deterministic Smoluchowski Equation (54) with the opposite
sign, we have Ḟ = 2Ed = 2E∗d and S =

∫
Ḟ dt = ∆F.

4.4. Boltzmann and Onsager-Machlup Principles

Let us recapitulate the different variational principles considered in this paper. We have seen in
Section 2.2 that the probability of the density ρ(r) at statistical equilibrium is given by

Peq[ρ(r)] ∝ e−βF[ρ(r)] (Boltzmann), (100)

where F[ρ(r)] is the free energy functional. On the other hand, we have seen in Section 4.2 that,
out-of-equilibrium, the probability of the path ρ(r, t) is given by

P[ρ(r, t)] ∝ e−βS[ρ(r,t)] (Onsager−Machlup), (101)
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where S[ρ(r, t)] is the Onsager-Machlup functional (action) which can be expressed in terms of
the rate of free energy and dissipation functions (see Section 4.3). The Onsager-Machlup theorem,
Equation (101), is analogous to the Boltzmann principle, Equation (100). (The Boltzmann formula
– which was actually formulated by Planck – is usually expressed in the form S = kB ln W,
where W is the number of complexions. The reversed expression W ∝ eS/kB , interpreted as the
probability of a fluctuation, was formulated by Einstein [151].) The Boltzmann principle tells the
probability of an equilibrium state in terms of its entropy (or free energy in the canonical ensemble);
the Onsager-Machlup theorem tells the probability of a temporal succession of states in terms of the
rate of entropy (or free energy in the canonical ensemble) and dissipation functions. The most probable
equilibrium state ρ(r) is obtained by minimizing the free energy F[ρ] at fixed mass. This leads to
the generalized Boltzmann distribution from Equation (22). The most probable path is obtained by
minimizing the Onsager-Machlup functional S or equivalently by maximizing the rate of production
of free energy −Ḟ − Ed with respect to variations on J (at fixed ρ). This leads to the generalized
deterministic Smoluchowski Equation (54). Therefore, the Onsager-Machlup principle can be viewed
as the out-of-equilibrium version of the Boltzmann principle of statistical equilibrium.

5. Conclusions

In this paper, we have discussed the main properties of the generalized stochastic Smoluchowski
Equation (83). This equation describes the mesoscopic dynamics of a system of overdamped Brownian
particles in interaction. For short times, we can neglect the fluctuations and use the deterministic
Smoluchowski Equation (54). In that case, the system relaxes towards a stable equilibrium state which is a
(local) minimum of free energy at fixed mass. On longer times, or close to the critical point, the fluctuations
have to be taken into account. If the equilibrium state achieved by the system is metastable (local but
not global minimum of free energy), the fluctuations can allow the system to overcome a barrier of
free energy and reach the fully stable state. More generally, if the system possesses several equilibrium
states, the fluctuations can allow it to switch between these different equilibrium states and explore the
free energy landscape. Such random transitions have been illustrated numerically by Chavanis and
Delfini [70] for a model of self-gravitating Brownian particles and bacterial populations presenting two
symmetric metastable states. They are expected to be generic of many other systems. We have derived
the Kramers formula giving the typical lifetime of a metastable state from the theory of instantons and we
have mentioned that this lifetime is extremely long for systems with long-range interactions as is scale as
eN [118]. A transition from an equilibrium state to another is therefore a rare event.

In our approach, we have assumed that the Brownian particles experience long-range and short-range
interactions. The long-range interactions have been treated in a mean field approximation which becomes
exact when N → +∞. The short-range interactions have been treated heuristically with the help of a
generalized entropy C(ρ). For “ideal” systems without short-range interactions, the correct entropy is
the Boltzmann entropy. It can be obtained from a combinatorial analysis assuming that all the accessible
microstates are equiprobable. For “complex” systems, the short-range interactions and the correlations
between the particles may forbid some microstates and, therefore, modify the form of the entropy. This type
of arguments leads, for example, to the van der Waals entropy given by Equation (A24) [110,111] or to the
Fermi–Dirac entropy in position space given by Equation (A29) [81,82,102,132], which take into account
excluded volume effects. More generally, the microscopic constraints can generate various forms of
entropies characterized by a convex function C(ρ) [50].

We have shown in Appendix C that the generalized entropy C(ρ) appropriate to a given system
can be derived in principle from the density functional theory developed in the physics of simple
liquids [152]. In that case, it corresponds to the so-called “excess entropy” which arises from the
development of correlations due to short-range interactions. In many models of liquids, the correlations
can be taken into account by replacing the bare potential of interaction u(|r − r′|) by an effective
potential of interaction ueff(|r− r′|) = − kBT

m2 c(|r− r′|) proportional to the direct correlation function
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c(|r− r′|). Many methods have been developed in the physics of simple liquids to determine the direct
correlation function and the excess free energy for a given potential of short-range interactions [152].

The density functional theory developed in the physics of simple liquids allows us to demystify
the notion of “generalized” thermodynamics [109] by showing that “generalized” entropies can be
obtained from first principles. They are determined by the potential of short-range interactions
uSR(|r − r′|) in a nontrivial manner explained in [152]. In that sense, what we call “generalized”
thermodynamics is just “ordinary” thermodynamics with a “generalized” (excess) form of entropy
taking into account microscopic constraints and correlations among the particles. (This correspondance
between generalized thermodynamics [109] and density functional theory [152] is obtained when
the microscopic constraints act in configuration space as in [50], so that the velocity distribution
function remains maxwellian. When the microscopic constraints act in phase space as in [97], implying
non-maxwellian velocity distributions, the situation is more complicated. The passage from the
generalized Kramers equation to the generalized Smoluchowski equation in the strong friction limit
ξ → +∞ is treated in detail in [100,106].)

