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Abstract: Let Xn be a memoryless uniform Bernoulli source and Yn be the output of it through a
binary symmetric channel. Courtade and Kumar conjectured that the Boolean function f : {0, 1}n →
{0, 1} that maximizes the mutual information I( f (Xn); Yn) is a dictator function, i.e., f (xn) = xi
for some i. We propose a clustering problem, which is equivalent to the above problem where
we emphasize an information geometry aspect of the equivalent problem. Moreover, we define a
normalized geometric mean of measures and interesting properties of it. We also show that the
conjecture is true when the arithmetic and geometric mean coincide in a specific set of measures.
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1. Introduction

Let Xn be an independent and identically distributed (i.i.d.) uniform Bernoulli source and
Yn be an output of it through a memoryless binary symmetric channel with crossover probability
p < 1/2. Recently, Courtade and Kumar conjectured that the most informative Boolean function is a
dictator function.

Conjecture 1 ([1]). For any Boolean function f : {0, 1}n → {0, 1}, we have:

I( f (Xn); Yn) ≤ 1− h2(p) (1)

where the maximum is achieved by a dictator function, i.e., f (xn) = xi for some 1 ≤ i ≤ n. Note that
h2(p) = −p log p− (1− p) log(1− p) is the binary entropy function.

Although there has been some progress in this line of work [2,3], this simple conjecture
still remains open. There are also a number of variations of this conjecture. Weinberger and
Shayevitz [4] considered the optimal Boolean function under quadratic loss. Huleihel and
Ordentlich [5] considered the complementary case and showed that I( f (Xn); Yn) ≤ (n− 1)(1− h2(p))
for all f : {0, 1}n → {0, 1}n−1. Nazer et al. focused on information distilling quantizers [6], which can
be seen as a generalized version of the above problem.

Many of them are based on the Fourier analysis technique including the original paper [1].
In this paper, we suggest an alternative approach, namely the information geometric approach. The
mutual information can naturally be expressed with Kullback–Leibler (KL) divergences. Thus, it can be
shown that the maximizing mutual information is equivalent to clustering probability measures under
KL divergence.

In the equivalent clustering problem, the center of the cluster is an arithmetic mean of measures.
We also provide the role of the geometric mean of measures (with appropriate normalization) in this
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setting. To the best of our knowledge, the geometric mean of measures has received less attention in
the literature. We propose an equivalent formulation of the conjecture using the geometric mean of
measures. Note that the geometric mean also allows us to connect Conjecture 1 to the other well-known
clustering problem.

The rest of the paper is organized as follows. In Section 2, we briefly review the Jensen–Shannon
divergence and I-compressedness. In Section 3, we provide an equivalent clustering problem of
probability measures. We introduce the geometric mean of measures in Section 4. We conclude this
paper in Section 5.

Notations

X denotes the alphabet set of random variable X, and M(X ) denotes the set of measures
on X . Xn denotes a random vector (X1, X2, . . . , Xn), while xn denotes a specific realization of
it. If it is clear from the context, PY|x denotes a conditional distribution of Y given X = x, i.e.,
PY|x(y) = PY|X(y|x). Similarly, PYn |xn denotes a conditional distribution of Yn given Xn = xn, i.e.,
PYn |xn(yn) = PYn |Xn(yn|xn). Let Ω = {0, 1}n be the set of all binary sequences of length n. For A ⊆ Ω,
the shifted version of A is denoted by A ⊕ xn = {x̃n ⊕ xn : x̃n ∈ A} where ⊕ is an element-wise
XOR operator. The arithmetic mean of measures in the set {PYn |xn : xn ∈ A} is denoted by µA.
For 1 ≤ i ≤ n, let Ai0 be the set of elements in A that satisfy xi = 0, i.e., Ai0 = {xn ∈ A : xi = 0}, and
Ωi0 = {xn ∈ Ω : xi = 0}. Ai1 is defined in a similar manner. A length n binary vector xn−10 denotes a
vector xn with xn = 0.

2. Preliminaries

2.1. Jensen–Shannon Divergence

For α1, α2 ≥ 0 such that α1 + α2 = 1, the Jensen–Shannon (JS) divergence of two measures P1 and
P2 is defined as:

JSDα(P1, P2) = H(α1P1 + α2P2)− α1H(P1)− α2H(P2). (2)

It is not hard to show that the following definition is equivalent.

