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Abstract: Mutual information and its causal variant, directed information, have been widely used
to quantitatively characterize the performance of biological sensing and information transduction.
However, once coupled with selection in response to decision-making, the sensing signal could have
more or less evolutionary value than its mutual or directed information. In this work, we show
that an individually sensed signal always has a better fitness value, on average, than its mutual or
directed information. The fitness gain, which satisfies fluctuation relations (FRs), is attributed to the
selection of organisms in a population that obtain a better sensing signal by chance. A new quantity,
similar to the coarse-grained entropy production in information thermodynamics, is introduced to
quantify the total fitness gain from individual sensing, which also satisfies FRs. Using this quantity,
the optimizing fitness gain of individual sensing is shown to be related to fidelity allocations for individual
environmental histories. Our results are supplemented by numerical verifications of FRs, and a discussion
on how this problem is linked to information encoding and decoding.

Keywords: fluctuation theorem; evolution; decision-making; directed information; information
thermodynamics; auto-encoder

1. Introduction

Most biological systems are equipped with active sensing machinery to monitor the ever-changing
environment. The fidelity of sensing is crucial to choosing appropriate states and behaviors in
response to changes in environmental states [1–3]. Instantaneous mutual information, path-wise mutual
information, and its causal variant, directed information, have been used to quantitatively characterize the
performance of the sensing and information transduction, theoretically [4–7] and experimentally [8–11].
These information measures are also fundamental to the thermodynamic cost of sensing [12–16].

However, it is still elusive whether these measures can appropriately quantify the biological and
fitness value of sensed information. Despite intensive works on the fitness value of information [17–25],
almost all works considered a biologically unrealistic situation in which all cells or organisms in a
population receive a common sensing signal, which is the requisite for proving that the fitness value of
sensing is bounded by the information measures. Few studies have conjectured that biologically realistic
sensing by individual organisms may have greater fitness value than these measures [22,25].

In this work, we resolve this problem by generally proving that the individual sensing always has
greater fitness value than common sensing does. The additional fitness gain, which satisfies fluctuation
relations (FRs), is attributed to the selection of organisms that obtains a correct sensing signal by chance.
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A new quantity, which is similar to the coarse-grained entropy production in information thermodynamics,
is introduced to quantify the total fitness gain from the individual sensing, the upper bound of which is
strictly higher than the directed information. We further show that the optimization of this quantity is
closely related to optimizing an auto-encoding network, in which sensing, phenotypic switching, and
metabolic allocation work as encoding, processing, and decoding, respectively. Our general results,
especially those for FRs, are verified by a numerical simulations.

2. Modeling Sensing and Adaptation Processes

We consider a population of an asexual organism that replicates with an instantaneous replication rate
k(x, y), depending on its phenotype x ∈ Sx and the state of environment y ∈ Sy, where the phenotypic
and environmental states are assumed to be discrete and finite, for simplicity. The organism switches
its phenotype stochastically from x to x′ by exploiting sensing signal z ∈ Sz with a transition probability
TF(x′|x, z) within a small time interval ∆t. Depending on the physical entity of z, the sensing can be
categorized as either individual or common sensing [22,25]. In the case of individual sensing, z is the
state of a sensing system of the organism, such as the activity of receptors. Due to the stochasticity in the
sensing process, the individual organisms receive different sensing signals z (Figure 1a). By assuming
that the stochastic sensing output z depends on the state of the environment y as TS(z′|z, y′), we describe
the dynamics of the number of organisms N Y

t (xt, zt) that have phenotypic state xt with sensing signal zt

at t as

N Y
t+1(xt+1, zt+1) = ek(xt+1,yt+1) × ∑

xt ,zt

TF(xt+1|xt, zt+1)TS(zt+1|zt, yt+1)N Y
t (xt, zt), (1)

where Yt := {y0, · · · , yt} is the history of the environmental state, the statistical properties of which are
characterized by a path probability Q[Yt]. In this representation, we implicitly assume a causal dependency
among xt, yt, and zt as · · · → yt → zt → xt → yt+1 → zt+1 → xt+1 → · · · . Such representation has been
conventionally used for notational simplicity.

t’ tt’+1 t’ tt’+1

Environmental history

(a) Environmental history

Common signal history

(b)

Figure 1. Schematic diagrams of population dynamics of cells with individual (a) and common (b) sensing.
The colors of cells and molecules on the cells represent phenotypic states and sensing signal, respectively.
Bars on the diagrams indicate the histories of environmental states and common sensing. In (a), the sensing
singal of each cell is correlated with the environmental state but has an intercellular variation due to the
stochasticity of individual sensing. In (b), on the other hand, all the cells at certain time points share the
same sensing signal, which is shown by the background colors in the diagram.
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In contrast, in the case of common sensing, z is assumed to be partial information on the environmental
state that is common to all organisms [26,27] (Figure 1b). An example is an extracellular chemical
that correlates with the environmental state and can be sensed by the organisms with negligible error.
The dynamics of the number of organisms N Y ,Z

t (xt) with phenotypic state x at time t under a realization
of environmental and common signal histories, Yt and Zt, can be represented as

N Y ,Z
t+1 (xt+1) =ek(xt+1,yt+1) × ∑

xt∈Sx
TF(xt+1|xt, zt+1)N Y ,Z

t (xt). (2)

We assume that the history of the common signal Zt := {z0, · · · , zt} follows a statistical law Q[Zt‖Yt],
which is causally conditional on the environmental history. At this stage, the statistical property of the
common signal is abstractly represented as Q[Zt‖Yt]. However, in the following, we are going to assume
that Q[Zt‖Yt] is identical to the path probability generated by the sensing law of the individual sensing,
TS(z′|z, y′), to clarify the difference of individual and common sensing. While common sensing is not
biologically realistic enough, most previous works on the fitness value of information only addressed
common sensing, and proved that the fitness gain of common sensing is upper bounded by the directed
information [26,27].