We hope that one virtue of our paper is to have made a first connection between different
communities, generalized thermodynamics [108,109], systems with long-range interactions [12,13] and
the physics of simple liquids [152], by showing that their methods are complementary to each other.
On the other hand, many results can be extended to the quantum regime as shown in recent papers
(see, e.g., [3] and references therein).

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. The Generalized Pressure

Appendix A.1. Equation of State

In this Appendix, we take g(ρ) = ρ (constant mobility). In that case, the generalized mean field
Smoluchowski Equation (35) can be written as

ξ
∂ρ

∂t
= ∇ ·

[
kBT
m

ρC′′(ρ)∇ρ + ρ∇Φ
]

. (A1)

If we define the pressure P(ρ) such that

P′(ρ) =
kBT
m

ρC′′(ρ), (A2)

we get

ξ
∂ρ

∂t
= ∇ · (∇P + ρ∇Φ). (A3)

This generalized Smoluchowski equation, involving a generalized pressure P(ρ) instead of the ideal
pressure Pid = ρkBT/m, was introduced in [97]. The square of the velocity of sound is c2

s = P′(ρ)
and it reduces to kBT/m in the ideal case. Comparing Equation (A3) with Equation (39), we see that
P(ρ) = D(ρ)ρ/χ. At equilibrium, we obtain the equation

∇P + ρ∇Φ = 0, (A4)

which can be interpreted as the condition of hydrostatic equilibrium stating that the pressure gradient
equilibrates the mean field force. This equation can also be written as

P′(ρ)
ρ

= − 1
ρ′(Φ)

= −Φ′(ρ), (A5)



Entropy 2019, 21, 1006 22 of 41

which is equivalent to Equation (30) if we make use of Equation (A2). We have

∫ P′(ρ)
ρ

dρ = −Φ, P(ρ) =
∫

Φ(ρ) dρ− ρΦ(ρ). (A6)

It is convenient to introduce the density of free energy

f (ρ) =
kBT
m

C(ρ), (A7)

so that the free energy functional from Equation (14) takes the form

F[ρ] =
∫

f (ρ) dr +
1
2

∫
ρΦ dr. (A8)

Equation (A2) then yields

P′(ρ) = ρ f ′′(ρ). (A9)

If we define the enthalpy h(ρ) by dh = dP/ρ, we get h(ρ) = f ′(ρ) =
∫
[P′(ρ)/ρ] dρ. The equation of

state P(ρ) is determined by the density of free energy from Equation (A7) according to

P(ρ) = ρ2
[

f (ρ)
ρ

]′
= f ′(ρ)ρ− f (ρ). (A10)

This relation, which can be rewritten as P = −d/d(1/ρ)( f /ρ), is the local version of the general
thermodynamic relation P = −∂F/∂V defining the pressure. Inversely, the density of free energy is
determined by the equation of state P(ρ) according to

f (ρ) = ρ
∫ ρ P(ρ′)

ρ′2
dρ′ = ρ

∫ ρ P′(ρ′)
ρ′

dρ′ − P(ρ). (A11)

Using Equation (A11), the free energy from Equation (14) can be written as

F[ρ] =
∫

ρ
∫ ρ P(ρ′)

ρ′2
dρ′dr +

1
2

∫
ρΦ dr. (A12)

According to Equations (A7) and (A10) we note that the pressure can be written as

P(ρ) = σ(ρ)
kBT
m

, (A13)

where σ(ρ) = C′(ρ)ρ− C(ρ) is a function that depends only on the density.

Appendix A.2. Weakly Inhomogeneous Systems

If the density varies weakly with the position, we find from Equation (6) that

Φ(r, t) ' −aρ(r, t), (A14)

where

a = −
∫

u(r) dr. (A15)

(If we go to the next order in the expansion, yielding Φ ' −aρ − K∆ρ, we obtain a generalized
Cahn-Hilliard equation associated with a square gradient free energy functional – see [50] for details
and discussion.) In that case, the free energy functional from Equation (14) becomes
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F[ρ] =
kBT
m

∫
C(ρ) dr− 1

2
a
∫

ρ2 dr. (A16)

The total density of free energy is

ftot(ρ) =
kBT
m

C(ρ)− 1
2

aρ2. (A17)

If we introduce an external potential Φext, the free energy functional is given by

F[ρ] =
∫

ftot(ρ)dr +
1
2

∫
ρΦext dr. (A18)

On the other hand, the generalized Smoluchowski Equation (A1) takes the form

ξ
∂ρ

∂t
= ∇ · (∇P− aρ∇ρ + ρ∇Φext). (A19)

It can be rewritten as

ξ
∂ρ

∂t
= ∇ · (∇Ptot + ρ∇Φext), (A20)

where

Ptot ≡ P− 1
2

aρ2 = σ(ρ)
kBT
m
− 1

2
aρ2 (A21)

is the total pressure. It takes into account the contribution of the pressure P arising from short-range
interactions (through the generalized entropy C(ρ)) and the contribution of the pressure − 1

