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Abstract: Owing to the problems that imperfect decomposition process of empirical mode
decomposition (EMD) denoising algorithm and poor self-adaptability, it will be extremely difficult
to reduce the noise of signal. In this paper, a noise reduction method of underwater acoustic
signal denoising based on complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN), effort-to-compress complexity (ETC), refined composite multiscale dispersion entropy
(RCMDE) and wavelet threshold denoising is proposed. Firstly, the original signal is decomposed
into several IMFs by CEEMDAN and noise IMFs can be identified according to the ETC of IMFs.
Then, calculating the RCMDE of remaining IMFs, these IMFs are divided into three kinds of
IMFs by RCMDE, namely noise-dominant IMFs, real signal-dominant IMFs, real IMFs. Finally,
noise IMFs are removed, wavelet soft threshold denoising is applied to noise-dominant IMFs and
real signal-dominant IMFs. The denoised signal can be obtained by combining the real IMFs
with the denoised IMFs after wavelet soft threshold denoising. Chaotic signals with different
signal-to-noise ratio (SNR) are used for denoising experiments by comparing with EMD_MSE_WSTD
and EEMD_DE_WSTD, it shows that the proposed algorithm has higher SNR and smaller root mean
square error (RMSE). In order to further verify the effectiveness of the proposed method, which is
applied to noise reduction of real underwater acoustic signals. The results show that the denoised
underwater acoustic signals not only eliminate noise interference also restore the topological structure
of the chaotic attractors more clearly, which lays a foundation for the further processing of underwater
acoustic signals.

Keywords: underwater acoustic signals; CEEMDAN; effort-to-compress complexity; refined
composite multiscale dispersion entropy; wavelet threshold denoising

1. Introduction

The underwater acoustic signals processing is one of the most active subjects in modern
information fields [1,2]. Underwater acoustic signal is a non-linear, non-Gaussian, non-stationary
chaotic signal, it is easily effected by the other targets, marine environment and various equipment
in the process of acquisition and transmission. These problems will inevitably cause some noise
for received signal, which is extremely harmful to target detection, location, classification and
recognition [3,4]. And self-characteristic of signal is easily ignored in the traditional underwater
acoustic signals denoising methods. Therefore, the more effective technology has a wide application
prospect in underwater acoustic signal processing [5–7].
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Empirical Mode Decomposition (EMD) is proposed by Huang [8], it is an adaptive decomposition
method for processing some non-linear and non-stationary signals. EMD not only does not need to set a
basis function but also can overcome the shortcomings of subjective experience. However, mode mixing
and boundary effects can easily occur in the decomposition process, so that the different intrinsic
mode functions will contain similar components which affect the decomposition effect [9]. In order to
overcome these difficulties, Wu and Huang [10] proposed a noise-assisted analysis method ensemble
empirical mode decomposition (EEMD). EEMD is the improvement of EMD, the mode mixing
can be basically eliminated. However, some residual noise exist in the reconstructed components,
the calculation amount of EEMD is larger than EMD. Besides, empirical mode decomposition energy
entropy has received largely extensive attention, such as the field of roller bearing fault diagnosis [11].

A complete ensemble empirical mode decomposition with adaptive white noise (CEEMDAN) [12]
was proposed. This method can obtain the IMFs by adding adaptive white noise and calculating specific
allowance based on EEMD. CEEMDAN can solve these problems that imperfect decomposition process
and larger reconstruction error of EMD. Moreover, it can require a few iterations, which can save a
lot of computational costs. At present, the CEEMDAN has been widely applied to non-linear signal
processing, such as power load prediction [13], gear fault diagnosis [14], medical signal processing [15],
wind speed prediction [16] and so forth.

In order to further research the characteristic information of non-linear and non-stationary
signals, many methods for measuring complexity have been proposed. such as sample entropy
(SampEn) [17], permutation entropy (PE) [18,19], approximation entropy [20], multi-scale permutation
entropy (MPE) [21,22] and multi-scale sample entropy (MSE) [23] and so forth. However, for chaotic
time series, the calculating speed of SampEn is slower and the mutated signal is more changeable.
Although the calculating speed of PE is faster than SampEn, the relationship between signal amplitudes
is easily neglected. The application of FE in big data processing is quite difficult because the fuzzy
measure of signal cannot be determined. In response to the inherent flaws of the above methods, a new
complexity measurement method, dispersion entropy (DE) [24], which was proposed by Rostaghi and
Azami in 2016. This method has the advantages of the faster calculating speed and better stability,
moreover, it is never affected by mutation signals. Inspired by multi-scale entropy and composite
multi-scale, Azami made an improvement of DE and multiscale dispersion entropy (MDE), proposed
a refined composite multiscale dispersion entropy (RCMDE) [25]. Compared with other multiscale
methods, RCMDE has the advantages of better stability, faster calculation speed, stronger stability
and higher recognition rate and so forth. And it is more suitable for researching and processing the
non-linear and non-stationary signal. The RCMDE has been applied to check diagnosis of rolling
bearings [26].

