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Abstract: A heat conduction model in a radial-pattern disc by considering non-uniform heat
generation (NUHG) is established in this paper. A series of high conductivity channels (HCCs)
are attached on the rim of the disc and extended to its center. Constructal optimizations of the discs
with constant and variable cross-sectional HCCs are carried out, respectively, and their maximum
temperature differences (MTDs) are minimized based on analytical method and finite element method.
Besides, the influences of the NUHG coefficient, HCC number and width coefficient on the optimal
results are studied. The results indicate that the deviation of the optimal constructs obtained from the
analytical method and finite element method are comparatively slight. When the NUHG coefficient
is equal to 10, the minimum MTD of the disc with 25 constant cross-sectional HCCs is specifically
reduced by 48.8% compared to that with 10 HCCs. As a result, the heat conduction performance (HCP)
of the disc can be efficiently improved by properly increasing the number of HCCs. The minimum
MTD of the disc with variable cross-sectional HCC is decreased by 15.0% when the width coefficient
is changed from 1 to 4. Therefore, the geometry of variable cross-sectional HCC can be applied in the
constructal design of the disc to a better heat transfer performance. The constructal results obtained
by investigating the non-uniform heat generating case in this paper can contribute to the design of
practical electronic device to a better heat transfer performance.

Keywords: constructal theory; radial-pattern disc; non-uniform heat generation; minimum maximum
temperature difference; variable cross-section; generalized thermodynamic optimization

1. Introduction

Nowadays, with the fast-developing electronic science and technology, the electronic components
are faced with new trends of miniaturization, low power consumption, compound design and
modularization, which are unprecedented opportunities and tremendous challenges for the electronic
industry. As to miniature electronic components, the conventional heat transfer approaches such as
convection or radiation are inevitably impossible to realize due to the space constraints. Accordingly,
heat conduction has naturally been the prospective strategy for the effective cooling of electronic
devices, and one way to enhance heat conduction is arranging high conductivity material. How to
properly arrange the high conductivity material to reduce the hot spot temperature of the heat
generating area is a hot topic in the context of heat conduction optimization [1–3].

Constructal theory [4–6] has emerged as the evolutionary design philosophy for finite size flow
system evolution through time and it states that this evolution is based on a simple law: “for a finite
size flow system to survive in time, it should evolve in such a way that it provides easier access to
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the flow that goes through it”. Invoking this law in the engineering field, one should bear in mind
that this law is about the direction of evolution in time, and the design phenomenon is dynamic.
Furthermore, the connotation of the time arrow design evolution has become the focus of concern
by many researches and scholars [7–26]. Bejan [27] firstly conducted constructal optimization of
a rectangular heat generating volume with the optimization objective of maximum temperature
difference (MTD) and obtained the optimal distribution of constant high conductivity channels
(HCCs). Neagu and Bejan [28,29] introduced a new geometric feature of variable cross-sectional
high conductivity channels into the constructal method with the aim of further minimizing the thermal
resistance. Thereafter, many scholars performed constructal optimizations of various heat generating
bodies to improve their heat conduction performance (HCP), such as rectangular bodies [30–33],
square bodies [34–41], triangular bodies [42–45], disc-shaped bodies with radial-pattern [46,47] and
tree-shaped HCCs [48–54], respectively.

