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Abstract: A stochastic system under the influence of a stochastic environment is correlated with both
present and future states of the environment. Such a system can be seen as implicitly implementing
a predictive model of future environmental states. The non-predictive model complexity has been
shown to lower-bound the thermodynamic dissipation. Here we explore these statistical and physical
quantities at steady state in simple models. We show that under quasi-static driving this model
complexity saturates the dissipation. Beyond the quasi-static limit, we demonstrate a lower bound
on the ratio of this model complexity to total dissipation, that is realized in the limit of weak driving.
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1. Introduction

Information theory has long been recognized as fundamentally linked to statistical mechanics [1].
Perhaps most prominently, Landauer showed that information processing can require unavoidable
dissipative costs [2]; for example, bit erasure requires that some free energy be dissipated [3,4].

A stochastic system processes information through interaction with its environment: through
environment-dependent dynamics the system responds to environmental changes and thereby gains
information about the environment [5,6]. For an environment exhibiting temporal correlations,
the system carries information about the past, present, and future environmental states. In this way,
the system implicitly implements a predictive model of future environmental states [7].

One can quantify this model’s inefficiency by the unnecessary model complexity: information the
model retains about the past that does not aid in predicting the future. Recent work established the
equivalence between this predictive inefficiency and thermodynamic inefficiency [7], providing another
fundamental connection between information theory and statistical mechanics. This connection hints
at a design principle for molecular machines operating out of equilibrium [8,9].

These results are potentially applicable to many systems. Biology (where there is a presumptive
selective advantage associated with energetic efficiency) furnishes examples of organisms [10],
neurons [11], and reaction networks [12] that are capable of learning statistical patterns in their
respective environments.

To further illuminate this abstract connection between model complexity and thermodynamic
dissipation, here we analytically and numerically explore these statistical and physical quantities in
illustrative models. We demonstrate the information learned by the system about its environment
per unit energy dissipated (equivalently the ratio of dissipation during system and environmental
dynamics) in the limits of quasi-static driving (Table 1) and weak driving (8), which forms the lower
bound for generic driving. The dependence of these quantities on the system and environmental
parameters motivates a potential guiding principle for functional performance.
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Table 1. Limiting behavior of dissipation ratio. Steady-state dissipation ratio φss in the various limits
of driving strength and speed. These limits are given by the bound in Equation (10), valid in the limit
of continuous time.

Driving Strength Weak Strong

Driving Speed (β∆E � 1) (β∆E & 1)

Quasi-static (κenv � ksys) φss = 1 φss = 1
Intermediate (κenv ∼ ksys) φss = (1 + κenv/ksys)−1 (1 + κenv/ksys)−1 ≤ φss ≤ 1

Fast (κenv � ksys) φss = ksys/κenv ksys/κenv ≤ φss ≤ 1

2. Theoretical Background

Consider a stochastic process {Xt|t ∈ {0, ∆t, . . . , τ−∆t, τ}} representing the dynamical evolution
of some environmental variable. At a given time, the environment can occupy any of the states X .
The time evolution of the environment, Xt, is governed by the transition probabilities p(xt|{xt′}t−∆t

t′=0 ) ≡
p(Xt = xt|{Xt′ = xt′}t−∆t

t′=0 ) for xt, xt′ ∈ X . Let another stochastic process {Yt|t ∈ {0, ∆t, . . . , τ−∆t, τ}}
represent the system of interest, which can occupy states Y . Take the dynamics of Yt to depend on
the environmental state via the time-independent conditional transition probabilities p(y|y′, x) ≡
p(Yt+∆t = y|Yt = y′, Xt+∆t = x), where y, y′ ∈ Y and x ∈ X . We model the evolution of these two
stochastic processes using an alternating time step pattern illustrated in Figure 1. For computational
simplicity, we take the system and environment to evolve in discrete time steps. However, we set
these time steps to be very small compared to the system and environment evolution time-scales in
order to closely approximate continuous time evolution. One complete time step is composed of two
sub-steps: one work step of environmental dynamics, when the environment does work on the system,
followed by one relaxation step of system dynamics, when the system exchanges heat with a thermal
bath maintained at temperature T and inverse temperature β ≡ (kBT)−1.

Figure 1. Discrete-time system and environmental dynamics. The system Yt and environment Xt

alternate steps, with system evolution during relaxation steps, and environment evolution during
work steps.