JSDα(P1, P2) = α1D(P1‖α1P1 + α2P2) + α2D(P2‖α1P1 + α2P2). (3)

Lin proposed a generalized JS divergence [7]:

JSDα(P1, P2, . . . , Pn) = H

(
n

∑
i=1

αiPi

)
−

n

∑
i=1

αi H(Pi) (4)

where α = (α1, . . . , αn) is a weight vector such that ∑n
i=1 αi = 1. Similar to Equation (3), it has an

equivalent definition:

JSDα(P1, P2, . . . , Pn) =
n

∑
i=1

αiD(Pi‖P̄) (5)

where P̄ = ∑n
i=1 αiPi. Topsøe [8] pointed out an interesting property, the so-called compensation

identity. It states that for any distribution Q,
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n

∑
i=1

αiD(Pi‖Q) =
n

∑
i=1

αiD(Pi‖P̄) + D(P̄‖Q) (6)

=JSDα(P1, P2, . . . , Pn) + D(P̄‖Q). (7)

Throughout the paper, we often use Equation (6) directly without the notion of JSD

Remark 1. The generalized JS divergence is the mutual information between X and the mixture distribution.
Let Z be a random variable that takes the value from {1, 2, . . . , n} where PZ(i) = αi and PX|Z(x|i) = Pi(x).
Then, it is not hard to show that:

JSDα(P1, P2, . . . , Pn) = I(X; Z) (8)

However, we introduced generalized JS divergence to emphasize the information geometric perspective of
our problem.

2.2. I-Compressed

Let A be the subset of Ω and I = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n} be the set of indexes.
For xn ∈ Ω, the I-section of A is defined as:

AI (xn) =

zk : yn ∈ A, yi =

zj if i = ij ∈ I

xi otherwise

 . (9)

The set A is called I-compressed if AI (xn) is an initial segment of lexicographical ordering for all
xn. For example, if A is I-compressed for some |I| = 2, then AI (xn) should be one of:

{00}, {00, 01}, {00, 01, 10}, {00, 01, 10, 11}. (10)

It simply says that if xn−210 ∈ A, then xn−200, xn−201 ∈ A.
Courtade and Kumar showed that it is enough to consider the I-compressed sets.

Theorem 1 ([1]). Let Sn be the set of functions f : Ω → {0, 1} for which f−1(0) is I-compressed for all I
with |I| ≤ 2. In maximizing I( f (Xn); Yn), it is sufficient to consider functions f ∈ Sn.

In this paper, we often restrict our attention to functions in the set Sn.

3. Approach via Clustering

In this section, we provide an interesting approach toward Conjecture 1 via clustering.
More precisely, we formulate an equivalent clustering problem.

3.1. Equivalence to Clustering

The following theorem implies the relation between the original conjecture and the
clustering problem.
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Theorem 2. Let f : X → U and U = f (X) be an induced random variable. Then,

I( f (X); Y) =I(X; Y)−∑
x

PX(x)D(PY|x‖PY|U(·| f (x))). (11)

The proof of the theorem is provided in Appendix A. Note that:

PY|U(y|u) =
PU|Y(u|y)PY(y)

PU(u)
(12)

=
PY(y)
PU(u)

∑
x∈ f−1(u)

PX|Y(x|y) (13)

= ∑
x∈ f−1(u)

PX(x)
PU(u)

·PY|X(y|x). (14)

which is a weighted mean of PY|X(y|x) for x ∈ f−1(u). The D(PY|x‖PY|U(·| f (x))) is a distance from
each element to the cluster center. This implies that maximizing I( f (X); Y) is equivalent to clustering
{PYn |xn} under KL divergences. Since KL divergence is a Bregman divergence, all clusters are separated
by a hyperplane [9].

In this paper, we focus on U = {0, 1} where Xn is i.i.d. Bern(1/2).

Corollary 1. Let f : Ω→ {0, 1} and U = f (Xn) be a binary random variable.

I( f (Xn); Yn) =n− nh2(p)− 1
2n ∑

xn
D(PYn |xn‖PYn |U(·| f (xn))). (15)

The equivalent clustering problem is minimizing:

∑
xn

D(PYn |xn‖PYn |U(·| f (xn))). (16)

Let A = {xn ∈ Ω : f (xn) = 0}, then we can simplify PYn |U further.

PYn |U(y
n|0) = 1

|A| ∑
xn∈A

PYn |Xn(yn|xn) (17)

∆
=µA(yn). (18)

The cluster center µA is an arithmetic mean of measures in the set {PYn |xn : xn ∈ A}.
Then, we have:

∑
xn

D(PYn |xn‖PYn |U(·| f (xn))) = ∑
xn∈A

D(PYn |xn‖µA) + ∑
xn∈Ac

D(PYn |xn‖µAc). (19)

For simplicity, let:

D(A)
∆
= ∑

xn∈A
D(PYn |xn ||µA) (20)
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which is the sum of distances from each element in A to the cluster center. In short, finding the most
informative Boolean function f is equivalent to finding the set A ⊆ Ω that minimizes D(A) +D(Ac).