In the constructal designs of disc-shaped bodies, da Silva et al. [46] proposed a new heat
conduction model in a radial-pattern disc in which the rectangular HCCs were mounted on the
perimeter and protruded into the center. By taking the MTD as optimization objective, the constructal
optimizations were carried out by analytical and numerical methods, respectively. The results showed
that the number of HCCs and conductivity ratio had great effects on the optimal constructs of the
disc. Sharifi et al. [47] carried out an optimization for the disc inserted with incomplete variable
cross-sectional HCCs. The relevant results reported that the incomplete variable cross-sectional HCCs
structure could further reduce the thermal resistance of the disc. In addition to the researches of
radial-pattern disc, tree-shaped disc has been widely studied in the meantime. Rocha et al. [48]
established a uniform heat generating model in a disc, and obtained the optimal arrangements of
tree-shaped HCCs with the objective of MTD. Rocha et al. [49] further verified the results obtained
in Ref. [46] by numerical calculations, and optimized the disc which included tree-shaped HCCs
with loops. Xiao et al. [50] re-optimized the tree-shaped disc by releasing the constraint that the
optimized last order constructs constituted the new order construct, and significantly reduced the
MTD by 49.3%. Bahadormanesh and Salimpour [51] studied the disc-shaped body inserted with
high-emissivity inserts, and obtained the best configurations of the disc by analytical and numerical
methods, respectively. Sharfi et al. [52] investigated a solid disc using incomplete inserts of high thermal
conductivity with the objective of thermal resistance minimization. Furthermore, the constructal
studies of the heat conduction discs were extended from conventional scale to micro and nano scales.
Chen et al. [53] re-optimized the disc-shaped body under the circumstances of micro and nano scales,
and the results indicated that the constructs with size effects could improve the HCP with authority.
Daneshi et al. [54] numerically calculated the disc-shaped body with conductive tree-shaped HCCs at
micro- and nanoscale, and the results manifested that increasing the number of HCCs didn’t appear to
necessarily improve the HCP of the disc.

However, as a matter of fact, the heat generation of practical electronic devices are usually
non-uniformly distributed due to the working conditions and operating environment. In this context,
considering the non-uniform heat generating phenomenon makes the research outcomes closer
to real life problems in the field of electronics cooling, which is of great pragmatic significance.
As mentioned above, most of the constructal researches in recent years were apparently carried out
under the precondition of uniform heat generation, which was incompatible with the actual situation.
Cetkin and Oliani [55] investigated rectangular constructs with non-uniform heat generation (NUHG),
and optimized the shapes of HCCs on account of the minimum MTD. Besides, they analyzed the
influences of HCC locations and shapes on the hot spot temperature in the premise of linear and
local heat generation, respectively. Feng et al. [56,57] constructed the NUHG rectangular bodies
inserted with constant and variable cross-sectional HCCs, respectively, and numerically obtained
the optimal constructs with the criteria of minimum MTD [56] and minimum entransy dissipation
rate [57], respectively. You et al. [58] performed constructal optimization of a NUHG triangular body,
and theoretically and numerically optimized the first order constructs with constant and variable
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cross-sectional HCCs, respectively. The corresponding results showed that the minimum MTD of
the constructs with variable cross-sectional HCCs was decreased by 12.6% compared with the one
with constant cross-sectional HCCs, which thereby meant that the HCP could be further improved by
adopting the variable cross-sectional HCCs structure in this regard.

Among the heat conduction constructal investigations, the disc model with NUHG is rarely
considered. On the basis of [28,46,55–58], a conduction model in the radial-pattern disc considering
NUHG phenomenon will be established in this paper. Constructal optimizations of the radial-pattern
disc with constant cross-sectional HCCs will be carried out analytically and numerically, and the
minimum MTDs derived by the two methods will be compared. In order to quest for a
better heat transfer performance, discarding the constraint that the width of HCC is constant,
variable cross-sectional HCC architecture [28] will be further utilized in the radial-pattern disc model
in the meantime. Thereafter, the influences of heat generating distribution and HCC shapes on the
optimal results will be analyzed.

2. Constructal Optimization of a Radial-Pattern Disc with Analytical Solution

A generic heat conduction model of a radial-pattern disc is schematically shown in Figure 1.
As shown in this figure, the radius of the disc is R, and the heat generating rate (HGR) in the disc
(thermal conductivity k0) is q′′′ = q0 ′′′ · f (r), where q0 ′′′ refers to the heat generating constant and f (r)
refers to the HGR function. The heat generated in the radial-pattern disc converges into N HCCs
(length L and width D) which are uniformly distributed in the circumferential direction. By this means,
the heat flows out of the disc-shaped body from the ends of HCCs which are situated on the rim of
the disc.
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Figure 1. Heat conductive model of a radial-pattern disc with nonuniform heat generating.