System dynamics Yt obey the principle of microscopic reversibility [13]. Reference [7] used such a
framework to study the relationship between thermodynamic and information-theoretic quantities.
One prominent information-theoretic quantity is the nostalgia Inos(t) ≡ Imem(t)− Ipred(t), where the
mutual information Imem(t) ≡ I[Xt, Yt] [14] between the current system state and past environmental
state represents the memory stored by the system about the environment, and the mutual information
Ipred(t) ≡ I[Xt+∆t, Yt] between current system state and future environmental state represents the
ability of the system to predict future environmental states. Reference [7] showed that

β 〈Wdiss(t)〉 = Imem(t)− Ipred(t)− β
〈

∆Frelax
neq (t)

〉
, (1)

where 〈Wdiss(t)〉 is the average total dissipation (defined as the average work done on the system,
minus the average change in nonequilibrium free energy of the system) over consecutive work and
relaxation steps from t to t + ∆t, and

〈
∆Frelax

neq (t)
〉

is the average change in nonequilibrium free energy
of the system over the relaxation step from t to t + ∆t. The angled brackets indicate that the average
system energy and the system entropy are calculated for a particular environmental state, followed
by averaging over environmental states. Upon calculating these quantities at each time step, they are
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combined to calculate the average free energy difference, average work, and average dissipation.
Since β

〈
∆Frelax

neq (t)
〉
≤ 0 [15],

β 〈Wdiss(t)〉 ≥ Imem(t)− Ipred(t) . (2)

3. Results

We explore the tightness of the bound (2) through the ratio of nostalgia to dissipation,

φ(t) ≡
Imem(t)− Ipred(t)

β 〈Wdiss(t)〉
. (3)

This nostalgia-dissipation ratio is bounded by 0 ≤ φ(t) ≤ 1 and (after substituting Equation (14)
from [7]) can be interpreted as the fraction of dissipation which occurs over work steps,

φ(t) =
〈Wdiss[xt → xt+∆t]〉

〈Wdiss(t)〉
(4)

where 〈Wdiss[xt → xt+∆t]〉 is the average dissipation during the work step xt → xt+∆t, and 〈Wdiss(t)〉
is the sum of the average dissipation during consecutive single work and relaxation (yt → yt+∆t) steps.
When the environment and system reach steady state, φ can be rewritten as:

φss =
`(t)
−β 〈Q〉 , (5)

where `(t) ≡ I[Xt+∆t, Yt+∆t]− I[Xt+∆t, Yt] is a learning rate which quantifies the information gained
by the system about the current environmental state [16]. The denominator follows from the facts that
at steady state −〈Q〉 = 〈W〉 (due to energy conservation) and 〈W〉 = 〈Wdiss〉 [7]. Refs. [17,18] identify
the ratio in Equation (5) as an informational efficiency quantifying the rate at which the system learns
about the environment, relative to the total thermodynamic entropy production. By considering (4),
these results can be recast in terms of dissipative energy flows.

In order to explore the physical implications of (1) and (2), we investigate the behavior of the
relevant information-theoretic and thermodynamic quantities in concrete models that provide physical
intuition. We initially restrict our attention to a simple environment model, consisting of two states
with a constant transition probability κenv∆t in each time step.

3.1. Alternating Energy Levels

One of the simplest possible system models with non-trivial behavior is a two-state system with
dynamics described by two kinetic rates, k+ and k− (Figure 2a). Since we are using discrete time
steps, we define the rate k of a given transition to be that of a continuous time model, which is then
discretized by choosing ∆t such that k∆t is small, and this transition occurs with probability k∆t in
each time step. This model possesses a symmetry such that it is unchanged when both the system-state
labels and environment-state labels are interchanged. Due to this symmetry, we take k+ ≥ k− without
loss of generality.

Given the constraint of detailed balance [13], such a model describes a two-state system with
an energy gap (normalized by temperature) β∆E = ln k+

k−
that flips according to the environment

state. System states y1 and y2 are separated by ∆EA
12 = ∆E when the environment is in state xA and

∆EB
12 = −∆E for environmental state xB. A characteristic rate at which the system reaches equilibrium,

and thus becomes correlated with the current environment (and decorrelated with past environmental
states), is the minimum transition rate,

ksys ≡ k− , (6)
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the rate of the rate-limiting step for rearrangement of system probability among its states. The transition
ratio ksys/κenv expresses this rate relative to the environmental transition rate. Figure 3 shows the
steady-state nostalgia Iss

nos, which increases with both ksys/κenv and β∆E, and tends to 0 as either
ksys/κenv or β∆E approach 0.