Remark 2. Conjecture 1 implies that A = Ωi0 = {xn : xi = 0} minimizes (19). Furthermore, Theorem 1
implies that it is enough to consider A such that Ai1 ⊆ Ai0 for all i.

For any QYn ∈ M(Ω), Equation (6) implies that:

∑
x∈A

D(PYn |xn‖QYn) = D(A) + |A|D(µA‖QYn) (21)

∑
x∈Ac

D(PYn |xn‖QYn) = D(Ac) + |Ac|D(µAc‖QYn). (22)

Thus, we have:

∑
x∈Ω

D(PYn |xn‖QYn) = D(A) +D(Ac) + |A|D(µA‖QYn) + |Ac|D(µAc‖QYn). (23)

Note that ∑x∈Ω D(PYn |xn‖QYn) does not depend on A, and therefore, we have the
following theorem.

Theorem 3. For any QYn ∈ M(Ω), minimizing D(A) +D(Ac) is equivalent to maximizing:

|A|D(µA‖QYn) + |Ac|D(µAc‖QYn). (24)

The above theorem provides an alternative problem formulation of the original conjecture.

3.2. Connection to Clustering under Hamming Distance

In this section, we consider the duality between the above clustering problem under the KL
divergence and the clustering on Ω under the Hamming distance. The following theorem shows that
the KL divergence on {PYn |xn : xn ∈ Ω} corresponds to the Hamming distance on Ω.

Theorem 4. For all xn, x̃n ∈ Ω, we have:

D(PYn |xn‖PYn |x̃n) = dH(xn, x̃n) · (1− 2p) log
1− p

p
(25)

where dH(xn, x̃n) denotes the Hamming distance between xn and x̃n.

This theorem implies that the distance between two measures PYn |xn and PYn |x̃n is proportional to
the Hamming distance between two binary vectors xn and x̃n. The proof of the theorem is provided in
Appendix B. Note that the KL divergence D(·‖·) is symmetric on {PYn |xn : xn ∈ Ω}.

In the above duality, we have a mapping between {PYn |xn : xn ∈ Ω} and {0, 1}n; more precisely,
PYn |xn ↔ xn. This mapping naturally suggests an equivalent clustering problem of n-dimensional
binary vectors. However, the cluster center µA is not an element of {PYn |xn : xn ∈ Ω} in general.
In order to formulate an equivalent clustering problem, we need to answer the question “Which n
dimensional vector corresponds to µA?”. A naive approach is to extend the set of binary vectors to
[0, 1]n under `2 distance instead of the Hamming distance. In such a case, the goal is to map µA to the
arithmetic mean of binary vectors in the set A. If this is true, we can further simplify the problem into
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the problem of clustering a hypercube in Rn. However, the following example shows that this naive
extension is not valid.

Example 1. Let n = 2, A = {00, 11} and B = {01, 10}, then the arithmetic mean of binary vectors of A and
that of B are the same. However, µA is not equal to µB.

Furthermore, the set Ωi0 is not the optimum choice when clustering the hypercube under `2.
Instead, we need to consider the set of measures directly. The following theorem provides a bit of
geometric structure among measures.

Theorem 5. For all xn, x̃n ∈ Ω and QYn ∈ conv({PYn |xn |xn ∈ Ω}),

D(PYn |Xn=xn‖QYn)− D(PYn |Xn=x̃n‖QYn) ≤k · ((1− p)k − pk) log
1− p

p
(26)

where k = dH(xn, x̃n).

The proof of the theorem is provided in Appendix C. Since (1− p)k − pk ≤ 1− 2p for all k ≥ 1,
Theorem 5 immediately implies the following corollary.

Corollary 2. For all xn, x̃n ∈ Ω and QYn ∈ conv({PYn |xn |xn ∈ Ω}),

∣∣∣D(PYn |Xn=xn‖QYn)− D(PYn |Xn=x̃n‖QYn)
∣∣∣ ≤ D(PYn |Xn=xn‖PYn |Xn=x̃n) (27)

where conv(A) is a convex hull of measures in the set A.

This is a triangle inequality that can be useful when we consider the clustering problem
of measures.