Given that the total amount of high conductivity material (thermal conductivity kp) is fixed,
the HCCs could extend radially from the perimeter to the center of the disc. In this manner, the area
fraction φ is defined as the ratio of kp area to the disc area:

φ = DLN/(πR2) (1)

According to the distribution of the HGR and HCCs, the radial-pattern disc can be divided into N
(= 2π/α) identical sectorial elements (i.e., the number of HCCs in the disc), where α is the apex angle
of each sectorial element. When the apex angle α (= 2π/N) is specified, the HCP of the radial-pattern
disc can vary with the length ratio λ (= L/D) of HCCs. Supposing that the apex angle α is sufficiently
small, each sectorial element can be approximately viewed as an isosceles triangle, whose base and
height are α · R and R, respectively. In this way, as shown in Figure 2, the triangular element (TE)
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consists of two parts, i.e., a trapezoid area which contains an HCC and a wedge-shaped area near the
apex of the TE.Entropy 2018, 20, x FOR PEER REVIEW  4 of 17 
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Figure 2. Simplified triangular element with nonuniform heat generation and constant cross-sectional
high conductivity channel.

The total heat current generated in the sectorial area per unit of thickness is:

q′ = q0
′′′ αR2/2 (2)

Clearly, the MTD in the TE appears to be Tmax−Tmin, where Tmax denotes the hot spot temperature
and Tmin denotes the HCC temperature on the rim. With the exception of the end of HCC (Tmin),
the arc boundary is the same adiabatic condition as the radial boundaries, which are sketched with
dashed lines. In the case that the TE’s apex angle α is sufficiently small, the hot spot may occur at
the center of the disc (temperature Tc), or may probably occur on the TE’s base far from the HCC
(temperature Tr). In this manner, the hot spot temperature can be inspected as:

Tmax = max(Tc, Tr) (3)

The dimensionless temperature difference in the TE is defined as:

∆T̃ = (T − Tmin)/(q0
′′′R2/k0) (4)

Likewise, the structure parameters related to the TE are non-dimensionalized as:

(L̃, D̃, r̃) = (L, D, r)/R (5)

In line with Ref. [57], assuming that the average HGR of the whole disc is a constant, the HGR
decreases gradually along the radius, so that the HGR function f (r) is written as f (r) = 1 + 0.1p−
0.15pr̃, in which p is termed as the nonuniform heat generating (NUHG) coefficient.

The heat current q′tip generated in the wedge-shaped area (radius R − L and apex angle α) is
calculated as:

q′tip = q0
′′′ (10 + pL̃)/20 · α(R− L)2 (6)

Moreover, the heat flux qr ′′ collected at the longitudinal direction of y axis is given as:

qr
′′ = q0

′′′ (1 + 0.1p− 0.15pr̃)(αr− D) (7)

According to [46,57], in the context of φ << 1, k0 << kp and sufficiently small α, the heat
conduction direction in the kp material can be approximately viewed as parallel to the r axis, while
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that in the k0 material can be viewed as parallel to the y axis. Based on the above hypotheses, the heat
conduction differential equation in the kp material is:

d
dr

(−kpD
dT
dr

) = qr
′′ (8)

The corresponding boundary conditions are invoked as:

− kpD
dT
dr

= q′tip, r = R− L (9)

T = Tmin, r = R (10)

By solving Equations (8)–(10), the dimensionless temperature difference along the HCC is:

T0 − Tmin

q0 ′′′R2/k0
=

λ

k̃
{α[ p

80
L̃3 +

1
2
+ L̃2(

1
6
− p

30
) + L̃(−1

2
+

1
40

p)] + D̃L̃(−1
2
− p

20
L̃ +

p
40

)} (11)

where k̃ denotes the ratio of kp to k0, and T0 denotes the temperature of the HCC terminal near the
center of the disc.