In view of the advantages of CEEMDAN and RCMDE in non-linear dynamics, they are applied
to non-linear chaotic signals and actual underwater acoustic signals and proposed a noise reduction
algorithm combined with ETC and wavelet threshold denoising. The key points of the proposed
algorithm are as follows: (1) the IMFs by CEEMDAN are reorganized into four reconstructed IMFs,
which is beneficial to signal denoising. (2) Wavelet soft threshold denoising is applied to recombination
series, the optimal decomposition level is determined by the noise reduction effect of reconstructed
IMFs. (3) The proposed algorithm is respectively applied to Chens model and actual underwater
acoustic signals. (4) Through qualitative and quantitative analysis to denoised signal, the noise
reduction effect of the proposed algorithm is verified by comparing with EMD_MSE_WSTD and
EEMD_DE_WSTD.

2. Basic Theory

2.1. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)

2.1.1. EEMD

EEMD is an algorithm based on EMD, the specific steps of EEMD are summarized as follows [27]:
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Step 1: Define original signal is x(t), εi(t) represents white noise series with standard normal
distribution in the i-th experiment. xi(t) = x(t) + εi(t) is defined as the i-th signal, where i = 1, . . . , N
represents the number of experiments.

Step 2: We can obtain IMFi
n by decomposing εi(t) from EMD, where n = 1, . . . , K is the number

of IMFs.
Step 3: The n-th modal component is defined as IMFn, the average value of IMFi

n is expressed as:

IMFn =
1
N

N

∑
i

IMFi
n (1)

Because of white noise εi(t) involved in the decomposition in each experiment is different, so the
residual signals are different. The residual signals are defined as:

ri
n(t) = ri

n−1 − IMFi
n(t) (2)

2.1.2. CEEMDAN

CEEMDAN is an improved algorithm of EEMD. The key technique of this algorithm is that
adds adaptive white noise and calculates the specific residuals to obtain corresponding IMFs. En(∗)
is defined as the n-th modal component by EMD. In this paper, IMFn(t) represents the n-th modal
component obtained by CEEMDAN. the specific steps of CEEMDAN are summarized as follows [28]:

Step 1: Perform N experiments on the signal xi(t), the first modal IMF1(t) is defined as:

IMF1(t) =
1
N

N

∑
i=1

IMFi
1(t) (3)

Step 2: Calculate the first residual, r1(t) = x(t)− IMF1(t).
Step 3: The i(i = 1, . . . , N) experiments are conducted continuously r1(t) + E1

(
εi(t)

)
is

decomposed until the first modal component of EMD is obtained. Calculate the second modal
component IMF2(t):

IMF2(t) =
1
N

N

∑
i=1

E1

(
r1(t) + E1

(
εi(t)

))
(4)

Step 4: Calculate the n-th residual signal and the (n + 1)-th modal component for the remaining
phases according to the calculation process of step 3.

rn(t) = rn−1(t)− IMFn(t) (5)

IMF(n+1)(t) =
1
N

N

∑
i=1

E1

(
rn(t) + En

(
εi(t)

))
(6)

Step 5: Continue to execute step 4 until the residual signal is no longer decomposed this criterion
is that the number of extreme points of residual signal is less than or equal to 2. the final residual
signal is as follows:

R(t) = x(t)−
K

∑
n=1

IMFn(t) (7)

Therefore, original signal will be eventually decomposed as:

x(t) =
K

∑
n=1

IMFn(t) + R(t) (8)
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This decomposition process is complete and adaptive from the algorithm implementation steps
of CEEMDAN. This method not only accurately reorganize original signal by adding different white
noise also restore some characteristics of EMD while solving the mode mixing problem. The flow chart
of CEEMDAN [29] is designed in Figure 1.
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2.2. Effort-To-Compress Complexity (ETC)

Shannon entropy has been widely used to characterize the complexity of time series caused
by stochastic processes such as the chaotic dynamic systems. However, it does not perform well
on noise-intensive non-stationary time series. By the time, the measure of compression complexity
becomes a great alternative solution [30]. At present, the two methods have been used to measure the
complexity of signals, namely Lempel-Ziv test (LZ) and effort-to-compress test (ETC). Many researches
have confirmed that LZ and ETC are superior to Shannon entropy in accurately characterizing the
dynamic complexity of non-linear dynamic systems. However, the ETC has more different complexity
value than LZ and Shannon entropy, it can achieve more sophisticated resolution [31]. Therefore,
the application of ETC in non-linear, non-stationary underwater acoustic signals should be promising.

ETC is used to compress a known series by an algorithm, which named non-sequential recursive
pair substitution (NSRPS) [32], the specific steps of ETC are summarized as follows:

Step 1: Input time series is converted to symbol series so as to compress them by compression
calculation, where s1, . . . , sn are defined as input series with the number of n.