4. Geometric Mean of Measures

In the previous section, we formulate the clustering problem that is equivalent to the original
maximizing mutual information problem. In this section, we provide another approach using a
geometric mean of measures. We define the geometric mean of measures formally and derive a
nontrivial conjecture, which is equivalent to Conjecture 1.

4.1. Definition of the Geometric Mean of Measures

For measures P1, P2, . . . , Pn ∈ M(X ) and weights αi ≥ 0 such that ∑n
i=1 αi = 1, we considered

the sum of KL divergences in (6):

n

∑
i=1

αiD(Pi‖Q). (28)

We also observed that (28) is minimized when Q is an arithmetic mean of measures.
Since the KL divergence is asymmetric, it is natural to consider the sum of another direction of

KL divergences.

n

∑
i=1

αiD(Q‖Pi) =
n

∑
i=1

αi ∑
x∈X

Q(x) log
Q(x)
Pi(x)

(29)



Entropy 2018, 20, 688 7 of 16

= ∑
x∈X

n

∑
i=1

αiQ(x) log
Q(x)
Pi(x)

(30)

= ∑
x∈X

Q(x) log
Q(x)

∏n
i=1(Pi(x))αi

. (31)

Compared to the arithmetic mean that minimizes (28), ∏n
i=1(Pi(x))αi can be considered as a

geometric mean of measures. However, ∏n
i=1(Pi(x))αi is not a measure in general, and normalization

is required. With a normalizing constant s, we can define the geometric mean of measures by:

P̄G(x) =
1
s

n

∏
i=1

(Pi(x))αi (32)

where s is a constant, so that ∑x∈X P̄G(x) = 1, i.e.,

s = ∑
x

n

∏
i=1

(Pi(x))αi . (33)

Then, we have:

n

∑
i=1

αiD(Q‖Pi) =D(Q‖P̄G) + log
1
s

(34)

which can be minimized when Q = P̄G. Thus, for all Q,

n

∑
i=1

αiD(Q‖Pi) ≥
n

∑
i=1

αiD(P̄G‖Pi) (35)

= log
1
s

. (36)

The above result provides a geometric compensation identity.

n

∑
i=1

αiD(Q‖Pi) =D(Q‖P̄G) +
n

∑
i=1

αiD(P̄G‖Pi). (37)

This also implies that log 1
s ≥ 0.

Remark 3. If n = 2, s is called the α-Chernoff coefficient, and it is called the Bhattacharyya coefficient when α =

1/2. The summation log 1
s = ∑2

i=1 αiD(P̄G‖Pi) is known as α-Chernoff divergence. For more details, please
see [10,11] and the references therein.

Under this definition, we can find the geometric mean of measures in the set {PYn |x̃n : x̃n ∈ B}
with uniform weights 1

|B| by:

γB(yn) =
1
sB

(
∏

x̃n∈B
PYn |Xn(yn|x̃n)

)1/|B|

(38)

where:
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sB = ∑
yn

(
∏

x̃n∈B
PYn |Xn(yn|x̃n)

)1/|B|

. (39)

Remark 4. The original conjecture is that the Boolean function f such that f−1(0) = Ωi0 = {xn : xi = 0}
maximizes the mutual information I( f (Xn); Yn). The geometric mean of measures in the set {PYn |xn : xn ∈
Ωi0} satisfies the following property.

γΩi0 =µΩi0 (40)

sΩi0 =2n−1 (p(1− p))(n−1)/2 . (41)

Note that the geometric mean of measures in the set {PYn |xn : xn ∈ Ω} satisfies:

γΩ =µΩ (42)

sΩ =2n (p(1− p))n/2 . (43)

4.2. Main Results

So far, we have seen two means of measures µA and γA. It is natural to ask if they are equal. Our
main theorem provides a connection to Conjecture 1.

Theorem 6. Suppose A is a nontrivial subset of Ω = {0, 1}n for n > 0 (i.e., A 6= ∅, Ω), and A is
I-compressed for all |I| = 1. Then, A = Ωi0 for some i if and only if µA = γA and µAc = γAc .

The proof of the theorem is provided in Appendix D. Theorem 6 implies that the following
conjecture is the equivalent to Conjecture 1.

Conjecture 2. Let f : Ω → {0, 1} and A = f−1(0) be I-compressed for all |I| = 1. Then, I( f (X); Y) is
maximized if and only if µA = γA and µAc = γAc .

Remark 5. One of the main challenges of this problem is that the conjectured optimal sets are extremes, i.e.,
A = Ωi0 for some i. Our main theorem provides an alternative conjecture that seems more natural in the context
of optimization.