2 aρ2 arising
from long-range interactions [through the potential of interaction u(|r− r′|)]. In particular, when

P =
ρ

1− ρ/ρ∗

kBT
m

, (A22)

corresponding to a generalized entropy of the form [110,111]

C(ρ) = ρ ln
(

ρ

ρ∗ − ρ

)
(A23)

taking excluded volume effects into account (this entropy can be obtained from a combinatorial
analysis [110,111]), we recover the celebrated van der Waals [153] equation of state

Ptot =
ρ

1− ρ/ρ∗

kBT
m
− 1

2
aρ2. (A24)

We note that Equation (A22) is exact for hard rods in one dimension [154], while it is only approximate
for hard spheres in 3D. Other examples of generalized entropies and their corresponding equations of
state (or the converse) are given in the following section and in [50,106].

Appendix A.3. Examples of Generalized Entropies

For a given generalized entropy C(ρ), the equation of state P(ρ) can be obtained from
Equation (A10) and the density–potential relation ρ(Φ) can be obtained from Equation (27).
Inversely, for a given equation of state P(ρ), the generalized entropy C(ρ) can be obtained from
Equation (A11) and the density–potential relation ρ(Φ) can be obtained from Equation (A6). For a
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given density–potential relation ρ(Φ), the generalized entropy can be obtained from Equation (29) and
the equation of state can be obtained from Equation (A6).

(i) For the Boltzmann entropy

C(ρ) = ρ ln
(

ρ

ρ∗

)
, (A25)

we get an isothermal equation of state and an exponential density–potential relation

P = ρ
kBT
m

, ρ = ρ∗e−βmΦ+α−1. (A26)

The Boltzmann entropy can be obtained from a standard combinatorial analysis.
(ii) For the Tsallis entropy [80]

C(ρ) =
1

γ− 1

[
ρ∗

(
ρ

ρ∗

)γ

− ρ

]
, (A27)

we get a polytropic equation of state and a power-law density–potential relation

P = ρ∗

(
ρ

ρ∗

)γ kBT
m

, ρ = ρ∗

(
1
γ

)1/(γ−1)

[(γ− 1)(−βmΦ + α) + 1]1/(γ−1)
+ . (A28)

The Boltzmann entropy from Equation (A25) is recovered for γ→ 1.
(iii) For the entropy [106]

C(ρ) = ρ ln(ρ/ρ∗) +
ρ∗
K
(1− Kρ/ρ∗) ln(1− Kρ/ρ∗), (A29)

we get

P = −ρ∗
K

ln(1− Kρ/ρ∗)
kBT
m

, ρ =
ρ∗

eβmΦ−α + K
. (A30)

This entropy includes the Fermi–Dirac entropy (K = +1) [81,82,102,132] and the Bose–Einstein entropy
(K = −1) [82,84]. These entropies can be obtained from a combinatorial analysis taking into account
exclusion or inclusion constraints in position space. For ρ � ρ∗ we recover the Boltzmann entropy
from Equation (A25).

(iv) For the entropy

C(ρ) = ρ ln(ρ/ρ∗)−
ρ∗
K
(1− Kρ/ρ∗) ln(1− Kρ/ρ∗), (A31)

we get

P =
[
2ρ +

ρ∗
K

ln(1− Kρ/ρ∗)
] kBT

m
, ρ =

ρ∗
2K

(
1±

√
1− 4Ke−βmΦ+α−2

)
. (A32)

For ρ� ρ∗ we recover the Boltzmann entropy from Equation (A25).
(v) For the entropy of the logotropic gas [129]

C(ρ) = Aρ∗ ln
(

ρ

ρ∗

)
, (A33)

we get

P(ρ) = A
[

1− ln
(

ρ

ρ∗

)]
ρ∗

kBT
m

, ρ =
Aρ∗

−βmΦ + α
. (A34)
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The logotropic equation of state, Equation (A34), has been used in a cosmological model [155].
(vi) For the entropy

C(ρ) = −Aρ∗

[
ln
(

ρ∗
ρ

)]δ

, (A35)

we get

P(ρ) = A
[

ln
(

ρ∗
ρ

)]δ−1 [
δ + ln

(
ρ∗
ρ

)]
ρ∗

kBT
m

, (A36)

ρ = ρ∗e
−(δ−1)W

[
1

δ−1

(
−βmΦ+α

δA

) 1
δ−1

]
, (A37)

where W(z) is the Lambert function defined by WeW = z. For δ = 1, we recover the logotropic gas
(see Equation (A33)).

(vii) For the entropy

C(ρ) = Aρ∗

(
ρ

ρ∗

)γ

ln
(

ρ

ρ∗

)
, (A38)

we get

P(ρ) = A
(

ρ

ρ∗

)γ [
1 + (γ− 1) ln

(
ρ

ρ∗

)]
ρ∗

kBT
m

, (A39)

ρ = ρ∗
1

e1/γ
e

1
γ−1 W

[
γ−1
γA e

γ−1
γ (−βmΦ+α)

]
. (A40)

For γ = 1 we recover the Boltzmann gas and for γ = 0 we recover the logotropic gas. The entropy
from Equation (A38) yields the Anton-Schmidt equation of state (see Equation (A50)).