Before deriving relations between fitness gain and information measures, we will mention the
limitations of the model we assumed. In our modeling above, we did not include the carrying capacity of
the environment, which works to reduce the growth of individual cells when the number of cells in the
environment approaches the capacity. Additionally, we also assumed that cells cannot affect the behavior
of the environment. Even though these factors are biologically important and also theoretically intriguing,
we did not assume them, as the following information-theoretic analysis of the population dynamics
cannot be applicable at this moment. We touch on potential extensions of this work to include these factors
in our Discussion.

Fitness of a Population with Individual and Common Sensing

The fitness of a population with individual sensing Ψi[Yt] and with common sensing Ψc[Yt, Zt] can be
defined respectively as

Ψi[Yt] := ln
N Y

t

N Y
0

, Ψc[Yt, Zt] := ln
N Y ,Z

t

N Y ,Z
0

, (3)

where N Y
t := ∑xt ,zt N

Y
t (xt, zt) and N Y ,Z

t := ∑xt N
Y ,Z
t (xt). We define a pathwise historical fitness [28]

K[Xt, Yt] :=
t−1

∑
τ=0

k(xτ+1, yτ+1), (4)

and path probabilities for phenotypic and signal histories

PF[Xt‖Zt] :=

[
t−1

∏
τ=0

TF(xτ+1|xτ , zτ+1)

]
pF(x0|z0), (5)

PS[Zt‖Yt] :=

[
t−1

∏
τ=0

TS(zτ+1|zτ , yτ+1)

]
pS(z0|y0), (6)

respectively. Then, by using Equations (1) and (2), we can explicitly represent the fitnesses [26–29] as
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Ψi[Yt] = ln
〈

eK[Xt ,Yt ]
〉
PF,S [Xt |Yt ]

, (7)

Ψc[Yt, Zt] = ln
〈

eK[Xt ,Yt ]
〉
PF [Xt‖Zt ]

, (8)

where 〈·〉P[Xt ]
is the average with respect to P[Xt], and PF,S[Xt|Yt] := ∑Zt PF[Xt‖Zt]PS[Zt‖Yt] (see also

Appendix A.1 for the derivation). Here, ‖ is the Kramer’s causal conditioning, which indicate a causal
relation between the conditioning and the conditioned histories [30,31]. Using the path representation of
the fitnesses, we can define the time-backward retrospective path probabilities as

Pi
B[Xt, Zt|Yt] :=

N Y
t [Xt, Zt, Yt]

N Y
t

= eK[Xt ,Yt ]−Ψi [Yt ]PF[Xt‖Zt]PS[Zt‖Yt], (9)

Pc
B[Xt|Yt, Zt] :=

N Y ,Z
t [Xt, Zt, Yt]

N Y ,Z
t

= eK[Xt ,Yt ]−Ψc [Yt ,Zt ]PF[Xt‖Zt], , (10)

where N Y
t [Xt, Zt, Yt] is the number of cells at time t that have phenotypic and individual sensing histories,

Xt and Zt, under the realization of environmental history Yt. Similarly, N Y ,Z
t [Xt, Zt, Yt] is the number of

cells at time t that have phenotypic history, Xt, under the realization of environmental and common sensing
histories Yt and Zt. Thus, Pi

B and Pc
B can be interpreted as the probabilities of observing a phenotypic

history Xt when we trace the phenotypic history from time t to time 0 in a time-backward manner,
retrospectively [26,27,29]. In contrast, PF[Xt‖Zt] is the probability of observing Xt when we trace the
phenotypic history in a time forward manner [26,27,29]. The difference between the two is attributed to the
impact of selection, which can be characterized by investigating a population after selection, retrospectively.

3. Stochastic Trajectories of Individual and Common Sensing

In order to provide numerical examples of the difference between individual and common sensing,
we consider a Markovian environment with three states, Sy = {sy

1, sy
2, sy

3}, and a population with two
phenotypic states, Sx = {sx

1 , sx
2}. Of the three environmental states, sy

1 and s
y
2 are nutrient A- and nutrient

B-rich environments, respectively. The environmental states fluctuate between these two states, most of
time (Figure 2a). In contrast, sy

3 is a nutrient-poor environment, in which the growth of the population
is limited (Figure 2b). The environmental state occasionally sojourns in this state s

y
3 from either sy

1 or sy
2

(Figure 2a). The rule for these stochastic transitions among the environmental states is specified by a
stochastic transition matrix, TF

E(y
′|y), from y to y′:

{TF
E(y
′|y)} =


s

y
1 s

y
2 s

y
3

s
y
1 0.70 0.25 0.25

s
y
2 0.25 0.70 0.25

s
y
3 0.05 0.05 0.50

. (11)