Remark 6. It is clear that µA = γA holds if |A| = 1. Thus, both conditions µA = γA and µAc = γAc are
needed to guarantee A = Ωi0 for some i.

4.3. Property of the Geometric Mean

We can derive a new identity by combining the original and geometric compensation identity
together. For A, B ⊂ Ω, let π(A, B) be:

π(A, B) = ∑
(xn ,x̃n)∈A×B

D(PYn |xn‖PYn |x̃n). (44)

Then,
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π(A, B) = ∑
(xn ,x̃n)∈A×B

D(PYn |xn‖PYn |x̃n) (45)

= ∑
x̃n∈B

∑
xn∈A

D(PYn |xn‖PYn |x̃n) (46)

= ∑
x̃n∈B

(
∑

xn∈A
D(PYn |xn‖µA) + |A|D(µA‖PY|x̃n)

)
(47)

=|B|D(A) + |A| ∑
x̃n∈B

D(µA‖PY|x̃n) (48)

where (47) is because of the compensation identity (6). As we discussed in Section 4.1, the second term
of the right-hand side is:

∑
x̃n∈B

D(µA‖PY|x̃n) = ∑
x̃n∈B

∑
yn

µA(yn) log
µA(yn)

PYn |Xn(yn|x̃n)
(49)

=|B|∑
yn

µA(yn) log
µA(yn)(

∏x̃n∈B PYn |Xn(yn|x̃n)
)1/|B| (50)

=|B|D(µA‖γB) + |B| log
1
sB

(51)

=|B|D(µA‖γB) + ∑
x̃n∈B

D(γB‖PYn |x̃n). (52)

Finally, we have:

1
|A||B|π(A, B) =

1
|A|D(A) + D(µA‖γB) + log

1
sB

(53)

=
1
|A| ∑

xn∈A
D(PYn |xn‖µA) + D(µA‖γB) +

1
|B| ∑

x̃n∈B
D(γB‖PYn |x̃n). (54)

More interestingly, we can apply original and geometric compensation identities:

1
|A||B|π(A, B) =

1
|A| ∑

xn∈A
D(PYn |xn‖µA) +

1
|B| ∑

x̃n∈B
D(µA‖PYn |x̃n) (55)

=
1
|A| ∑

xn∈A
D(PYn |xn‖γB) +

1
|B| ∑

x̃n∈B
D(γB‖PYn |x̃n). (56)

From Theorem 4, we have π(A, B) = π(B, A), and therefore, we can switch A and B.

1
|A||B|π(A, B) =

1
|B| ∑

xn∈B
D(PYn |xn‖µB) + D(µB‖γA) +

1
|A| ∑

x̃n∈A
D(γA‖PYn |x̃n) (57)

=
1
|B| ∑

xn∈B
D(PYn |xn‖µB) +

1
|A| ∑

x̃n∈A
D(µB‖PYn |x̃n) (58)

=
1
|B| ∑

xn∈B
D(PYn |xn‖γA) +

1
|A| ∑

x̃n∈A
D(γA‖PYn |x̃n). (59)

If we let A = B, we have:
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1
|A|2 π(A, A) =

1
|A| ∑

xn∈A

[
D(PYn |xn‖γA) + D(γA‖PYn |xn)

]
(60)

=
1
|A| ∑

xn∈A

[
D(PYn |xn‖µA) + D(µA‖PYn |xn)

]
(61)

=
1
|A| ∑

xn∈A

[
D(PYn |xn‖µA) + D(µA‖γA) + D(γA‖PYn |xn)

]
. (62)

Note that 1
|A|π(A, A) + 1

|Ac |π(Ac, Ac) is similar to a known clustering problem. In the clustering
literature, the min-sum clustering problem [12] is minimizing the sum of all edges in each cluster. Using
π, we can describe the binary min-sum clustering problem on Ω by minimizing π(A, A) + π(Ac, Ac).

4.4. Another Application of the Geometric Mean

Using the geometric mean of measures, we can rewrite the clustering problem in a different form.
Recall that µA⊕xn = {x̃n ⊕ xn : x̃n ∈ A}. Then, we have:

D(A) = ∑
xn∈A

D(PYn |xn‖µA) (63)

= ∑
xn∈A

D(PYn |0n‖µA⊕xn). (64)

Let γ̃A be the geometric mean of measures in the set {µA⊕xn : xn ∈ A}, i.e.,

γ̃A(yn) =
1

s̃A

(
∏

xn∈A
µA⊕xn(yn)

)1/|A|

(65)

where:

s̃A = ∑
yn

(
∏

xn∈A
µA⊕xn(yn)