(viii) For the entropy

C(ρ) = −Aρ

[
ln
(

ρ∗
ρ

)]δ

, (A41)

we get

P(ρ) = Aδ

[
ln
(

ρ∗
ρ

)]δ−1
ρ

kBT
m

, ρ = ρ∗e−1−
√

1−(α−βmΦ)/A (δ = 2). (A42)

For δ = 1 we recover the Boltzmann gas. The entropy from Equation (A41) has been applied to black
hole physics [156].

(ix) For the entropy

C(ρ) = −Aρ∗

(
ρ

ρ∗

)γ [
ln
(

ρ∗
ρ

)]δ

, (A43)

we get

P(ρ) = A
(

ρ

ρ∗

)γ [
ln
(

ρ∗
ρ

)]δ−1 [
δ− (γ− 1) ln

(
ρ∗
ρ

)]
ρ∗

kBT
m

. (A44)
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This entropy contains all the particular cases described previously.
(x) For the Carnahan-Starling equation of state [157]

P = ρ
1 + η + η2 − η3

(1− η)3
kBT
m

, (A45)

where η = ρ/ρ∗, we get

C(ρ) = ρ

[
ln(ρ/ρ∗) +

3− 2η

(1− η)2

]
. (A46)

The Carnahan-Starling equation of state provides a very good approximation of the equation of state
of a gas of hard spheres in 3D. For ρ� ρ∗ we recover the isothermal equation of state P = ρkBT/m.

(xi) For the equation of state

P =
(√

1 + ρ/ρ∗ − 1
)2

ρ∗
kBT
m

, (A47)

we get

C(ρ) = −ρ + 2ρ∗
√

1 + ρ/ρ∗ + 2ρ ln(1 +
√

1 + ρ/ρ∗), (A48)

ρ = ρ∗
[
e−βmΦ+α − 2e

1
2 (−βmΦ+α)

]
. (A49)

This equation of state has been used in a model of supernovae [158]. For ρ � ρ∗ we obtain the
isothermal equation of state P = ρkBT/m (Boltzmann) and for ρ � ρ∗ we obtain the polytropic

equation of state P = 1
4

ρ2

ρ∗
kBT
m of index γ = 2 (Tsallis).

(xii) For the Anton-Schmidt equation of state [159]

P(ρ) = A
(

ρ

ρ∗

)γ

ln
(

ρ

ρ∗

)
ρ∗

kBT
m

, (A50)

we get

C(ρ) =
A

(γ− 1)2

(
ρ

ρ∗

)γ [
(γ− 1) ln

(
ρ

ρ∗

)
− 1
]

. (A51)

This corresponds to the entropy from Equation (A38). For γ = 0 we recover the logotropic gas.
(xiii) For the equation of state

P(ρ) = −A
[

ln
(

ρ∗
ρ

)]δ

ρ
kBT
m

, (A52)

we get

C(ρ) =
Aρ

δ + 1

[
ln
(

ρ∗
ρ

)]δ+1
. (A53)

This corresponds to the entropy from Equation (A41). For δ = 0 we recover the Boltzmann gas.
(xiv) For the equation of state

P(ρ) = −A
(

ρ

ρ∗

)γ [
ln
(

ρ∗
ρ

)]δ

ρ∗
kBT
m

, (A54)
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we get

C(ρ) = − Aρ

(γ− 1)δ+1 Γ
[

1 + δ, (γ− 1) ln
(

ρ∗
ρ

)]
, (A55)

where Γ(a, x) =
∫ +∞

x e−tta−1 dt is the incomplete Gamma function. This equation of state contains all
the particular cases described previously.

(xv) For a stretched exponential density–potential relation

ρ = ρ∗ e−(βmΦ−α)δ
, (A56)

we get

C(ρ) = −ρ∗Γ
[

δ + 1
δ

, ln
(

ρ∗
ρ

)]
, P =

1
δ

Γ
[

1
δ

, ln
(

ρ∗
ρ

)]
ρ∗

kBT
m

. (A57)

Appendix B. The Functional Fokker-Planck Equation

Appendix B.1. Derivation of the Functional Fokker-Planck Equation

The generalized stochastic Smoluchowski Equation (83) can be written as

∂ρ

∂t
= ∇ ·

[
χg(ρ)∇ δF

δρ

]
+ ζ(r, t), (A58)

where

ζ(r, t) = ∇ ·
[√

2χkBTg(ρ)R(r, t)
]

(A59)

is a Gaussian white noise with zero mean and correlation function〈
ζ(r, t)ζ(r′, t′)

〉
= 2χkBT(∇ · ∇′)g(ρ)δ(r− r′)δ(t− t′). (A60)

Equation (A58) can be interpreted as a Langevin equation for ρ(r, t). We now turn to the derivation
of the Fokker-Planck equation for the density distribution functional P[ρ, t]. Since the noise in
Equation (A58) is multiplicative (it depends on ρ), we must specify the meaning of the stochastic
integral associated with the random noise ζ(r, t). From the requirement that the Fokker-Planck
equation should have the stationary distribution function Peq ∝ exp(−βF[ρ]) the integral will be
treated as an Ito type one. If we express the increment of density ρ(r) between t and t + ∆t by ∆ρ(r)
we see from Equations (A58) and (A60) that