Step 2: The first iteration is performed when the number of a symbol occurrences is greatest,
the series will be replaced by a new symbol. For example, the symbol of “11010010” can be transformed
into “12202” caused by “10” has the largest number of occurrences compared with “00”, “01” and “11”
in the iteration.

Step 3: Complete the second iteration continuously, in which “12202” is converted to “3202”.
In fact, the frequency of occurrence of all symbols is no difference, we choose to replace “12”.

Step 4: The remaining series s2, . . . , sn are respectively iterated according to above algorithm until
the length of string is reduced to 1 or the series becomes a constant series. Thus, the change of series
“11010010” is expressed as: 11010010→ 12202→ 3202→ 402→ 52→ 6 .

Step 5: The value of complexity by ETC is obtained according to execution times of this algorithm.
where p is defined as the value of ETC, N represents the number of algorithm that required to convert
an input series into a constant series by NSRPS.

p =
N

L− 1
(9)

where L represents the length of symbol series, N is a non-negative integer from 0 to L− 1, attention
should also be paid to:

0 ≤ N
L− 1

≤ 1 (10)

2.3. Refined Composite Multiscale Dispersion Entropy (RCMDE)

2.3.1. Dispersion Entropy (DE)

DE is a non-linear dynamic analysis method that characterizes the complexity and irregularity
of time series, the algorithm is based on the mapping of normal distribution function. Thus,
the expectation and standard deviation of data should be considered, the calculation steps of DE
are summarized as follows [33]:

Step 1: Define time series is x =
{

xj, j = 1, 2, . . . , N
}

, x is mapped to y =
{

yj, j = 1, 2, . . . , N
}

according to normal distribution function, where yj ∈ (0, 1). and the normal distribution function yj is
defined as:

yj =
1

σ
√

2π

xj∫
−∞

e
−(t−µ)2

2σ2 dt (11)

where µ and σ respectively represent expectation and standard deviation of time series.
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Step 2: The y is mapped to the range of [1, 2, . . . , c] by linear transformation.

zc
j = R

(
c·yj +

1
2

)
(12)

where R and c respectively represent integer function and the number of categories.
Step 3: Calculate the embedded vector zm,c

i :

zm,c
i =

{
zc

i , zc
i+d, . . . , zc

i+(m−1)d

}
(13)

where i = 1, 2, . . . , N − (m− 1)d, m and d respectively represent embedding dimensions and
time delays.

Step 4: The dispersion pattern is defined as: πv0,v1,...,vm−1(v = 1, 2, . . . , c),if zc
i = v0, zc

i+d =

v1, . . . , zc
i+(m−1)d = vm−1, the dispersion patterns of zm,c

i is πv0,v1,...,vm−1 .
Step 5: For each dispersion patterns, relative frequency is defined as follows:

p
(
πv0,v1,...,vm−1

)
=

Nb
(
πv0,v1,...,vm−1

)
N − (m− 1)d

(14)

where Nb
(
πv0,v1,...,vm−1

)
represents the number of zm,c

i mapped to πv0,v1,...,vm−1 . Actually,
p
(
πv0,v1,...,vm−1

)
shows the ratio of Nb

(
πv0,v1,...,vm−1

)
to zm,c

i .
Step 6: According to the definition of Shannon, the DE of original time series is defined as:

DE(x, m, c, d) = −
cm

∑
π=1

p
(
πv0,v1,...,vm−1

)
ln
(

p
(
πv0,v1,...,vm−1

))
(15)

The parameters selection has been described in Reference [34]. the value of embedding dimensions
and categories should be appropriate, m is usually taken as 2 or 3, c is taken as an integer from 3 to 8, d
is 1, the length of input time series should be greater than 2000.

From the results of DE, the larger the value of DE, the higher the irregularity of time series,
conversely, the irregularity is lower. From the process of algorithm, when all possible dispersion
patterns obtain equal probability value, the complexity of signal is the highest, DE obtains the
maximum value ln(cm). If there is a value of p

(
πv0,v1,...,vm−1

)
and it is not zero, it shows that the

lower the complexity of time series, the smaller the value of DE [35].

2.3.2. Multiscale Dispersion Entropy (MDE)

MDE is an interval method based on DE for measuring the complexity and regularity of time
series. and the specific steps of MDE are summarized as follows [36,37]:

Step 1: For initial time series x, when embedding dimension m and similar tolerance r are
respectively determined, the k-th coarse-grained time series with the scale factor τ can be constructed.
wτ

k is defined as:

w(τ)
k =

jτ

∑
a=(j−1)τ+1

xa, k = 1, 2, . . . , N/τ (16)

where τ is a positive integer. For each scale factor, sample data is divided into several sequences with
length N/τ.

Step 2: The MDE with the change of scale factor can be obtained according to the coarse-grained
time series, the DE of sample data for each scale factor is defined as:

MDE(x, m, c, d, τ) =
1
τ

τ

∑
k=1

DE(wτ
k , m, c, d) (17)
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The MDE algorithm fulfills multiscale transformation by equidistant segmentation and averaging
of original data. Although its calculation process is simple and fast, there are some relationships
between the data after segmentation, which can easily lead to the loss of information.