The two phenotypic states, sx
1 and sx

2 , are assumed to be adapted specifically to the nutrient A-rich
state s

y
1 and the nutrient B-rich state s

y
2, respectively. These are modeled by the replication rates k(sx

1 , sy
1)

and k(sx
2 , sy

2) in the adaptive environments, which are higher than those of k(sx
1 , sy

2) and k(sx
2 , sy

1) in the
non-adaptive environment (Figure 2b):
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{ek(x,y)} =
( s

y
1 s

y
2 s

y
3

sx
1 2.24 0.32 0.08

sx
2 0.32 2.24 0.08

)
. (12)

The sensing signal has two states, Sz = {sz
1, sz

2}, which correspond to the nutrient A- and nutrient
B-rich environments, sy

1 and s
y
2, respectively. A cell in the case of individual sensing, or cells in the case

of the common sensing, receive sz
1 or sz

2 with high probability when the environmental state is s
y
1 or

s
y
2, respectively. If the environment is in the nutrient-poor s

y
3 state, a cell or cells obtain sz

1 or sz
2 with

equal probability. Here, the sensing is assumed to be memory-less as TS(z′|z, y′) = TS(z′|y′), and, thus,
its stochastic behavior is defined by a transition matrix, TS(z|y), for individual sensing, and by TF

E(z|y) for
common sensing (Figure 2c):

{TS(z|y)} = {TF
E(z|y)} =

( s
y
1 s

y
2 s

y
3

sz
1 0.8 0.2 0.5

sz
2 0.2 0.8 0.5

)
. (13)

(a) (b)

(c) (d)

0.25

0.25
0.05 0.05

0.25

2.24

0.32 2.24

0.32

0.08

0.08

0.25

0.8 0.8 0.5 0.5 0.95 0.950.05 0.050.2 0.2

Figure 2. (a) A diagrammatic representation of state transitions of the environment used for simulation
in Figures 3–5. Three states are assumed for the environment; (b) Replication rates of cells with two
different phenotypic states under different environmental states; (c) Environment-dependence of the
sensing signal, and the probabilities to obtain a certain sensing signal under each environmental state;
(d) Signal-dependent phenotype switching; The thickness of arrows represent relative probabilities and
rates of replications. The values of the parameters used for the simulation are given by Equations (11)–(14).
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In order to compare individual and common sensing, we set the accuracy of sensing to be equal,
TS(z|y) = TF

E(z|y), for all y ∈ Sy and z ∈ Sz. Finally, a cell is assumed to switch into phenotypic state sx
i

with high probability when it receives a sensing signal sz
i for i = {1, 2} (Figure 2d):

{TF(x′|z)} =
( sz

1 sz
2

sx
1 0.95 0.05

sx
2 0.05 0.95

)
, (14)

where the phenotypic switching is set to be memory-less TF(x′|x, z) = TF(x′|z).
Given these conditions, Figure 3 illustrates the population dynamics of cells with individual sensing

Figure 3a,b and with common sensing Figure 3c,d under two different realizations of the environment.
For the first realization, shown in Figure 3a,c,e, Ψi[Yt] is higher than Ψc[Yt, Zt] (see red and blue solid
lines in Figure 3e), whereas, for the second realization (Figure 3b,d,f)), Ψc[Yt, Zt] is greater than Ψi[Yt]

(Figure 3f). This clearly illustrates that the fitness advantages of individual and common sensing
are strongly dependent on the actual realization of the environment and the common sensing signal.
When common sensing produces a correct signal by chance, the population with common sensing can
enjoy a higher fitness gain than that with individual sensing. By contrast, the population with common
sensing loses fitness when the signal is incorrect. Figure 4 also shows the behaviors of Ψi[Yt] (Figure 4b)
and Ψc[Yt, Zt] (Figure 4c) under 100 different realizations of {Yt, Zt}, which reinforces the observation that
both Ψi[Yt] and Ψc[Yt, Zt] can fluctuate significantly, depending on the realizations. However, an ensemble
average of the fitness shows that

〈
Ψi〉

Q is greater than 〈Ψc〉Q, at least for this specific instance (the red and
blue solid lines in Figure 4a).



Entropy 2019, 21, 1002 7 of 19

0 10 20 30 40 50

1

104

102

10-2

106

108

0 10 20 30 40 50

1

104

102

10-2

106

108

0 10 20 30 40 50

105

103

10

107

109

1011

10-1

1013

0 10 20 30 40 50

10
5

10
3

10
-1

10
-3

10

10
7

0 10 20 30 40 50

10
5

10
3

10
-1

10
-3

10

10
7

0 10 20 30 40 50

10

105

103

107

109

1011

10 -1

10 -3

t t

t t

t t

(a) (b)

(c) (d)

(e) (f)

Figure 3. (a,b) Trajectories of population sizes with individual sensing under two different realizations of
the environment. The history of the environment, Yt, is shown by the colored bar on each panel. The color
represents the state of the environment, which was defined in Figure 2a. Each colored line corresponds to
the population size of the cells with phenotypic state x and sensing signal z; the actual value of (x, z) is
designated in the panels. The gray lines in (a,b) are the replicate of the trajectories in (c,d), respectively,
for comparison. (c,d) Trajectories of population sizes with common sensing under the same realizations
of the environment as in (a) and (b), respectively. On each panel, the history of the common signal, Zt, is
additionally shown by the colored bar. Each colored line corresponds to the population size of the cells with
phenotypic state x, with the actual value of x designated in the panels. (e,f) Fitnesses of the populations
with the individual and the common sensing, Ψi[Yt] (red solid curve) and Ψc[Yt, Zt] (blue solid curve) under
the same realizations of the environment and common signal as in (a,c) and (b,d). Related quantities are
also shown for comparison.
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Figure 4. (a) Average values of fitnesses and related quantities; (b,c) Fluctuation of the fitness with
individual sensing Ψi[Yt] (b); and that with common sensing Ψc[Yt] (c); (d–f) Fluctuation of Ψ0[Yt] (d);
Ψ0[Yt] + i[Zt → Yt] + g[Yt, Zt] (e); and Ψ0[Yt] + i[Zt → Yt] (f).