〈∆ρ(r)〉
∆t

= −∇ · J = ∇ ·
[

χg(ρ)∇ δF
δρ

]
(A61)

and

〈∆ρ(r)∆ρ(r′)〉
2∆t

= χkBT(∇ · ∇′)g(ρ)δ(r− r′). (A62)

Denoting bt P[ρ(r), t] the probability functional for the density field ρ(r) at time t, the Fokker-Planck
equation associated with the Langevin Equation (A58) is given by

∂P
∂t [ρ, t] = −

∫
dr δ

δρ(r)

{
P∇ ·

[
χg(ρ)∇ δF

δρ

]}
+
∫

drdr′ δ2

δρ(r)δρ(r′) [PχkBT(∇ · ∇′)g(ρ)δ(r− r′)] . (A63)
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The second term can be rewritten as∫
dr δ

δρ(r)∇ ·
∫

dr′ δ
δρ(r′) [PχkBT∇′g(ρ)δ(r− r′)]

= −
∫

dr δ
δρ(r)∇ ·

∫
dr′∇′

(
δP

δρ(r′)

)
χkBTg(ρ)δ(r− r′)

= −
∫

dr δ
δρ(r)∇ · χkBTg(ρ)∇ δP

δρ(r) .

(A64)

This yields the following functional Fokker-Planck equation

∂P
∂t [ρ, t] = −

∫
dr δ

δρ(r)

{
∇ ·

[
χg(ρ)∇ δF

δρ(r)

]
P + kBT∇ · χg(ρ)∇ δP

δρ(r)

}
= −

∫
dr δ

δρ(r)

{
∇ · χg(ρ)∇

[
kBT δ

δρ(r) +
δF

δρ(r)

]
P
}

,
(A65)

which is Equation (84). It can be written as

∂P
∂t

[ρ, t] = −
∫

dr
δ

δρ(r)
∇ · J [P], (A66)

where

J [P] = χg(ρ)∇
(

kBT
δ

δρ
+

δF
δρ

)
P (A67)

is the functional Fokker-Planck current. The equilibrium solution of Equation (84) is given by
Equation (17) as can be checked by direct substitution. Therefore, the Langevin Equation (83) samples,
at equilibrium, the density field ρ(r) according to the weight exp(−βF[ρ]).

Appendix B.2. H-Theorem

We introduce the free energy functional

F [P] =
∫

P[ρ, t]F[ρ]Dρ + kBT
∫

P[ρ, t] ln P[ρ, t]Dρ. (A68)

Using the Fokker-Planck Equation (A65), the rate of dissipation of free energy is

d
dtF [P] =

∫
Dρ (kBT ln P + kBT + F) ∂P

∂t
= −

∫
drDρ (kBT ln P + kBT + F) δ

δρ∇ · J [P]

=
∫

drDρ
(

kBT
P

δP
δρ + δF

δρ

)
∇ · J [P]

= −
∫

drDρ∇
(

kBT
P

δP
δρ + δF

δρ

)
· J [P]

= −
∫

drDρ
χg(ρ)

P

[
∇
(

kBT δ
δρ + δF

δρ

)
P
]2

.

(A69)

This yields the H-theorem:

Ḟ ≤ 0, Ḟ = 0 ⇔ J = 0. (A70)

Therefore F decreases in time monotonically until P[ρ, t] takes the form of Equation (17).
If we consider the average free energy

〈F〉 =
∫

P[ρ, t]F[ρ]Dρ, (A71)
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we find that

d
dt 〈F〉 =

∫
Dρ F ∂P

∂t
= −

∫
drDρ F δ

δρ∇ · J [P]
=

∫
drDρ δF

δρ∇ · J [P]
= −

∫
drDρ∇ δF

δρ · J [P]

= −
∫

drDρ χg(ρ)
(
∇ δF

δρ

)2
P− kBT

∫
drDρ χg(ρ)∇ δF

δρ · ∇
δP
δρ .

(A72)

The first term in the right hand side of the last line of Equation (A72) is the rate of dissipation of free
energy from Equation (57) without fluctuations; it is always negative. The second term arises from the
effect of fluctuations; it may be of any sign. Therefore, we do not have d

dt 〈F〉 ≤ 0 for the average free
energy in the presence of fluctuations (noise). This is expected since the fluctuations can allow the free
energy to increase. In this manner the system can cross the barrier of free energy played by the “critical
nucleus” and trigger the transition from the metastable state to the stable state. This corresponds to
the uphill path in the instanton theory (see Section 4.2). In conclusion, the fluctuations prevent the
density field ρ(r, t) from being trapped in a local minimum of free energy F[ρ] and allow it to explore
the complete free energy landscape.

Appendix B.3. Onsager’s Linear Thermodynamics and Maximum Free Energy Dissipation Principle

The rate of dissipation of free energy is (see Equation (A69))

Ḟ [J ] = −
∫

drDρ∇
(

kBT
P

δP
δρ

+
δF
δρ

)
· J [P]. (A73)

Using arguments of linear thermodynamics similar to those of Section 3.8, the foregoing equation
induces us to introduce a current of the form

J [P] = χ(ρ, t)∇
(

kBT
δ

δρ
+

δF
δρ

)
P, (A74)

with χ(ρ, t) ≥ 0, in order to get the H-theorem Ḟ ≤ 0. Equation (A74) coincides with the current
from Equation (A67) with χ(ρ, t) = χg(ρ). Therefore, the functional Fokker-Planck Equation (A65) is
consistent with Onsager’s linear thermodynamics. We can also obtain the Fokker-Planck current from
Equation (A67) by a maximum free energy dissipation principle like in Section 3.9. To that purpose,
we introduce the dissipation function

Ed[J ] =
∫

drDρ
J 2

χg(ρ)P
. (A75)

We can then check that the maximization problem

max
J

{
−Ḟ [J ]− Ed[J ]

}
(A76)

yields the Fokker-Planck current from Equation (A67).