2.3.3. Refined Composite Multiscale Dispersion Entropy (RCMDE)

In order to solve the above problems, original data is pre-processed on the basis of MDE and then
improve the algorithmic process. the specific steps of RCMDE are summarized as follows:

Step 1: For original time series x, length(∗) represents the length of signal. the k-th of
coarse-grained series is wτ

k =
{

wτ
k,1, wτ

k,2, . . . , wτ
k,j, . . . , wτ

k,N

}
, where k = 1, 2, . . . , τ, wτ

k,j is defined as:

wτ
k,j =

1
τ

k+jτ−1

∑
a=k+τ(j−1)

xa, 1 ≤ j ≤ length(x)
τ

(18)

Step 2: For each scale factor, RCMDE is defined as follows:

RCMDE(x, m, c, d, τ) = −
cm

∑
π=1

p
(
πv0,v1,...,vm−1

)
ln
(

p
(
πv0,v1,...,vm−1

))
(19)

where p
(
πv0,v1,...,vm−1

)
represents the average probability of dispersion pattern wτ

k , p
(
πv0,v1,...,vm−1

)
is

defined as follows:

p
(
πv0,v1,...,vm−1

)
=

1
τ

τ

∑
1

pτ
k (20)

In this paper, the relevant characteristics of RCMDE is verified by analyzing the simulated signals.
And the mean value and standard deviation figures of Gaussian white noise (Noise 1) and 1/ f noise
(Noise 2) with the length of 3000 are plotted. These figures respectively reflect the mean value and
standard deviation of MSE, DE and RCMDE in 10 scale factors. The parameters of MSE are set to:
embedding dimension m = 2, similar tolerance r = 0.15,and the parameters of MSE are defined as
follows: m = 2, c = 3, d = 1. The simulation results of Noise 1 and Noise 2 are shown in Figure 2.
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complex, its main information is not on the low scale. As shown in Figure 2c, the curve of RCMDE 
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(c) RCMDE.

As can be seen from Figure 2, the overall trend of this three methods is basically the same. It is
found that the entropy of Noise 1 is larger than that of Noise 2 on the low scale, the entropy of Noise
1 monotonously decreases with the increase of scale. Which indicates that the degree of irregularity
of Gaussian noise is higher, the main information is on the low scale. However, the curve change of
Noise 2 is not obvious, which indicates that internal structure of Noise 2 is more complex, its main
information is not on the low scale. As shown in Figure 2c, the curve of RCMDE is smoother and more
stable. Therefore, it has been verified that the RCMDE is more suitable for analyzing these two signals,
the stability and accuracy are higher.
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2.4. Wavelet Threshold Denoising

An effective signal noise reduction method can play a vital role in the field of signal processing.
Wavelet analysis developed from Fourier analysis is a new time-frequency analysis tool, which has
favorable time-frequency localized and multi-resolution properties. Wavelet analysis has been widely
applied in signal processing field [38–40]. The specific steps of wavelet transform are as follows:

We suppose that the mathematical expression of one dimensional signal with noise is f (t) =

s(t) + δe(t), where t = 0, 1, . . . , (n− 1). s(t), e(t), f (t) and δ are respectively defined as real signal,
Gaussian noise, noise signal and the correlation coefficient of noise.

Step 1: A proper wavelet basis function and decomposition level are selected to perform wavelet
decomposition on the noisy signal f (t).

Step 2: For the high frequency coefficients obtained by wavelet decomposition, the thresholds are
estimated according to the appropriate threshold selection criteria.

Step 3: The high frequency coefficients in different decomposition scales are quantified
by thresholds.

Step 4: The low frequency coefficients of wavelet decomposition and high frequency coefficients
after processing are reconstructed to obtain denoised signals.

There are many wavelet basis functions and threshold selection criteria in the wavelet analysis,
the db4 wavelet basis function is used in this paper. Owing to soft threshold denoising can flexibly
overcome the discontinuity of hard threshold among many threshold estimation methods, which
has been widely applied to signal processing fields. Therefore, the wavelet soft threshold denoising
(WSTD) is applied to this paper.

3. The Proposed Noise Reduction Algorithm

3.1. The Proposed Noise Reduction Algorithm

In this paper, a noise reduction method based on CEEMDAN, effort-to-compress complexity,
refined composite multiscale dispersion entropy and wavelet soft threshold denoising is proposed.
The flow chart of the proposed algorithm is designed in Figure 3.

The specific steps of the proposed algorithm are as follows:
Step 1: An input signal is decomposed into several IMFs by CEEMDAN and arranged from high

frequency to low frequency in turn.
Step 2: Calculating the ETC of all IMFs. If the ETC is greater than or equal to threshold p, this

IMF will be determined as noise IMF. And set p as 0. 85 after multiple experiments.
Step 3: Calculating the RCMDE of remaining IMFs. If the RCMDE is greater than or equal to

threshold q, this IMF is defined as noise-dominant IMFs. If the RCMDE is greater than or equal to
threshold r, this IMF is the real signal-dominant IMFs. and the remaining IMFs are judged as the real
IMFs, where q is 1.85, r is 1.10.