4. Value of Individual Sensing is Always Greater than that of Common Sensing

In order to characterize the fitness difference between individual and common sensing in general,
we derive a detailed fluctuation relation for the fitness difference g[Yt, Zt] := Ψi[Yt] − Ψc[Yt, Zt] from
Equations (9) and (10) as

e−g[Yt ,Zt ] =
eΨc [Yt ,Zt ]

eΨi [Yt ]
=

Pi
B[Xt, Zt|Yt]

Pc
B[Xt|Yt, Zt]PS[Zt‖Yt]

=
Pi

B[Zt|Yt]

PS[Zt‖Yt]
, (15)



Entropy 2019, 21, 1002 9 of 19

where Pi
B[Zt|Yt] := ∑Xt P

i
B[Xt, Zt|Yt] (see also Appendix A.2 for the derivation). By assuming that the

statistical property of common sensing is the same as that of individual sensing, Q[Zt‖Yt] = PS[Zt‖Yt], as
in Figures 3 and 4, we obtain the average fluctuation relation (FR) as〈

Ψi[Yt]
〉
Q[Yt ]
− 〈Ψc[Yt, Zt]〉Q[Yt ,Zt ]

= G, (16)

where

G := 〈g〉Q = D[PS[Zt‖Yt]Q[Yt]‖Pi
B[Zt|Yt]Q[Yt]], (17)

is the Kulback–Leibler (KL) divergence between the time-forward sensing behavior, PS[Zt‖Yt], and the
time-backward behavior, Pi

B[Zt|Yt] (see also Appendix A.3 for derivation). Together with the non-negativity
of the KL divergence, the average FR indicates that the average fitness of individual sensing is always
greater than that of common sensing by G ≥ 0. As individual and common sensing are assumed to have
the same statistical property, the source of the gain G is attributed to the individuality of the sensing.
In the case of individual sensing, the organisms receiving the correct signal by chance grow more than
those that receive incorrect signal do. Thus, the retrospective signal histories Pi

B[Zt|Yt] are biased by the
selection from the time-forward signal histories PS[Zt‖Yt]. The gain G is exactly this bias, quantified by the
KL divergence. No such gain is obtained from the common sensing, because the sensing signal is common
to all organisms and, thus, no bias is induced by selection. This result clearly indicates that the fitness value
of individual sensing cannot be properly evaluated by considering only the time-forward behavior of the
signal and the environment. Even though individual sensing gains more fitness than common sensing
does, on average, as demonstrated in Figure 4a, g[Yt, Zt] fluctuates significantly and common sensing can
gain more fitness than individual sensing does, by chance (Figure 3b,d and Figure 5a). From the detailed
FR for g[Yt, Zt] Equation (15), we also derive the integral fluctuation relation (IFR):〈

e−g[Yt ,Zt ]
〉
Q[Yt ,Zt ]

=
〈

e−(Ψ
i [Yt ]−Ψc [Yt ,Zt ])

〉
Q[Yt ,Zt ]

= 1,

which clarifies that g[Yt, Zt] fluctuates, such that the positive g[Yt, Zt] balances the negative g[Yt, Zt] to
satisfy the equality. The integral FR is also verified numerically in Figure 5a,b.
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Figure 5. Numerical verification of IFRs for g[Yt] (a,b); γt− σ[Yt] (c,d); and Ψ0[Yt] + i[Zt → Yt] + g[Yt, Zt]−
Ψi[Yt] (e,f). Left panels are behaviors of the integrands of the IFRs for 100 different realizations of the
environmental and common signal histories. Right panels are the sample averages of the integrands of
the IFRs. Thin colored curves are obtained by averaging 105 different samples, and the thick black curves
are obtained by the average of 1.2× 108 samples.

4.1. The Gain of Fitness by Individual Sensing

We further investigate Ψi[Yt] to clarify how the fitness of the organisms with individual sensing is
shaped. To this end, as in a previous work [27], which investigated the fitness value of common sensing, we
additionally assume that k(x, y) can be decomposed as ek(x,y) = ekmax(y)TK(y|x) [27]. In this decomposition,
kmax(y) can be interpreted as the maximum replication rate that would be attained if the organisms
allocated all their metabolic resources to adapt only to the environmental state y. Therefore, under this
extreme allocation, the organisms die out under the environmental states other than y. The decomposition
effectively means that we presume that each phonotypic state can be characterized by how a cell allocates
its metabolic resources to different environmental conditions. TK(y|x) is the fraction of metabolic resources
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allocated to the environmental state y in a phenotypic state x. Thereby, we call TK(y|x) metabolic allocation
strategy of the organisms in this work. The biological motivation behind the metabolic allocation is the
problem of generalist and specialist. In order to adapt to a changing environment, a cell has essentially two
tactics: One is to equip a cell with single fixed phenotypic state that distributes the metabolic resources
over all the possible environmental states. Thereby, such a cell can, at least, evade extinction under any
environmental state. The other is to switch between multiple specialized phenotypic states, each of which
allocates the metabolic resources to a small number of environmental states. In this case, each phenotypic
state runs the risk of extinction, but such risk is hedged as a population by stochastic switching of the
phenotypic states. These two are continuously interpolated, and the optimal one depends on the way the
environment fluctuates. The introduction of the metabolic allocation strategy enables us to consider a
wider spectrum of biological adaption in which the character of each phenotypic state is also optimized
evolutionarily.