Appendix C. Density Functional Theory for Simple Liquids

In this Appendix, we review the main results obtained in the density functional theory of simple
liquids and discuss the connection with our approach.
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Appendix C.1. The N-body Smoluchowski Equation

Let us consider a system of N Brownian particles in interaction in the strong friction limit ξ → +∞.
In this Appendix, small-scale (microscopic) constraints are taken into account in the potential of
interaction. The dynamics of the particles is described by the stochastic Langevin equations [23,62,77]

dri
dt

= − χ

m
∇iU(r1, ..., rN) +

√
2D Ri(t), (A77)

where U(r1, ..., rN) is the potential of interaction and Ri(t) is a Gaussian white noise satisfying
〈Ri(t)〉 = 0 and 〈Ra

i (t)Rb
j (t
′)〉 = δijδabδ(t− t′). The evolution of the N-body distribution function

PN(r1, ..., rN , t) is governed by the N-body Smoluchowski equation [22,23,59,62,160]

∂PN
∂t

=
N

∑
i=1

∂

∂ri
·
[

D
∂PN
∂ri

+
χ

m
PN

∂

∂ri
U(r1, ..., rN)

]
. (A78)

Using the Einstein relation from Equation (2), we find that the equilibrium solution of the N-body
Smoluchowski equation is the canonical distribution [62,161]

PN(r1, ..., rN) =
1

Z(β)
e−βU(r1,...,rN), (A79)

where Z(β) is the partition function determined by the normalization condition I ≡
∫

PN dr1...drN = 1.
The N-body distribution from Equation (A79) corresponds to the statistical equilibrium state of the
Brownian particles in the canonical ensemble. It gives the probability density of the microstate
{r1, ..., rN}.

The proper thermodynamical potential in the canonical ensemble is the free energy

F[PN ] = E[PN ]− TS[PN ], (A80)

where the energy and the entropy of the N-body system are given by [23,161]

E[PN ] =
3
2

NkBT +
∫

PNU dr1...drN , (A81)

S[PN ] = −kB

∫
PN ln

(
h3N

m3N N! PN

)
dr1...drN +

3
2

NkB ln
(

2πkBT
m

)
+

3
2

NkB. (A82)

The free energy is explicitly given by

F[PN ] =
∫

PNU dr1...drN + kBT
∫

PN ln
(

h3N

m3N N! PN

)
dr1...drN −

3
2

NkBT ln
(

2πkBT
m

)
. (A83)

The N-body Smoluchowski equation satisfies an H-theorem for the free energy defined by
Equation (A83). Indeed, a simple calculation shows that [23]

Ḟ = −
N

∑
i=1

∫ m
ξPN

(
kBT
m

∂PN
∂ri

+
1
m

PN
∂U
∂ri

)2
dr1...drN . (A84)

Therefore, Ḟ ≤ 0 and Ḟ = 0 if, and only if, the term in parenthesis vanishes. This leads to the canonical
distribution from Equation (A79). Because of the H-theorem, the system converges towards the
canonical distribution from Equation (A79) for t → +∞ (provided that Z < +∞). The canonical
distribution from Equation (A79) is the (unique) minimum of F[PN ] satisfying the normalization
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condition constraint. Indeed, the cancelation of the first variations δF− µδI = 0, where µ is a Lagrange

multiplier, returns Equation (A79) and the second variations δ2F = 1
2

∫ (δPN)2

PN
dr1...drN ≥ 0 are positive.

Appendix C.2. The Deterministic Dynamical Density Functional Theory

The preceding results are completely general. From now on, we assume that the particles
interact via a binary potential so that U(r1, ..., rN) = ∑i<j m2uij where uij = u(|ri − rj|).
Starting from the N-body Smoluchowski Equation (A78) and writing down the equivalent of the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for the reduced probability distributions
Pj(r1, ..., rj, t), we find that the equation for the average density (or one-body distribution function) of
Brownian particles ρ(r, t) = NmP1(r, t) is [22,23,59,62,160]

∂ρ

∂t
= ∇ ·

[
D∇ρ + χ

∫
ρ2(r, r′, t)∇u(|r− r′|) dr′

]
, (A85)

where ρ2(r, r′, t) = N(N− 1)m2P2(r, r′, t) is the two-body distribution function. At equilibrium, we get
the Yvon–Born–Green (YBG) equation [162,163]

kBT
m
∇ρ +

∫
ρ2(r, r′)∇u(|r− r′|) dr′ = 0. (A86)

This equation can be obtained either as the equilibrium solution of Equation (A85) or by considering
the first equation in the hierarchy for the reduced probability distributions Pj(r1, ..., rj) obtained from
the canonical distribution from Equation (A79) [23,62,161].