)1/|A|

. (66)

Then, we have:

D(A) = |A|D(PYn |0n‖γ̃A) + |A| log
1

s̃A
. (67)

Needless to say:

D(Ac) = |Ac|D(PYn |0n‖γ̃Ac) + |Ac| log
1

s̃Ac
. (68)

The sum of the results is:

D(A) +D(Ac) =|A|D(PYn |0n‖γ̃A) + |Ac|D(PYn |0n‖γ̃Ac) + |A| log
1

s̃A
+ |Ac| log

1
s̃Ac

. (69)

This can be considered as a dual of Theorem 3.
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Remark 7. Let Ωi0 = {xn : xi = 0}, which is the candidate of the optimizer. Then,

γ̃Ωi0 =γ̃(Ωi0)c = µΩi0 (70)

s̃Ωi0 =s̃(Ωi0)c = 1. (71)

5. Concluding Remarks

In this paper, we have proposed a number of different formulations of the most informative
Boolean function conjecture. Most of them are based on the information geometric approach.
Furthermore, we focused on the (normalized) geometric mean of measures that can simplify the
problem formulation. More precisely, we showed that Conjecture 1 is true if and only if the maximum
achieving f satisfies the following property: “the arithmetic and geometric mean of measures are the
same for both {PYn |xn : xn ∈ f−1(0)}, as well as {PYn |xn : xn ∈ f−1(1)}.”

Funding: This work was supported by the Hongik University new faculty research support fund.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Proof of Theorem 2

By the definition of mutual information, we have:

I(X; Y)− I( f (X); Y) =E
[

log
PX,Y(X, Y)

PX(X)PY(Y)

]
−E

[
log

PU,Y( f (X), Y)
PU( f (X))PY(Y)

]
(A1)

=E
[

log
PY|X(Y|X)

PY|U(Y| f (X)

]
(A2)

=E
[
E
[

log
PY|X(Y|X)

PY|U(Y| f (X))

∣∣∣∣∣ X

]]
(A3)

=∑
x

PX(x)E
[

log
PY|X(Y|X)

PY|U(Y| f (X))

∣∣∣∣∣ X = x

]
(A4)

=∑
x

PX(x)D(PY|x‖PY|U(·| f (x))). (A5)

This concludes the proof.

Appendix B. Proof of Theorem 4

Without loss of generality, we can assume that xn = 0n and x̃n = 1k0n−k where k = dH(xn, x̃n).
Then, we have:

D(PYn |xn‖PYn |x̃n)

=D(PYk |xk × PYn
k+1|x

n
k+1
‖PYk |x̃k × PYn

k+1|x̃
n
k+1

) (A6)

=D(PYk |0k × PYn
k+1|0

n
k+1
‖PYk |1k × PYn

k+1|0
n
k+1

) (A7)

=D(PYk |0k‖PYk |1k ) + D(PYn
k+1|0

n
k+1
‖PYn

k+1|0
n
k+1

) (A8)

=D(PYk |0k‖PYk |1k ) (A9)

Thus,
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D(PYk |0k‖PYk |1k )

=kD(PY|0‖PY|1) (A10)

=k
(

p log
p

1− p
+ (1− p) log

1− p
p

)
(A11)

=k(1− 2p) log
1− p

p
. (A12)

Since dH(xn, x̃n) = k, this concludes the proof.

Appendix C. Proof of Theorem 5

The following lemma bounds the ratio between Qn
Y(y

n) and QYn(ỹn), which will be crucial in
our argument.

Lemma A1. For QYn ∈ conv{PYn |xn |xn ∈ Ω},

dH(yn, ỹn) · log
(

p
1− p

)
≤ log

QYn(yn)

QYn(ỹn)
≤ dH(yn, ỹn) · log

(
1− p

p

)
(A13)

Proof. Without loss of generality, we can assume that ȳk = ỹk and yn
k+1 = ỹn

k+1.

QYn(yn)

QYn(ȳk, yn
k+1)

=
∑xn π(xn)PYn |Xn(yn|xn)

∑xn π(xn)PYn |Xn(ȳk, yn
k+1|xn)

(A14)

≤
(

1− p
p

)k ∑xn π(xn)PYn |Xn(yn|xn)

∑xn π(xn)PYn |Xn(yn|xn)
(A15)

=

(
1− p

p

)k
. (A16)

Similarly, we can show that:

QYn(yn)

QYn(ȳk, yn
k+1)

≥
(

p
1− p

)k
. (A17)

This concludes the proof of the lemma.