By defining

PK[Yt‖Xt] :=
t−1

∏
τ=0

TK(yτ+1|xτ+1), (18)

Kmax[Yt] :=
t

∑
τ=1

kmax(yτ), (19)

the historical fitness, Equation (4), is decomposed as

K[Xt, Yt] = Kmax[Yt] + lnPK[Yt‖Xt]. (20)

By introducing this decomposition into Equation (9), we obtain

eΨi [Yt ]−Ψ0[Yt ] =
PK[Yt‖Xt]PF[Xt‖Zt]PS[Zt‖Yt]

Pi
B[Xt, Zt|Yt]Q[Yt]

, (21)

where Ψ0[Yt] := Kmax[Yt] + lnQ[Yt], the average of which is known to bound the average fitness of a
population without sensing [27] (see Appendix A.4 for derivation). By taking the marginalization with
respect to Xt and Zt, we have

Ψi[Yt] = Ψ0[Yt] + σ[Yt] = Kmax[Yt] + lnPKFS[Yt|Yt], (22)

where

PKFS[Y
′

t |Yt] := ∑
Xt ,Zt

PK[Y ′t ‖Xt]PF[Xt‖Zt]PS[Zt‖Yt],

and

σ[Yt] := ln
PKFS[Yt|Yt]

Q[Yt]
.

Since the average of Ψ0[Yt] is the tight bound of the fitness without sensing, σ[Yt] is the gain of
fitness by individual sensing. Here, PKFS[Y ′t |Yt] is the probability that an organism allocates its metabolic
resources to an environmental history Y ′t when it experiences environmental history Yt. Thus, PKFS[Yt|Yt]

measures the probability that the metabolic resource is correctly allocated to the actual environmental
history Yt, and 1− PKFS[Yt|Yt] is the probability of an incorrect allocation. In other words, PKFS[Yt|Yt]
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characterizes how accurately the individual sensing, phenotypic switching, and metabolic allocation
together respond to the actual environment. From an information-theoretic viewpoint, this cascade
from environment to metabolic allocation via sensing and phenotypic switching is very similar to the
auto-encoding and decoding of information Yt via multiple layers [32]. The sensing works as the encoding
of an environmental history Yt into Zt. The signal-dependent phenotypic switching is the processing of
the encoded signal in the internal layers. The metabolic allocation is the decoding process to recover
the original information, Yt, from Xt. Under this interpretation, PKFS[Y ′t |Yt] determines the statistical
correspondence between the encoded information Yt and the decoded information Y ′t , and PKFS[Yt|Yt]

is the probability that the encoded data Yt is correctly decoded as Yt. Therefore, the total fidelity can be
quantified as

γt := ln ∑
Yt

PKFS[Yt|Yt] = ln
〈

eσ[Yt ]
〉
Q[Yt ]

. (23)

Formally, similar quantities to σ[Yt] and γt were introduced by Sagawa and Ueda as the coarse-grained
entropy production and the efficiency parameter of feedback control in information thermodynamics [33,34].
Using γt, σ[Yt] can be decomposed as

σ[Yt] = γt − ln
Q[Yt]

Pγ[Yt]
,

where

Pγ[Yt] := e−γtPKFS[Yt|Yt], (24)

is a path probability. By combining this with Equation (22), we have

Ψi[Yt] = Ψ0[Yt] + γt − ln
Q[Yt]

Pγ[Yt]
. (25)

By taking the average with respect to Q[Yt], we obtain〈
Ψi
〉
Q
= 〈Ψ0〉Q + γt −D[Q[Yt]‖Pγ[Yt]] ≤ 〈Ψ0〉Q + γt. (26)

Equations (25) and (26) can be regarded as detailed and average FRs, respectively, with respect to
Ψ0[Yt] + γt −Ψi[Yt]. As 〈Ψ0〉Q is the tight upper bound of the average fitness without sensing, this relation
means that γt is an upper bound of the fitness gain from individual sensing. Moreover, γt is an intrinsic
quantity of the population, in the sense that it is determined irrespective of the actual statistical law of the
environment, Q[Yt]. The deviation of Ψi[Yt] from 〈Ψ0〉Q + γt satisfies an integral FR as〈

e−(Ψ0[Yt ]+γt−Ψi [Yt ])
〉
Q[Yt ]

=
〈

e−(γt−σ[Yt ])
〉
Q[Yt ]

= 1, (27)

the behaviors of which are illustrated numerically in Figure 5c,d.
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4.2. Connection with Other Information Measures

In order to link the quantities σ and γt with other common information measures, we further assume
that the environment is Markovian:

Q[Yt] =
t−1

∏
τ=0

TF
E(yτ+1|yτ)pE(y0), (28)

and that the sensing is memory less as

TS(zt+1|zt, yt+1) = TS(zt+1|yt+1). (29)

Then, we obtain the joint time-forward probability for Yt and Zt and its Bayesian causal decomposition
(see Appendix A.5 for derivation) as

PS[Yt, Zt] := PS[Zt‖Yt]Q[Yt] = PB
S [Yt‖Zt]PB

S [Zt‖Yt−1]. (30)

In this decomposition,

PB
S [Yt‖Zt] :=

t−1

∏
τ=0

TB
S (yτ+1|zτ+1, yτ)p(y0|z0), (31)

PB
S [Zt‖Yt−1] :=

t−1

∏
τ=0

TB
S (zτ+1|yτ)p(z0) (32)

are path probabilities generated by two pairs of new transition probabilities that are obtained by Bayes’
theorem as

TB
S (zt+1|yt) := ∑

yt+1

TS(zt+1|yt+1)TF
E(yt+1|yt), (33)

TB
S (yt+1|zt+1, yt) :=

TS(zt+1|yt+1)TF
E(yt+1|yt)

TB
S (zt+1|yt)

, (34)

where TB
S (yt+1|zt+1, yt) is the Bayesian posterior of the environmental state, yt+1, given the information of

the sensed signal zt+1 and the previous environmental state yt. In this procedure, we switch the causal
order of yt and zt by using Bayes’ theorem. Then, by using Equations (15) and (21) can be rearranged as

e−(Ψi [Yt ]−(Ψ0[Yt ]+i[Zt→Yt ]+g[Yt ,Zt ])) =
PB

S [Yt‖Zt]

PK,F[Yt|Zt]
, (35)

where PK,F[Yt|Zt] := ∑Xt PK[Yt‖Xt]PF[Xt‖Zt] and i[Zt → Yt] := lnPB
S [Yt‖Zt]/Q[Yt] is the pointwise

directed information from Zt to Yt (see Appendix A.6 for derivation). This is another detailed FR with
individual sensing, the average version of which can be obtained by taking the average with respect to
PS[Yt, Zt]: 〈

Ψi
〉
Q
= 〈Ψ0〉Q + IZt→Yt + G −Dloss, (36)

where Dloss = D[PS[Yt, Zt]‖PK,F[Yt|Zt]PB
S [Zt‖Yt−1]] and IZt→Yt := 〈i[Zt → Yt]〉PS [Yt ,Zt ]

is the directed
information [31]. Directed information is an extension of mutual information of two trajectories by
considering the causal relationship between the trajectories. Similarly to transfer entropy, the directed
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information quantifies the causal dependency between two trajectories. Transfer entropy is related to the
upper bound of the rate of the directed information [35]. Their integral version is illustrated numerically
in Figure 5e,f. Since g[Yt, Zt] = Ψi[Yt]−Ψc[Yt, Zt], we can immediately see that Equations (35) and (36) are
equivalent to the detailed and average FRs, respectively, for the fitness with common sensing:

e−(Ψ
c [Yt ,Zt ]−(Ψ0[Yt ]+i[Zt→Yt ])) =

PB
S [Yt‖Zt]

PK,F[Yt|Zt]
, (37)

and

〈Ψc〉Q = 〈Ψ0〉Q + IZt→Yt −Dloss. (38)

These relations for the common sensing were originally derived in [27]. For a given and fixed sensing
property, TS(zτ |yτ), the maximum gain of the average fitness by common sensing is shown to be bounded
by IZt→Yt as

max
TF ,TK

〈Ψc〉Q − 〈Ψ0〉Q ≤ I
Zt→Yt , (39)

where the equality is attained whenDloss = 0. Dloss is the loss of fitness due to an imperfect implementation
of a sequential Bayesian inference, and becomes 0 if and only if the phenotypic switching strategy, P∗F[Xt‖Zt],
and the metabolic allocation strategy, P∗K[Yt‖Xt], are jointly optimized to implement the Bayesian sequential
inference as P∗K,F[Yt|Zt] = PB

S [Yt‖Zt], where

P∗K,F[Yt|Zt] := ∑
Xt

P∗K[Yt‖Xt]P∗F[Xt‖Zt].

An instance of the optimal metabolic allocation and phenotypic switching strategies is T∗K(y|x) = δx,y

and T∗F(x′|x, z) = TB
E(y
′|z, y)

∣∣
y′=x′ ,y=x, when Sx = Sy. These optimal strategies mean that, for each

phenotypic state, all metabolic resources are allocated to one of the environmental states, and the phenotype
switches with the probability that is exactly the same as the Bayesian posterior of the environment given the
sensing signal. In other words, cells with phenotype x can survive and grow only when the environment
is in the state to which all the metabolic resource is allocated under the phenotype x, and the cells change
their phenotypic state by calculating the Bayesian posterior probability of the next environmental state
given the common sensing signal.