On the other hand, it can be shown [55] that the equilibrium density ρ(r) minimizes a certain free
energy functional F[ρ] at fixed mass, i.e.,

min
ρ(r)

{F[ρ] | M[ρ] = M}. (A87)

This free energy functional can be written as

F[ρ] = Fid[ρ] + Fex[ρ], (A88)

where

Fid =
kBT
m

∫
ρ
[
ln
(

λ3 ρ

m

)
− 1
]

dr (A89)

is the ideal Bolzmann free energy (where λ = h/
√

2πmkBT is the de Broglie wavelength) and Fex[ρ] is
the excess free energy which takes the correlations into account. The equilibrium states are given by
the condition

δF− µ

m
δM = 0 ⇔ δF

δρ
=

µ

m
, (A90)

where µ is a Lagrange multiplier interpreted as a chemical potential. Using Equation (A89),
Equation (A90) can be written as

kBT
m

ln
(

λ3 ρ

m

)
+

δFex

δρ
=

µ

m
. (A91)

Taking the gradient of this relation, we get [164,165]

kBT
m
∇ρ + ρ∇ δFex

δρ
= 0. (A92)
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Comparing Equation (A92) with Equation (A86), we find that [55]∫
ρ2(r, r′)∇u(|r− r′|) dr′ = ρ(r)∇ δFex

δρ
[ρ(r)]. (A93)

This equation is exact at equilibrium. The idea of the dynamical density functional theory is to extend
this relation out-of-equilibrium, i.e., to make the approximation [60,61]∫

ρ2(r, r′, t)∇u(|r− r′|) dr′ = ρ(r, t)∇ · δFex

δρ
[ρ(r, t)], (A94)

where Fex[ρ] is the equilibrium excess free energy. This closure is equivalent to assuming that the two-body
dynamic correlations are the same as those in an equilibrium fluid with the same one-body density profile.
Substituting this relation into Equation (A85), we obtain the gradient flow equation [60,61]

∂ρ

∂t
= ∇ ·

(
χρ∇ δF

δρ

)
. (A95)

We note that the mobility is proportional to the density ρ(r, t).
Bibliographic note: The gradient flow Equation (A95) was obtained from the method described above

by Marconi and Tarazona [60,61]. However, this equation was introduced earlier by several authors from
(i) Onsager’s linear thermodynamics [51,54,55,57–59,74–76]; (ii) the strong friction limit of the Kramers
equation [52,53]; (iii) the projection operator formalism [56]. This equation can be viewed as a generalization
of the Cahn-Hilliard equation based on the square gradient functional [166,167].

Appendix C.3. The Stochastic Dynamical Density Functional Theory

Starting from the Langevin Equation (A77), Dean [77] has shown that the discrete density
ρd(r, t) = ∑i mδ(r− ri(t)) of the Brownian particles, which is a sum of Dirac distributions, is governed
by a stochastic equation of the form

∂ρd
∂t

= ∇ ·
(

χρd∇
δFd
δρd

)
+∇ ·

[√
2χkBTρd R(r, t)

]
, (A96)

where R(r, t) is a Gaussian white noise satisfying 〈R(r, t)〉 = 0 and 〈Ra(r, t)Rb(r′, t′)〉 = δabδ(r −
r′)δ(t− t′), and Fd[ρd] is the discrete free energy

Fd =
kBT
m

∫
ρd ln ρd dr +

1
2

∫
ρd(r, t)u(|r− r′|)ρd(r

′, t) drdr′. (A97)

The Dean equation can be written explicitly as

∂ρd
∂t

= ∇ ·
[

D∇ρd + χρd∇
∫

ρd(r
′, t)u(|r− r′|) dr′

]
+∇ ·

[√
2χkBTρd R(r, t)

]
. (A98)

This equation is exact in the sense that it is equivalent to the Langevin Equation (A77) or to the
N-body Smoluchowski Equation (A78). If we take the ensemble average of the Dean Equation (A98),
we obtain [60,61]

∂ρ

∂t
= ∇ ·

[
D∇ρ + χ

∫
〈ρd(r, t)ρd(r

′, t)〉∇u(|r− r′|) dr′
]

, (A99)

which coincides with Equation (A85) after noting that 〈ρd(r, t)ρd(r′, t)〉 = ρ(r, t)mδ(r− r′) + ρ2(r, r′, t).
Then, using the Ansatz from Equation (A94), we obtain the deterministic Smoluchowski Equation (A95).
Alternatively, if we use a mesoscopic approach and coarse-grain the Dean Equation (A96), while
keeping track of fluctuations, we obtain the stochastic Smoluchowski equation [78]
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∂ρ

∂t
= ∇ ·

(
χρ∇ δF

δρ

)
+∇ ·

[√
2χkBTρ R(r, t)

]
, (A100)

where, now, F is the free energy from Equation (A88) which is obviously very different from
Equation (A97). This equation can also be obtained from the theory of fluctuating hydrodynamics [14,63].
While they have a similar mathematical structure, the Dean Equation (A96) and the stochastic
Smoluchowski Equation (A100) are physically very different from each other as explained in Section 4.1
(see also the discussion in [78]).