Figure 2. Model kinetics. States and transition rates for models with two system states and two
environment states. (a) System equilibration rate and energy gap magnitude and environment
transition rate are independent of environment state, but the direction of the energy gap switches
with environment state; (b) System equilibration rate and energy gap vary with environment state.
Environment transition rate is fixed; (c) System equilibration rate and energy gap and environment
transition rate vary with environment state.

Figure 3. Nostalgia increases with energy gap and system equilibration rate. Nostalgia Iss
nos as a

function of the energy gap β∆E and transition ratio ksys/κenv (κenv∆t = 10−12).

The dissipation ratio φ(t) approaches a steady-state value φss for each choice of parameters.
Figure 4 shows that φss follows the same general trends as Iss

nos, increasing with both energy gap
magnitude β∆E and transition ratio ksys/κenv.



Entropy 2018, 20, 707 5 of 9

Figure 4. Dissipation ratio increases with energy gap and system equilibration rate. Steady-state
dissipation ratio φss ≡ Iss

nos/β
〈
Wss

diss
〉

as a function of the energy gap β∆E and transition ratio ksys/κenv

(κenv∆t = 10−12).

In the limit of large temperature, when the energy gap is small compared to the ambient thermal
energy (β∆E� 1), φss reduces to a positive function of the equilibration rates of the system (ksys) and
environment (κenv):

φss =
1− κenv∆t

1− 2κenv∆t + κenv/ksys
, β∆E� 1 . (7)

This is found by explicitly calculating the steady-state probability distribution. In moving from
discrete-time steps to a continuous-time parameter, time step size becomes small compared to system
and environment transition times, reducing (7) to

φss =
1

1 + κenv/ksys
, κenv∆t, ksys∆t, β∆E� 1 . (8)

Thus, in the weak driving (high-temperature) limit (β∆E � 1), if the system evolves quickly
compared to the environment, most of the dissipation occurs during work steps, the learning rate
approaches the total thermodynamic entropy production, and the bound (2) approaches saturation.
Conversely (still restricting to high temperature), when the system evolves slowly compared to the
environment, most of the dissipation occurs during relaxation steps, the learning rate is small compared
to the total thermodynamic entropy production, and the nostalgia is small compared to the bound in (2).

Further, Figure 4 shows that φss increases with β∆E. Thus, this weak-driving limit gives a non-zero
lower bound on φss,

1− κenv∆t
1− 2κenv∆t + κenv/ksys

≤ φss ≤ 1 , (9)

or in the limit of small time steps,

1
1 + κenv/ksys

≤ φss ≤ 1 , κenv∆t, ksys∆t� 1 . (10)

If the system evolves quickly compared to its environment, nostalgia is the dominant form of
dissipation, regardless of β∆E. The limit of quasi-static driving is defined by ksys/κenv � 1. In this
limit, φss = 1, and therefore the nostalgia (the implicit predictive model inefficiency) is equal to the
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total dissipation (the thermodynamic inefficiency). The bounds in Equations (9) and (10) therefore
hold beyond the quasi-static limit. The bound in Equation (2) can be looser for systems farther from
the limit of quasi-static driving. These limits on φss are laid out in Table 1.

The transition ratio ksys/κenv is also equal to the ratio of characteristic timescales τenv/τsys.
Thus the bound for steady-state dissipation ratio (10) can be recast as

1
1 + N

≤ φss ≤ 1 , κenv∆t, ksys∆t� 1 , (11)

for N independent ‘measurements’ the system makes during each environment state [19]. From this
perspective, the bound is proportional (up to a multiplicative constant) to the Berg-Purcell lower
bound on environmental measurement precision of a single receptor [20].

3.2. Arbitrary System Rates

The results of the previous section were derived for a simple two-state system, in which the energy
difference between system states flips with environment transitions, and the system’s equilibration rate
is independent of the environment state. We generalize this model to a two-state system with arbitrary
rates and hence—by detailed balance—arbitrary energies (Figure 2b). Given the four transition
rates kA

12, kA
21, kB

12, and kB
21, when the environment is in state X = xA the system has energy gap

(normalized by temperature) β∆EA
12 = ln kA

21
kA

12
between state y1 and y2, and a characteristic equilibration

rate kA = min (kA
12, kA

21). Similarly, when the environment is in state X = xB, the corresponding

parameters are β∆EB
12 = ln kB

21
kB

12
and kB = min (kB

12, kB
21). Let ∆EA = |∆EA

12| and ∆EB = |∆EB
12| be the

magnitudes of the energy gaps in environment states xA and xB, respectively. The energy gaps ∆EA

and ∆EB are free to be aligned (∆EA
12∆EB

12 > 0) or anti-aligned (∆EA
12∆EB

12 < 0). A characteristic
equilibration rate of the system is thus

ksys =
2

1
kA + 1

kB

. (12)

Equations (7) and (8) also apply in this case of arbitrary system rates. Figure 5 shows that across
the explored parameter space, the steady-state dissipation ratio φss lies above the bound (9), with φss

approaching the bound in the weak-driving limit, β(∆EA + ∆EB)� 1. We conclude that Equations (9)
and (10) apply for arbitrary system rates.