In contrast, in the case of individual sensing, the Bayesian inference is no longer optimal, as G is
dependent on the strategies of phenotypic switching and metabolic allocation, and {P∗F,P∗K}may not be
the maximizer of G. This fact is more clearly shown as

max
TF ,TK

〈
Ψi
〉
Q
≥
〈

Ψi∗
〉
Q
= 〈Ψ0〉Q + IZt→Yt + G∗, (40)

where Ψi∗ and G∗ are obtained by inserting P∗F and P∗K that satisfy Dloss = 0. Equivalently,
from σ[Yt] = Ψi[Yt]−Ψ0[Yt], we have

〈σ[Yt]〉Q[Yt ]
= IZt→Yt + G −Dloss, (41)

and

max
TF ,TK

〈σ[Yt]〉Q[Yt ]
≥ IZt→Yt + G∗. (42)
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This inequality further indicates that the maximum average fitness gain from individual sensing for
a fixed sensing strategy is greater than or equal to the directed information plus G∗, which means that
the sequential Bayesian inference is no longer optimal. It is optimal in the case of the common sensing as
the sensing signal is common and the subsequent phenotypic diversification by following the sequential
Bayesian inference can hedge the risk of the error optimally. In the individual sensing, in contrast, stochastic
individual sensing automatically induces a diversification in a population, which makes subsequent
diversification by following Bayesian posterior suboptimal and redundant. Moreover, the information
measure of the sensing, such as directed information, may not be an appropriate quantity to capture the
efficiency of the overall decision-making process with individual sensing.

5. Discussion and Future Works

These results indicate that σ[Yt] and γt are more relevant quantities for characterizing the fitness gain
from the individual sensing. From the average FR of σ[Yt]:

〈σ〉Q = γt −D[Q[Yt]‖Pγ[Yt]],

the maximization of 〈σ〉Q is reduced to balancing the maximization of the total fidelity γt and the
minimization of D[Q[Yt]‖Pγ[Yt]]. As both γt and Pγ[Yt] depend on the actual strategies of organisms,
there exists a tradeoff between them, in general.

In the analogy of autoencoding and decoding, γt becomes higher when each input Yt is decoded more
correctly. In contrast,D[Q[Yt]‖Pγ[Yt]] is minimized when the relative fidelity for Yt matches the probability,
Q[Yt], that the environmental history Yt appears, since Pγ[Yt] measures the relative fidelity of decoding Yt,
given Yt as encoding information. From the definition of Pγ[Yt], Equation (24), Pγ[Yt] ≤ e−γt must hold for
each Yt. If the total fidelity γt is fixed and small enough to satisfy maxYt Q[Yt] ≤ e−γt , balancing sensing,
phenotypic switching, and metabolic allocation to satisfy Pγ[Yt] = Q[Yt] becomes the optimal strategy to
maximize 〈σ〉. This observation suggests that, under biologically realistic situations with moderate total
fidelity, Pγ[Yt] = Q[Yt] can be regarded as a proxy of the optimal strategy with individual sensing. If the
total fidelity is too high to violate maxYt Q[Yt] < e−γt , however, D[Q[Yt]‖Pγ[Yt]] = 0 cannot be achieved,
and more complicated optimization is required.

These investigations in conjunction with the analogy of the problem with autoencoding and decoding,
show that in order to understand the decision-making of cells and organisms with individual sensing, we
should consider a joint optimization of sensing, phenotypic switching, and metabolic allocation, rather
than an optimization of a part of them with the other fixed and given [36]. In the evolution of cellular
and organismal decision-making, these three factors are concurrently subject to natural selection, and
we have to frame this problem appropriately. This challenge may lead to a deeper understanding of
thermodynamics with feedback, because similar quantities to σ[Yt] and γt have appeared already in the
problem of feedback efficiency in information thermodynamics [33,34]. Moreover, the analogy of the
problem with auto-encoding may pave the way to link the field of machine learning and deep learning
with that of evolutionary biology and optimization.

Finally, we should note that all the information-theoretic relations derived in this work as well as
others in previous works basically assume no cell interactions and no feedback from organisms to the
environment. Even though extending the relations to relax such assumptions is a difficult problem, it can
substantially expand the applicability of the information-theoretic approach to various biological problems.
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Appendix A. Derivation of Equations

Appendix A.1. Derivation of Equations (7) and (8)

Ψi[Yt] = ln ∑
Xt ,Zt

([
t−1

∏
τ=0

ek(xτ+1,yτ+1)TF(xτ+1|xτ , zτ+1)TS(zτ+1|zτ , yτ+1)

]
pF(x0|z0)pS(z0|y0)

)

= ln ∑
Xt ,Zt

([
t−1

∏
τ=0

ek(xτ+1,yτ+1)

] [
t−1

∏
τ=0

TF(xτ+1|xτ , zτ+1)

]
pF(x0|z0)

[
t−1

∏
τ=0

TS(zτ+1|zτ , yτ+1)

]
pS(z0|y0)

)
= ln ∑

Xt ,Zt

(
eK[Xt ,Yt ]PF[Xt‖Zt]PS[Zt‖Yt]

)
= ln ∑

Xt

(
eK[Xt ,Yt ]PF,S[Xt|Yt]

)
= ln

〈
eK[Xt ,Yt ]

〉
PF,S [Xt |Yt ]

,

and

Ψc[Yt, Zt] = ln ∑
Xt

[[
t−1

∏
τ=0

ek(xτ+1,yτ+1)TF(xτ+1|xτ , zτ+1)

]
pF(x0|z0)

]

= ln ∑
Xt

([
t−1

∏
τ=0

ek(xτ+1,yτ+1)

] [
t−1

∏
τ=0

TF(xτ+1|xτ , zτ+1)

]
pF(x0|z0)

)
= ln ∑

Xt

(
eK[Xt ,Yt ]PF[Xt‖Zt]

)
= ln

〈
eK[Xt ,Yt ]

〉
PF [Xt‖Zt ]

.