In addition, the heat conduction differential equation in the wedge-shaped area is:

d
dr

(−k0αr̃
dT
dr

) = αr̃q0
′′′ (1 + 0.1p− 0.15pr̃) (12)

The corresponding boundary conditions are invoked as:

− k0αr
dT
dr

= q′tip, r = R− L (13)

T = Tc, r = 0 (14)

Integrating Equations (12)–(14) yields the dimensionless temperature difference between Tc and
T0

Tc − T0

q0 ′′′R2/k0
=

1
120

(30 + 2pL̃ + p)(1− L̃)
2

(15)

Combining Equations (11) and (15) leads to the dimensionless temperature difference between Tc

and Tmin. Therefore, the dimensionless temperature difference T̃c can be defined as:

T̃c = (Tc − Tmin)/(q0 ′′′R2/k0)

= α
2{

λ
k̃
( p

40 L̃3 + 5−p
15 L̃2 + p−20

20 L̃ + 1) + 1
k̃α
[−1− p

10 L̃+

+ p
40 ]L̃

2 + 1
α (

30+p
60 + p

30 L̃)(1 + L̃2 − 2L̃)}
(16)

From Equation (1), L̃ can be inspected as:

L̃ = (α/2 · φλ)1/2 (17)

In terms of the structure of the TE, the HCC is geometrically contained in it, which should meet
the following constraint:

D < α(R− L) (18)

As discussed previously, another way to express Equation (18) is:

[1 + 1/(αλ)] · (α/2 · φλ)1/2 < 1 (19)
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From Equation (3), the temperature difference Tr − Tmin should be compared with Tc − Tmin to
determine the MTD (Tmax − Tmin), i.e.:

Tmax − Tmin = max(Tc − Tmin, Tr − Tmin) (20)

The heat conduction differential equation in the k0 material of trapezoid area is:

d2T
dy2 +

q0 ′′′ (1 + 0.1p− 0.15pr̃)
k0

= 0 (21)

The corresponding boundary conditions are invoked as:

dT
dy

= 0, y = αr/2 (22)

T = Tmin, y = 0 (23)

Integrating Equations (21)–(23), the temperature difference Tr − Tmin on the base of the TE can be
quantified as:

Tr − Tmin = q0
′′′ (1− 0.05p)α2R2/(8k0) (24)

The corresponding T̃r is also specified as:

T̃r = (Tr − Tmin)/(q0
′′′R2/k0) = (1− 0.05p)α2/8 (25)

Hence, the dimensionless MTD ∆T̃ of the heat conduction disc is the larger one between T̃c and
T̃r, that is:

∆T̃ = max(T̃c, T̃r) (26)

In view of Equation (16), under given conditions that the apex angle α, area ratio φ and
conductivity ratio k̃ are fixed, T̃c can be described as a function of the dimensionless HCC length L̃. By
this means, the optimal L̃ (L̃opt) can be derived by solving ∂T̃c/∂(L̃) = 0, which is implicitly given by:

1
k̃φ
[15pL̃opt

4 + (160− 32p)L̃opt
3 + (−360 + 18p)L̃opt

2 + 240L̃opt] +
1
k̃
[−18pL̃opt

2+

(−120 + 3p)L̃opt] + 6 [pL̃opt
2 + (10− p)L̃opt − 10] = 0

(27)

By Equations (16) and (17), T̃c,min is depicted as:

T̃c,min = 1
2{

1
k̃φ
[ p

20 L̃opt
5 + 10−2p

15 L̃opt
4 + p−20

10 L̃opt
3 + 2L̃opt

2] + 1
k̃
[− p

10 L̃opt
3+

p−40
40 L̃opt

2] + p
30 L̃opt

3 + 10−p
20 L̃opt

2 − L̃opt +
30+p

60 }
(28)