Without loss of generality, we can assume that xn = 0n and x̃n = 1k0n−k. Then, we have:

PYn |Xn(yn|x̃n) =PYn |Xn(yn|1k0n−k) (A18)

=PYn |Xn(ȳk, yn
k+1|0

n) (A19)

where ȳi = 1− yi. Thus, we have:

D(PYn |Xn=xn‖QYn)− D(PYn |Xn=x̃n‖QYn)

=E
[

log
PYn |Xn(Yn|0n)

QYn(Yn)

]
−E

[
log

PYn |Xn(Ȳk, Yn
k+1|0

n)

QYn(Yn)

]
(A20)
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=E
[

log
PYn |Xn(Yn|0n)

QYn(Yn)

]
−E

[
log

PYn |Xn(Yn|0n)

QYn(Ȳk, Yn
k+1)

]
(A21)

=E
[

log
QYn(Yn)

QYn(Ȳk, Yn
k+1)

]
. (A22)

Note that two expectations in (A20) are under different distributions; on the other hand,
expectations in (A21) and the following equations are under the same distribution PYn |Xn=0n .

The above expectation can be written as follows.

D(PYn |Xn=xn‖QYn)− D(PYn |Xn=x̃n‖QYn)

=∑
yn

PYn |Xn(yn|0n) log
QYn(yn)

QYn(ȳk, yn
k+1)

(A23)

=∑
yn

2

PYn |Xn(0, yn
2 |0n) log

QYn(0, yn
2 )

QYn(1, ȳk
2, yn

k+1)

+ ∑
yn

2

PYn |Xn(1, yn
2 |0n) log

QYn(1, yn
2 )

QYn(0, ȳk
2, yn

k+1)
(A24)

=∑
yn

2

PYn |Xn(0, yn
2 |0n) log

QYn(0, yn
2 )

QYn(1, ȳk
2, yn

k+1)

+ ∑
yn

2

PYn |Xn(1, ȳk
2, yn

k+1|0
n) log

QYn(1, ȳk
2, yn

k+1)

QYn(0, yn
2 )

(A25)

=∑
yn

2

(
(1− p)PYn

2 |Xn
2
(yn

2 |0n−1)− pPYn
2 |Xn

2
(ȳk

2, yn
k+1|0

n−1)
)

log
QYn(0, yn

2 )

QYn(1, ȳk
2, yn

k+1)
(A26)

≤∑
yn

2

∣∣∣(1− p)PYn
2 |Xn

2
(yn

2 |0n−1)− pPYn
2 |Xn

2
(ȳk

2, yn
k+1|0

n−1)
∣∣∣ k log

1− p
p

(A27)

=∑
yk

2

∣∣∣(1− p)PYk
2 |Xk

2
(yk

2|0k−1)− pPYk
2 |Xk

2
(ȳk

2|0k−1)
∣∣∣ k log

1− p
p

(A28)

where (A27) is because of Lemma A1.
Finally,

∑
yk

2

∣∣∣(1− p)PYk
2 |Xk

2
(yk

2|0k−1)− pPYk
2 |Xk

2
(ȳk

2|0k−1)
∣∣∣

≤
k−1

∑
i=0

(
k− 1

i

) ∣∣∣(1− p)pi(1− p)k−1−i − p · pk−1−i(1− p)i
∣∣∣ (A29)

≤(1− p)k − pk. (A30)

This concludes the proof.
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Appendix D. Proof of Theorem 6

From the first assumption µA = γA, we have:

∑
yn−1

µA(yn−10) = ∑
yn−1

1
|A| ∑

xn∈A
PYn |Xn (yn−10|xn) (A31)

= ∑
yn−1

1
|A| ∑

xn∈An0

PYn |Xn (yn−10|xn) + ∑
yn−1

1
|A| ∑

xn∈An1

PYn |Xn (yn−10|xn) (A32)

=
1− p
|A| ∑

xn∈An0

∑
yn−1

PYn−1|Xn−1 (yn−1|xn−1) +
p
|A| ∑

xn∈An1

∑
yn−1

PYn−1|Xn−1 (yn−1|xn−1) (A33)

=(1− p)
|An0|
|A| + p

|An1|
|A| . (A34)

Clearly, we can get the following result in a similar manner.