Appendix A.2. Derivation of Equation (15)

e−g[Yt ,Zt ] =
eΨc [Yt ,Zt ]

eΨi [Yt ]
=

eK[Xt ,Yt ]PF[Xt‖Zt]

Pc
B[Xt|Yt, Zt]

Pi
B[Xt, Zt|Yt]

eK[Xt ,Yt ]PF[Xt‖Zt]PS[Zt‖Yt]
(A1)

=
Pi

B[Xt, Zt|Yt]

Pc
B[Xt|Yt, Zt]PS[Zt‖Yt]

=
Pi

B[Zt|Yt]

PS[Zt‖Yt]
, (A2)

where we used Equations (9) and (10) in the first line and marginalized the numerator and the denominator
with respect to Xt in the second line.

Appendix A.3. Derivation of Equations (16) and (17)

By taking the average of

g[Yt, Zt] =Ψi[Yt]−Ψc[Yt, Zt],

with respect to Q[Yt, Zt] = Q[Zt‖Yt]Q[Yt] = PS[Zt‖Yt]Q[Yt], we have

〈g[Yt, Zt]〉Q[Yt ,Zt ]
=
〈

Ψi[Yt]
〉
Q[Yt ]
− 〈Ψc[Yt, Zt]〉Q[Yt ,Zt ]. (A3)
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Similarly, by taking the average of

g[Yt, Zt] = ln
PS[Zt‖Yt]

Pi
B[Zt|Yt]

= ln
PS[Zt‖Yt]Q[Yt]

Pi
B[Zt|Yt]Q[Yt]

,

with respect to Q[Yt, Zt] = Q[Zt‖Yt]Q[Yt] = PS[Zt‖Yt]Q[Yt], we have

〈g[Yt, Zt]〉Q[Yt ,Zt ]
= D[PS[Zt‖Yt]Q[Yt]‖Pi

B[Zt|Yt]Q[Yt]] = G.

Thus, 〈
Ψi[Yt]

〉
Q[Yt ]
− 〈Ψc[Yt, Zt]〉Q[Yt ,Zt ]

= G.

Appendix A.4. Derivation of Equation (21)

From Equation (9),

Pi
B[Xt, Zt|Yt]

PF[Xt‖Zt]PS[Zt‖Yt]
= eK[Xt ,Yt ]−Ψi [Yt ] = eΨ0[Yt ]−Ψi [Yt ]PK[Yt‖Xt]

Q[Yt]
(A4)

where we used Equation (22) to obtain the last equality. By rearranging the first and the last terms, we have

eΨi [Yt ]−Ψ0[Yt ] =
PK[Yt‖Xt]PF[Xt‖Zt]PS[Zt‖Yt]

Pi
B[Xt, Zt|Yt]Q[Yt]

.

Appendix A.5. Derivation of Equation (30)

From Equations (28) and (29), we have

PS[Yt, Zt] := PS[Zt‖Yt]Q[Yt] =

[
t−1

∏
τ=0

TS(zτ+1|yτ+1)pS(z0|y0)

] [
t−1

∏
τ=0

TF
E(yτ+1|yτ)pE(y0)

]

=
t−1

∏
τ=0

[
TS(zτ+1|yτ+1)TF

E(yτ+1|yτ)
]

pS(z0|y0)pE(y0)

=
t−1

∏
τ=0

[
TB

S (yτ+1|zτ+1, yτ)TB
S (zτ+1|yτ)

]
p(y0|z0)p(z0)

=

[
t−1

∏
τ=0

TB
S (yτ+1|zτ+1, yt)p(y0|z0)

] [
t−1

∏
τ=0

TB
S (zτ+1|yτ)p(z0)

]
= PB

S [Yt‖Zt]PB
S [Zt‖Yt−1],

where we used Equation (33) and (34) to obtain the third line and p(y0|z0)p(z0) = pS(z0|y0)pE(y0) from
Bayes’ theorem.

Appendix A.6. Derivation of Equation (35)

By marginalizing the numerator and denominator of Equation (21) with respect to Xt, we have

eΨi [Yt ]−Ψ0[Yt ] =
∑Xt PK[Yt‖Xt]PF[Xt‖Zt]PS[Zt‖Yt]

∑Xt P
i
B[Xt, Zt|Yt]Q[Yt]

=
PK,F[Yt|Zt]PS[Zt‖Yt]

Pi
B[Zt|Yt]Q[Yt]

.
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By rearranging this equality, we have

e−Ψi [Yt ]+Ψ0[Yt ] =
Pi

B[Zt|Yt]

PS[Zt‖Yt]

Q[Yt]

PB
S [Yt‖Zt]

PB
S [Yt‖Zt]

PK,F[Yt|Zt]
= e−i[Zt→Yt ]eg[Yt ,Zt ]

PB
S [Yt‖Zt]

PK,F[Yt|Zt]
, (A5)

where we use Equation (15) and the definition of i[Zt → Yt]. Thus, we have

e−(Ψi [Yt ]−(Ψ0[Yt ]+i[Zt→Yt ]+g[Yt ,Zt ])) =
PB

S [Yt‖Zt]

PK,F[Yt|Zt]
. (A6)
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