Step 4: Wavelet soft threshold denoising is applied to noise-dominant IMFs and real
signal-dominant IMFs. Owing to the noise signals contain different degrees of noise, the optimal
denoising effect is distributed in different decomposition levels. In this paper, wavelet basis function is
db4, decomposition level is from one to six, the optimal decomposition level is determined according
to signal noise ratio (SNR) and root mean square error(RMSE) of denoised IMFs.

Step 5: In order to ensure more effective denoising effect, the noise IMFs are abandoned. We can
obtain the final denoised signal by combining real IMFs and denoised IMFs obtained by wavelet
soft threshold.
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In steps 2 and 3, the algorithm of determining p, q, r is as follows:
Step 1: Many researches have confirmed that the noise of signal mainly exists in the high frequency

component. In this paper, the IMF1 is a high frequency component by modal decomposition. Thus,
the threshold q is set to 0.85 according to the ETC of IMFs.

Step 2: We suppose that the RCMDE of the remaining IMFs has a value range of [m, n], the average
value is w. Take two thresholds in [m, n], namely w1 and w2(w1 < w2), these IMFs are divided into
three parts, namely X(m ≤ RCMDE < w1), Y(w1 ≤ RCMDE ≤ w2), Z(w2 < RCMDE ≤ n).

Step 3: Firstly, the w1 is determined to be a fixed value. And then, the value of w2 is continuously
adjusted until the signal-to-noise ratio (SNR) of the reconstructed sequences Z is the largest and the
root mean square error (RMSE) of Z is the smallest. Finally, the RCMDE of w2 is defined as the final
value of q.
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Step 4: The value of w1 is continuously adjusted until the SNR of the reconstructed sequences
X is the largest and the RMSE of X is the smallest according to the algorithm of Step 3. Therefore,
the RCMDE of w1 is can be defined as the final value of r. After repeated experiments, the values of q
and r are roughly determined as 1.85 and 1.10.

3.2. Evaluation Method of Chaotic Time Series

In order to evaluate chaotic time series more conveniently, many scholars have proposed some
evaluation methods, such as signal-to-noise ratio (SNR), root mean square error (RMSE), correlation
dimension, Lyapunov exponent and noise intensity [41,42] and so forth. Thus, in this paper, these
evaluation methods are used to evaluate the effect of the proposed noise reduction method.

3.2.1. Signal-To-Noise Ratio (SNR)

Signal-to-noise ratio shows an energy relationship between signal and noise. The higher SNR,
the more useful information and the less noise of signal. Therefore, the SNR is a very intuitive method
to evaluate the effect of denoised signal by analyzing whether the SNR is improved. The definition of
SNR is defined as follows:

SNR = 10· log10

(
‖x‖2

‖x̂− x‖2

)
(21)

where x, x̂ and ‖ ∗ ‖ respectively indicate the noise signal, denoised signal and norm.

3.2.2. Root Mean Square Error (RMSE)

Root mean square error shows the difference between denoised signal and original signal in
numerical. and the smaller RMSE, the better noise reduction effect. The RMSE is defined as follows:

RMSE =

√
‖x̂− x‖2

length(x)
(22)

where length(∗) represents the length of signal.

3.2.3. Correlation Dimension

Fractal dimension is an important parameter to quantitatively analyze the chaotic attractor, which
is applied to describe the nonlinear behavior of system. Correlation dimension is a branch of fractal
dimension, it has been widely used in signal processing because of simple calculation. In 1983,
Grassberger and Procacca proposed the GP algorithm for calculating the correlation dimension of time
series [43]. For the time series {x1, x2, . . . , xn}, let the embedding dimension of reconstructed phase
space is m, the delayed sampling is applied to a series with a delay τ. The reconstructed phase space is
as follows: 

x1 x2 · · · xN
x1+τ x2+τ · · · xN+τ

...
...

. . .
...

x1+(m−1)τ x2+(m−1)τ · · · xN+(m−1)τ

 (23)

where N = n− (m− 1)τ. For the reconstructed dynamical system, strange attractors are composed
of yi =

(
xi, xi+τ , xi+2τ , . . . , xi+(m−1)τ

)
. For any two vectors of yi and yj in phase space, the distance

between them are as follow: ∣∣yi − yj
∣∣ = max

1≤k≤m

∣∣∣yik − yjk

∣∣∣ (24)

Suppose there are N vectors in the reconstructed phase space, the correlation integral is defined as:
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C(r) =
1

N2

(
∑
i,j

H
(
r−

∣∣yi − yj
∣∣)) (25)

where H(x) is Heaviside unit function.