∑
yn−1

µA(yn−11) =p
|An0|
|A| + (1− p)

|An1|
|A| . (A35)

The ratio of those two is given by:

∑yn−1 µA(yn−11)

∑yn−1 µA(yn−10)
=

p |An0|
|A| + (1− p) |An1|

|A|

(1− p) |An0|
|A| + p |An1|

|A|

. (A36)

On the other hand, we can also marginalize γA:

∑
yn−1

γA(yn−10) =
1

sA
∑

yn−1

(
∏

xn∈A
PYn |Xn (yn−10|xn)

)1/|A|

(A37)

=
1

sA
∑

yn−1

(
∏

xn∈An0

(1− p)PYn−1|Xn−1 (yn−1|xn−1) ∏
xn∈An1

pPYn−1|Xn−1 (yn−1|xn−1)

)1/|A|

(A38)

=
1

sA
∑

yn−1

(
(1− p)|An0|p|An1| ∏

xn∈A
PYn−1|Xn−1 (yn−1|xn−1)

)1/|A|

(A39)

=
1

sA
(1− p)|An0|/|A|p|An1|/|A| ∑

yn−1

(
∏

xn∈A
PYn−1|Xn−1 (yn−1|xn−1)

)1/|A|

. (A40)

Similarly, we have:

∑
yn−1

γA(yn−11) =
1

sA
p|An0|/|A|(1− p)|An1|/|A| ∑

yn−1

(
∏

xn∈A
PYn−1|Xn−1(yn−1|xn−1)

)1/|A|

. (A41)

Thus, the ratio is given by:

∑yn−1 γA(yn−11)

∑yn−1 γA(yn−10)
=

p|An0|/|A|(1− p)|An1|/|A|

(1− p)|An0|/|A|p|An1|/|A|
(A42)

Since µA = γA, both ratios should be the same. Let x = |An0|/|A|, which implies |An1|/|A| =
1− x. Then, we have:
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px + (1− p)(1− x)
(1− p)x + p(1− x)

=
px(1− p)1−x

(1− p)x p1−x . (A43)

If we let y = p
1−p , then the above equation can be further simplified to:

xy + (1− x)
x + y(1− x)

= y2x−1. (A44)

Lemma A2. For fixed 0 < y < 1, the only solutions of the above equation are x = 0, 1
2 , 1.

Proof. It is clear that x = 0, 1
2 , 1 comprise the solution of the following equation.

xy + (1− x)
x + y(1− x)

= y2x−1. (A45)

It is enough to show that:

gy(x) = log(xy + (1− x))− log(x + y(1− x))− (2x− 1) log y = 0 (A46)

can have up to three solutions. Consider the derivative ∂
∂x gy(x) = 0,

∂

∂x
gy(x) =

y− 1
xy + 1− x

− 1− y
x + y− xy

− 2 log y = 0 (A47)

which is equivalent to:

2(xy + 1− x)(x + y− xy) log y = (1 + y)(y− 1). (A48)

It is a quadratic equation, and therefore, ∂
∂x gy(x) = 0 can have up to two solutions. Thus,

gy(x) = 0 can have up to three solutions.

This implies that |An0| = 0, |A|/2 or |A|. It is clear that the above result holds for all i and Ac, i.e.,
|Ai0| is either 0, |A|/2 or |A|, and |Ac

i0| is either 0, |Ac|/2 or |Ac|. These cardinalities should satisfy the
following equations:

|Ai0|+ |Ai1| =|A| (A49)

|Ai0|+ |Ac
i0| =2n−1 (A50)

|Ac
i0|+ |Ac

i1| =|Ac| (A51)

|Ai1|+ |Ac
i1| =2n−1 (A52)

for all 1 ≤ i ≤ n. Since I-compressedness implies Ai1 ⊆ Ai0, we have |Ai1| ≤ |Ai0|. Thus, |Ai0| should
be either |A|/2 or |A| for all i. If |Ai0| = |A| for some i, then |Ai1| = 0. Since |Ac

i1| is either 0, |Ac|/2 or
|Ac|, but Ac 6= ∅, Ω, we have |Ac

i1| = 2n−1. Thus, A = Ai0 and |A| = 2n−1, which implies A = Ωi0.
On the other hand, assume that |Ai0| = |Ai1| = |A|/2 for all i. Since A is I-compressed,

xi−11xn
i+1 ∈ Ai1 implies xi−10xn

i+1 ∈ Ai0. However, we have |Ai0| = |Ai1|, and therefore:
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xi−11xn
i+1 ∈ Ai1 ⇔ xi−10xn

i+1 ∈ Ai0 (A53)

and equivalently,

xi−11xn
i+1 ∈ A⇔ xi−10xn

i+1 ∈ A (A54)

for all i. It can only be true when A = ∅ or Ω, which contradicts our original assumption.
This concludes the proof.
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