Figure 5. Lower bound on dissipation ratio for fixed environment transition rate. The steady-state
dissipation ratio φss is lower-bounded by the black curve (9) for all values of the transition ratio
ksys/κenv. Each point corresponds to a particular set of parameters kA, kB, β∆EA, and β∆EB.
(a) Models in which the energy gaps ∆EA and ∆EB are anti-aligned; (b) Models in which the energy
gaps ∆EA and ∆EB are aligned (κenv∆t = 10−12).
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3.3. Arbitrary Environment Rates

Here we generalize our previous assumption of a fixed environmental transition rate κenv,
independent of the present environmental state. We now allow for two different transition rates,
κAB and κBA, out of the two states A and B (Figure 2c).

As above, we define the characteristic system equilibration rates kA and kB when the environment
is in states X = xA and X = xB, respectively. A characteristic equilibration rate for the system is the
harmonic mean of the system transition rates for each environment state, weighted by the rate of
switching out of that environmental state:

ksys =
κAB + κBA

κAB

kA + κBA

kB

. (13)

For a uniform environmental transition rate (independent of environment state), this reduces to
the previous un-weighted harmonic mean (12). Here we define a characteristic environmental rate
κ̄env as the arithmetic mean of the transition rates between the environment states

κ̄env =
κAB + κBA

2
. (14)

With these definitions, Equations (7) and (8) (replacing κenv with κ̄env) apply to this case of
arbitrary transition probabilities. Figure 6 shows that across a range of system and environment
parameter values, bounds (9) and (10) hold. The proposed bound depends on the system only through
ksys, and hence the environmental-state-dependent equilibration rates kA, kB.

Figure 6. Lower bound on dissipation ratio for varying environment transition rate. The steady-state
dissipation ratio φss is lower-bounded by the black curve (9) for all values of the transition ratio
ksys/κenv. Each point corresponds to a particular set of parameters kA, kB, β∆EA, and β∆EB.
The environment transition rates are κAB = 1.8κ̄env and κBA = 0.2κ̄env. (a) Models in which the
energy gaps ∆EA and ∆EB are anti-aligned; (b) Models in which the energy gaps ∆EA and ∆EB are
aligned (κ̄env∆t = 10−12).

4. Discussion

Reference [7] described a relationship between dissipation and nostalgia, a novel abstract
information-theoretical concept quantifying the information the system stores about its environment
that fails to be predictive of future environmental states. Energetically efficient performance requires
avoiding this nostalgia. This framework suggests applications in biology, where living things are
influenced by, and thus learn about, their environments. Recent explorations of the implications of this
relationship have illuminated its behavior in model neurons [21], its relation to sensor performance [18],
and the variation of it and related quantities across several biophysical model systems [16].
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Here we focused on a physical understanding of the relationships between the information-theoretic
and thermodynamic quantities. We calculated the nostalgia and nostalgia-dissipation ratio in some
model systems. Calculating these quantities over the parameter space of simple systems helps to
establish an intuitive picture: when the system is quick to relax and strongly driven by the environment
(energy gaps vary strongly with environment state), the nostalgia provides a tight lower bound on
the steady-state dissipation (8); equivalently, the system learns more about the environment per unit
heat dissipated.

For fixed equilibration rates, we found the ratio of nostalgia to total dissipation is minimized
in the weak-driving limit. Further, the ratio of nostalgia to total dissipation is bounded from below
by this weak-driving limit (10), which depends on the system only through its overall equilibration
rate. If the system is driven quasi-statically by its environment, this bound dictates that the predictive
inefficiency (nostalgia) is responsible for all thermodynamic inefficiency (dissipation). Contexts further
from the quasi-static limit can be further from saturating the bound in Equation (2), and hence have a
smaller relative contribution from model inefficiency.

One could explore more complex models than the simple Markovian two-state systems and
environments described here. One could expand the system to more states [17], or expand the
environmental behavior through additional states or non-Markovian dynamics, since this theoretical
framework does not restrict the form of these transitions.
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