H(x) =

{
0, x ≤ 0
1, x > 0

(26)

The correlation integral C(r) has the following relationship with r when r → 0 :

lim
r→0

Cn(r) ∝ rD (27)

where D represents correlation dimension, it can be obtained by calculating D = ln(C(r))
ln(r) .

3.2.4. Noise Intensity

For the time series {x(n)}, whose noise intensity is approximated by standard deviation σ.

σ =

√√√√ 1
N

N

∑
n=1

[x(n)− x]2 (28)

where n = 0, 1, . . . , N, x = 1
N

N
∑

n=1
x(n) represents the mean of time series, it is found that the smaller

noise intensity, the better the noise reduction effect.

3.2.5. Lyapunov Exponent

The Lyapunov exponent judges the chaotic characteristics of the system based on the presence or
absence of diffusion motion characteristics of the phase trajectory. Lyapunov exponent is defined as:

λ = lim
n=∞

1
n

n−1

∑
i=0

ln
∣∣∣∣d f (x)

dx

∣∣∣∣
x=xi

(29)

where n represents the number of iterations, f (x) is the differential equation of the dynamic system
and x is the distance of the neighboring points. The positive and negative magnitudes of Lyapunov λi
respectively represent the degree of divergence or convergence of adjacent trajectories in the phase
space. Normally, we only need to calculate the maximum Lyapunov exponent. If the maximum
Lyapunov exponent is a positive number, we can determine that there is chaotic component in the
system. In this paper, the maximum Lyapunov exponent is used to quantitatively analyze the phase
space attractors of the signals.

4. The Chaotic Signal Denoising Experiment

In this section, the Chens model is selected for simulation experiments and added Gaussian
white noise with different SNR as input signals. In order to verify the noise reduction effect
of the proposed algorithm, two combined noise reduction methods are chosen to compare with
CEEMDAN_ETC_RCMDE_WSTD. They are EMD_MSE_WSTD and EEMD_DE_WSTD, the first two
methods divide IMFs into two reconstructed series, namely noise-dominant IMFs, real signal-dominant
IMFs. and we can obtain the final denoised signal by combining real signal-dominant IMFs. The Chens
system is expressed as: 

x̂ = a(y− x)
ŷ = (c− a)x− xz + cy
ẑ = xy− bz

(30)
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where a = 35, b = 3, c = 28. The equation is integrated by using a fourth-order Runge–Kutta method
with a fixed step size of 0.01 and the initial value of the equation are x(0) = 0, y(0) = 1, z(0) = 0.
The x component signal with a length of 2048 points is selected as the chaotic signal, the Chens signal
are added Gaussian white noise with different SNR. The denoised results of Chens signals with SNR
are −10 dB, 0 dB, 10 dB and 20 dB are shown in Table 1. The time-domain waveform and phase space
attractors of noisy Chens signal with 10dB are shown in Figures 4 and 5.

Table 1. Denoising results of Chens signals.

SNR/dB
EMD_MSE_WSTD EEMD_DE_WSTD CEEMDAN_ETC_RCMDE_WSTD

SNR/dB RMSE SNR/dB RMSE SNR/dB RMSE

−10 2.4455 0.9591 3.7687 0.7750 4.4430 0.6691
0 8.5354 0.7234 11.0066 0.5883 13.1377 0.4850

10 16.3106 0.4117 18.8902 0.3119 22.1273 0.2556
20 24.7166 0.2448 26.5438 0.1756 31.4315 0.0807
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Figure 4. The time domain waveform before and after noise reduction of Chens signal with SNR is 
10 dB. (a) The time-domain waveform of the noisy Chens signal with 10dB; (b) The time-domain 
waveform after noise reduction by EMD_MSE_WSTD; (c) The time-domain waveform after noise 
reduction by EEMD_DE_WSTD; (d) The time-domain waveform after noise reduction by the 
proposed algorithm. 

Figure 4. The time domain waveform before and after noise reduction of Chens signal with SNR is 10 dB.
(a) The time-domain waveform of the noisy Chens signal with 10dB; (b) The time-domain waveform
after noise reduction by EMD_MSE_WSTD; (c) The time-domain waveform after noise reduction by
EEMD_DE_WSTD; (d) The time-domain waveform after noise reduction by the proposed algorithm.
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Figure 5. The phase space attractors before and after noise reduction for Chens signal with SNR is 10 
dB. (a) The phase space attractor of the noisy Chens signal with 10dB; (b) The phase space attractor 
after noise reduction by EMD_MSE_WSTD; (c) The phase space attractor after noise reduction by 
EEMD_DE_WSTD; (d) The phase space attractor after noise reduction by the proposed algorithm. 