From Equation (27), the optimal HCC length (L̃opt) is definitely independent of α, but merely
related to φ and k̃. Figures 3 and 4 depict the effects of the NUHG coefficient p and area ratio φ on the
relationship of T̃c,min and k̃φ, respectively. From Figure 3, one can see that T̃c,min tends to be 0 when
k̃φ >> 10, i.e., T̃c,min is rather minor when k̃ is far larger than 1, so that the HCP can be improved by
increasing the conductivity ratio in this regard. Additionally, T̃c,min increases with the increase of p
when k̃φ is given, and the HCP is weaken. From Figure 4, when k̃φ is far less than 1, T̃c,min is equal
to 0.291. By using Equation (25), α needs to be 1.762 when T̃r,min = 0.291, but this could be seen as a
breach of the prior assumption of sufficiently small apex angle α. Hence, one can highlight that the hot
spot is always situated at the center of the disc without exception.
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Figures 5 and 6 depict the effects of the NUHG coefficient p and area ratio φ on the relationship of
L̃opt and k̃φ, respectively. From Figure 5, when p is initially specified, L̃opt increases in an S-shaped
mode with the increase of k̃φ, and obviously appears to have a quick change between 1 and 10.
When k̃φ << 1, L̃opt tends to be 0, and the high conductivity material is nearly stacked on the rim
of the disc in this condition. When k̃φ >> 10, L̃opt tends to be 1, and the HCC almost extends to the
center of the disc. When k̃φ is given, L̃opt increases as p increases. In this case, the larger the HGR near
the center of the disc is, the longer the HCC is in order to deliver the generated heat and reduce the
temperature difference efficiently. From Figure 6, when k̃φ is specified, L̃opt increases as φ increases.
This is because the HCC needs to be longer to deliver more heat current near the center of the disc.
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3. Constructal Optimization of a Radial-Pattern Disc with Numerical Solution

When the presuppositions of φ << 1, k0 << kp and small α are untenable, the actual heat
conduction in k0 and kp materials are both no longer a simple one-dimensional one, and Equations (8),
(12) and (21) are invalidated in this manner. This problem always exists in analytical solution, and one
can solve it by using higher dimensional model with numerical solution. As shown in Figure 2,
the two-dimensional heat conduction differential equations in the k0 and kp materials are, respectively,
given as:

∂2T
∂r2 +

∂2T
∂y2 +

q0 ′′′ · f (r)
k0

= 0 (29)

∂2T
∂r2 +

∂2T
∂y2 = 0 (30)

With a view of the symmetric geometry of the TE, there appears to be sufficient to merely
investigate the area of y ≥ 0. In this regard, the requisite boundary conditions are:

T = Tmin r = R, 0 < y ≤ D/2 (31)

∂T/∂r = 0 r = R, D/2 < y ≤ αR/2 (32)

∂T/∂n = 0 { 0 < r ≤ R, y = 0
0 ≤ r < R, y = αr/2

(33)

where n is termed as the normal vector to the corresponding border.
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For simplification, it is assumed that there exists no thermal contact resistance at the interface
between the k0 and kp materials, so that the heat current continuity equation is:

k0(∂T/∂n)Disc = kp(∂T/∂n)HCC (34)

The dimensionless temperature difference and geometry parameters are defined the same as
those in Equations (4) and (5). From Equation (4), one can know that the dimensionless MTD ∆T̃0 is

∆T̃0 = (Tmax − Tmin)/(q0
′′′R2/k0) (35)

where ∆T̃0 is the dimensionless MTD of the whole disc.
The PDE toolbox of Matlab is invoked to solve Equations (29)–(34), in which the finite element

method is adopted. During the processes of numerical calculations, the target area is sequentially
refined until the relative error of MTDs between ∆T̃0

j and ∆T̃0
j−1 obtained from the jth and j− 1th

refinements satisfies: ∣∣∣(∆T̃0
j − ∆T̃0

j−1)/∆T̃0
j−1
∣∣∣ < 0.005 (36)

According to Equations (16) and (17), it clearly indicates that when the conductivity ratio k̃,
area ratio φ and HCC number N (= 2π/α) are specified, the dimensionless MTD ∆T̃0 of the disc is
only a function of the length ratio λ (= L/D). As a result, by taking the NUHG into consideration,
the constructal optimization of the disc with constant and variable cross-sectional HCCs can be carried
out with λ as the variable, respectively.