Bibliographic note: The mesoscopic Smoluchowski Equation (A100) was first obtained by
Munakata [74–76] by taking the overdamped limit of the hydrodynamic equations derived
by Kirkpatrick and Wolynes [58]. This equation can be viewed as a generalization of the
stochastic Cahn-Hilliard equation based on the square gradient functional [168,169]. The functional
Fokker-Planck equation associated with the Dean Equation (A96) can be written as Equation (84)
with g(ρ) = ρ and with the free energy from Equation (A97). It was first written by Frusawa and
Hayakawa [170]. The functional Fokker-Planck equation associated with the mesoscopic Smoluchowski
Equation (A100) can be written as Equation (84) with g(ρ) = ρ and with the free energy from
Equation (A88). It was first written by Munakata [74–76] and Kawasaki [171]. This equation can be
viewed as a generalization of the functional Fokker-Planck equation associated with the stochastic
Cahn-Hilliard equation based on the square gradient functional [172].

Appendix C.4. The Direct Correlation Function

The preceding equations are general and, to some extent, rigorous (they rely on the approximation
from Equation (A95) which has been shown to be very good in many cases). The difficulty now is to
obtain the expression of the excess free energy functional Fex[ρ]. This functional is known exactly only
for some simple systems such as hard rods in one dimension [173], but approximate expressions can
be obtained in more general situations (see [152] for some standard methods).

In many models of liquids, the excess free energy is written under the quadratic form

Fex[ρ] =
1
2

∫
ρ(r, t)ueff(|r− r′|)ρ(r′, t) drdr′, (A101)

where ueff(|r− r′|) is an effective potential of interaction that takes correlations into account. It usually
differs from the bare potential of interaction u(|r− r′|). It is related to the direct correlation function

c(r, r′) = −βm2 δ2Fex

δρ(r)δρ(r′)
(A102)

by

ueff(|r− r′|) = − kBT
m2 c(|r− r′|). (A103)

This relation first appeared in a work of Zwanzig [174]. In general, the direct correlation function
c(r, r′) can be obtained either experimentally or by approximate methods. It then determines the
effective potential of interaction ueff(|r − r′|) through Equation (A103) and the excess free energy
through Equation (A101). The total free energy can be written as

F[ρ] =
kBT
m

∫
ρ
[
ln
(

λ3 ρ

m

)
− 1
]

dr +
1
2

∫
ρ(r, t)ueff(|r− r′|)ρ(r′, t) drdr′. (A104)

We see that the results obtained for systems with long-range interactions in the mean field
approximation (as described in this paper) can be applied to simple liquids provided that the potential
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of interaction u(|r− r′|) is replaced by the effective potential of interaction ueff(|r− r′|). In that case,
we must also take C(ρ) = ρ ln(λ3 ρ

m ) (ideal Boltzmann entropy) and g(ρ) = ρ (constant mobility).
For systems with purely long-range interactions, we have [64]

ueff(|r− r′|) = uLR(|r− r′|). (A105)

If we now consider systems with short-range interactions and long-range interactions, we can apply
the results of this paper by replacing u by [62,63]

utot(|r− r′|) = − kBT
m2 c(|r− r′|) + uLR(|r− r′|). (A106)

The first term is the effective potential of interaction ueff(|r− r′|) taking into account correlations due
to short-range interactions as described in this Appendix and the second term takes into account
long-range interactions in a mean field approximation. To determine the direct correlation function
c(|r− r′|) one can use, for example, the Percus-Yevick [175] integral equation. Its solution is known
exactly for the special case of a fluid of hard spheres [176–178] but approximate expressions can be
obtained in more general situations.

Appendix C.5. Weakly Inhomogeneous Systems

In this Appendix, we first assume that the potential of interaction is short-ranged. If the density
varies weakly with the position we can write the excess free energy as

Fex[ρ] =
∫

fex(ρ) dr. (A107)

The excess free energy density fex(ρ) can be obtained from the model discussed in Appendix C.4 as
follows. First, we have to realize that, in general, the direct correlation function c(|r− r′|; ρ) depends
explicitly on the density, even though we ignore this dependence when we take functional derivatives.
The excess free energy can then be written as

Fex[ρ] =
1
2

∫
ρ(r, t)ueff(|r− r′|; ρ)ρ(r′, t) drdr′. (A108)

If the density varies weakly with the position, we get

Fex[ρ] = −
1
2

∫
a(ρ)ρ2 dr (A109)

with

a(ρ) = −
∫

ueff(r; ρ) dr. (A110)

Therefore, the excess free energy density is given by

fex(ρ) = −
1
2

a(ρ)ρ2. (A111)

For short-range interactions, the excess free energy is usually proportional to the temperature T so that

fex(ρ) =
kBT
m

ϕex(ρ), (A112)

where ϕex(ρ) is a function that depends only on the density. In that case, the total free energy
F = Fid + Fex can be written as



Entropy 2019, 21, 1006 35 of 41

F[ρ] =
kBT
m

∫
C(ρ) dr, (A113)

where

C(ρ) = ρ
[
ln
(

λ3 ρ

m

)
− 1
]
+ ϕex(ρ). (A114)

Correspondingly, the pressure is given by

P(ρ) = Pid(ρ) + Pex(ρ) = ρ
kBT
m

+ σex(ρ)
kBT
m

= σ(ρ)
kBT
m

, (A115)

where σex(ρ) = ϕ′ex(ρ)ρ− ϕex(ρ) and σ(ρ) = ρ + σex(ρ) (see Appendix A). This is a manner to justify
from a microscopic model the generalized free energy introduced in Section 2. If we now add a
potential of long-range interactions (using a mean field approximation) we recover the model treated
in this paper with g(ρ) = ρ.
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