It can be seen from Table 1 that the results of the denoised signals are improved by the three 
methods. However, the SNR of the proposed algorithm is higher, the RMSE is lower. As shown in 
Figure 4, the clarity and similarity of time-domain waveform by the proposed algorithm are the 
highest. Which not only achieves noise reduction but also restores the most of useful information. 
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Figure 5. The phase space attractors before and after noise reduction for Chens signal with SNR is
10 dB. (a) The phase space attractor of the noisy Chens signal with 10dB; (b) The phase space attractor
after noise reduction by EMD_MSE_WSTD; (c) The phase space attractor after noise reduction by
EEMD_DE_WSTD; (d) The phase space attractor after noise reduction by the proposed algorithm.

It can be seen from Table 1 that the results of the denoised signals are improved by the three
methods. However, the SNR of the proposed algorithm is higher, the RMSE is lower. As shown
in Figure 4, the clarity and similarity of time-domain waveform by the proposed algorithm are the
highest. Which not only achieves noise reduction but also restores the most of useful information.
In Figure 5, although the three methods reduce the noise interference on a certain degree, the geometry
of attractor obtained by the proposed algorithm has stronger regularity and higher clarity. In order to
quantitatively analyze the phase space attractors of the Chens signal before and after noise reduction,
the maximum Lyapunov exponent, correlation dimension and noise intensity before and after noise
reduction can be calculated. The Characteristic parameters before and after noise reduction for Chens
signal with SNR is 10 dB are shown in Table 2.

Table 2. The Characteristic parameters before and after noise reduction for Chens signal.

Signals Maximum Lyapunov Exponent Correlation
Dimension Noise Intensity

Chens signal
(SNR = 10 dB) 0.3487 2.4369 0.2538

EMD_MSE_WSTD 0.2973 2.1702 0.2071
EEMD_DE_WSTD 0.2142 1.8960 0.1875

CEEMDAN_ETC_RCMDE_WSTD 0.1418 1.4542 0.1442
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It can be seen from Table 2 that after the above three methods are used to denoise the Chens
signal, the above characteristic parameters of the chens signal are significantly improved compared
with before the noise reduction, the improvement of the CEEMDAN_ETC_RCMDE_WSTD is most
obvious. Thus, it shows that the noise reduction effect of the proposed algorithm is better than the
other two methods.

5. The Underwater Acoustic Signals Denoising Experiment

In order to further verify the effectiveness of this proposed algorithm for chaotic signals. The data
used in this paper are three different types of real underwater acoustic signals measured by calibrated
omnidirectional hydrophone in the south China sea, namely the Ship-1, Ship-2 and Ship-3. Each type
of underwater acoustic signals has 100 sample data. Each sample length is 2048 points and sampling
interval is 0.05 ms. The sample data have been filtered, normalized and sampled before the noise
reduction experiment, the decomposition results by CEEMDAN are shown in Figure 6.
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Figure 6. The decomposition result of underwater acoustic signals by CEEMADN. (a) The 
decomposition result of Ship-1; (b) The decomposition result of Ship-2; (c) The decomposition result 
of Ship-3. 
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Figure 6. The decomposition result of underwater acoustic signals by CEEMADN. (a) The
decomposition result of Ship-1; (b) The decomposition result of Ship-2; (c) The decomposition result
of Ship-3.

It can be seen from Figure 6 that the three types of underwater acoustic signals are decomposed
into several IMFs. The different time scale components are not included in single IMF, the same scale
component does not appear in different IMFs. It shows that CEEMDAN does not exhibit mode mixing
and boundary effects when applied to underwater acoustic signals, which will make more sense for
subsequent processing of underwater acoustic signals. The reconstructed series of underwater acoustic
signals are shown in Table 3.

Table 3. The reconstruction series of underwater acoustic signals.

Underwater
Acoustic Signals

Noise
IMFs

Noise-Dominant
IMFs

Real
Signal-Dominant IMFs Real IMFs

Ship-1 IMF1 IMF2, IMF3 IMF4, IMF5, IMF6, IMF7 IMF8, IMF9, IMF10
Ship-2 IMF1 IMF2, IMF3, IMF4 IMF5, IMF6, IMF7, IMF8 IMF9, IMF10

Ship-3 IMF1 IMF2, IMF3 IMF4, IMF5, IMF6 IMF7, IMF8, IMF9,
IMF10

It can be seen from Table 3 that Ship-1, Ship-2 and Ship-3 are respectively divided into four parts.
There is no problem that an IMF is repeatedly defined or undefined. It shows that the proposed
algorithm meets the requirements of the IMF. Which will greatly contribute to the noise reduction
of the underwater acoustic signals. The time-domain waveform of underwater acoustic signals and
phase space attractors after noise reduction are respectively shown in Figures 7–9.
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Figure 7.The time-domain waveform and phase space attractors of Ship-1 and denoised Ship-1. (a) 
The time-domain waveform of Ship-1; (b) The time-domain waveform of denoised Ship-1 with 300 
points; (c) The phase space attractors of Ship-1; (d) The phase space attractors of denoised Ship-1. 
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Figure 7. The time-domain waveform and phase space attractors of Ship-1 and denoised Ship-1. (a) The
time-domain waveform of Ship-1; (b) The time-domain waveform of denoised Ship-1 with 300 points;
(c) The phase space attractors of Ship-1; (d) The phase space attractors of denoised Ship-1.
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Figure 7.The time-domain waveform and phase space attractors of Ship-1 and denoised Ship-1. (a) 
The time-domain waveform of Ship-1; (b) The time-domain waveform of denoised Ship-1 with 300 
points; (c) The phase space attractors of Ship-1; (d) The phase space attractors of denoised Ship-1. 
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The time-domain waveform of Ship-3; (b) The time-domain waveform of denoised Ship-3 with 300 
points; (c) The phase space attractors of Ship-3; (d) The phase space attractors of denoised Ship-3. 
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time-domain waveform of Ship-3; (b) The time-domain waveform of denoised Ship-3 with 300 points;
(c) The phase space attractors of Ship-3; (d) The phase space attractors of denoised Ship-3.

As shown in Figures 7a, 8a and 9a, the time domain waveform before noise reduction is full of
noise, some useful information and the change of time-domain waveform cannot be distinguished.
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It can be seen from Figures 7b, 8b and 9b that the noise of the underwater acoustic signals are well
suppressed and the waveform change of the denoised signals are clearer by comparing 300 points
before and after noise reduction. In addition, we can also determine whether the noise is effectively
removed by comparing the chaotic attractors of the underwater acoustic signals before and after noise
reduction. Because the degree of damage of the attractor self-similar structure is determined by the
noise intensity. The greater the noise of signal, the weaker the regularity of attractor trajectory and the
lower the self-similarity. It can be seen from Figure 7c,d, Figure 8c,d and Figure 9c,d that the regularity
of denoised signals are stronger, the self-similarity are higher. It shows that the proposed algorithm
can reduce the noise interference to a large extent.

In order to further quantitatively describe the effectiveness of the proposed algorithm by
calculating the correlation dimension, noise intensity, PE and RCMDE for noise signals and denoised
signals. The results before and after noise reduction are shown in Table 4.

Table 4. The results before and after noise reduction.

Underwater
Acoustic Signals Parameters Before Noise

Reduction
EMD_MSE

_WSTD
EEMD_DE

_WSTD
CEEMDAN_ETC
_RCMDE_WSTD

Ship-1

Correlation
Dimension 1.7821 1.6698 1.5356 1.4906

Noise Intensity 0.2250 0.1401 0.0977 0.0703
PE 1.5525 1.0854 0.8366 0.6758

RCMDE 2.5232 1.2350 0.9800 0.4492

Ship-2

Correlation
Dimension 1.6751 1.5405 1.3438 1.2004

Noise Intensity 0.2354 0.1380 0.1037 0.0893
PE 1.6001 0.9055 0.7686 0.5359

RCMDE 2.3280 1.2022 0.6991 0.3658

Ship-3

Correlation
Dimension 1.6869 1.4772 1.2355 1.1890

Noise Intensity 0.2512 0.1545 0.1221 0.0927
PE 1.5466 0.9495 0.6792 0.5004

RCMDE 2.1359 1.0304 0.6751 0.3047

As shown in Table 4, the change of correlation dimension, noise intensity, PE and RCMDE are
smaller than original signals. However, the change of CEEMDAN_ETC_RCMDE_WSTD is the most
obvious, which indicates that the noise is greatly suppressed, the complexity is greatly reduced,
Therefore, it is shown that the proposed algorithm can not only effectively remove most of the noise
also the chaotic characteristics of underwater acoustic signals is greatly improved. Which will have
great advantages in processing actual underwater acoustic signals.

6. Conclusions

In order to solve the problem that inaccurate discrimination of IMFs because of imperfect
decomposition process of EMD denoising algorithm and poor self-adaptability, a noise reduction
method of underwater acoustic signal denoising based on CEEMDAN, combining ETC, RCMDE and
wavelet threshold denoising is proposed. The innovations and conclusions of the proposed denoising
method are as follows:

(1) CEEMDAN, as an adaptive decomposition algorithm based on EEMD, is introduced for
underwater acoustic signal denoising. which has great development potential in the field of non-linear
signal processing.

(2) Compared with existing denoising methods, the IMFs by CEEMDAN are divided into four
parts (noise IMFs, noise-dominant IMFs, real signal-dominant IMFs and real IMFs) for the first time.
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(3) The RCMDE is better than MSE and DE in analyzing the complexity of chaotic signals, is
introduced for underwater acoustic signal denoising. Thus, the RCMDE will have greater potential in
chaotic signals processing.

(4) The proposed method is applied to Chens model and three different types of real underwater
acoustic signals. The proposed method is compared with EMD_MSE_WSTD and EEMD_DE_WSTD,
making qualitative and quantitative analysis for denoised signals. The results show that the proposed
algorithm can not only reduce the noise interference to a large extent also obtain more regular and
clear chaotic attractors. Which will play an important role in researching the physical characteristics of
underwater acoustic signals based on chaos theory.
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