3.1. Constant Cross-Sectional HCCs

The constant cross-sectional HCCs model is the same as that shown in Figures 1 and 2, and one
can further optimize its HCP with using numerical solution as follows: Figure 7 depicts the effect of
the NUHG coefficient p on the relationship of the dimensionless MTD ∆T̃0 and length ratio λ. It is easy
to see from Figure 7 that when N, φ, k̃ and p are already given, there appears to be an optimal λ (λopt)
leading to the minimum ∆T̃0 (∆T̃0,min), which means that choosing an appropriate λ can effectively
reduce the MTD and improve the HCP to some extent. Furthermore, λopt increases with the increase
of p, in this case that the HCC needs to protrude into the center of the disc where the heat is relatively
concentrated, which aims to reduce the MTD. On the one hand, the nonuniform heat generating model
can be processed back to the model mentioned in [46] in the condition of p = 0. On the other hand,
when p = 10, k̃ = 5000, φ = 0.01 and N = 100, ∆T̃0 is equal to 0.2764 by using the finite element
method, and comparatively ∆T̃0 is equal to 0.2711 by using the analytical method in Equation (16).
These preconditions mentioned above mainly meet the foundations of Equations (8), (12) and (21).
Clearly, if given these prerequisites, the two-dimensional model can be simplified as a one-dimensional
one. The relative error between these two results is merely 1.9%, which in the meantime endorses
the validity of analytical method under the given assumptions. Besides, in case of p = 10, k̃ = 5,
φ = 0.1 and N = 25, ∆T̃0 is equal to 0.2686 and 0.3868 obtained from the finite element method and the
analytical method, respectively, and the deviation between the two is severely 30.6%. In the context,
the given conditions violate the establishing conditions of the analytical method, which means that one
can accordingly choose a better way to calculate the MTD of the disc based on the given conditions.
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Figures 8 and 9 depict the effects of area ratio φ and conductivity ratio k̃ on the relationship of
the dimensionless MTD ∆T̃0 and length ratio λ. It is easy to see from Figure 8 that when N, k̃ and
p are already given, the minimum dimensionless MTD ∆T̃0,min decreases with the increase of φ as
well as the corresponding λopt does. This indicates that whereas more high conductivity material is
available, the HCC seems to be thicker and shorter for a better HCP. From Figure 9, when N, φ and p
are already given, both ∆T̃0,min and λopt decrease with the increase of k̃, which means that the HCP
can be improved by increasing the conductivity ratio.

Entropy 2018, 20, x FOR PEER REVIEW  10 of 17 

 

 

Figure 7. Effect of p  on Δ 0T  versus λ . 

Figures 8 and 9 depict the effects of area ratio φ  and conductivity ratio k  on the relationship 

of the dimensionless MTD Δ 0T  and length ratio λ . It is easy to see from Figure 8 that when N , k  
and p  are already given, the minimum dimensionless MTD Δ0, minT  decreases with the increase of 

φ  as well as the corresponding λopt  does. This indicates that whereas more high conductivity 

material is available, the HCC seems to be thicker and shorter for a better HCP. From Figure 9, when 
N , φ  and p  are already given, both Δ0, minT  and λopt  decrease with the increase of k , which 

means that the HCP can be improved by increasing the conductivity ratio. 

 

Figure 8. Effect of φ  on Δ 0T  versus λ . 

 

Figure 9. Effect of k  on Δ 0T  versus λ . 

Figure 8. Effect of φ on ∆T̃0 versus λ.

Entropy 2018, 20, x FOR PEER REVIEW  10 of 17 

 

 

Figure 7. Effect of p  on Δ 0T  versus λ . 

Figures 8 and 9 depict the effects of area ratio φ  and conductivity ratio k  on the relationship 

of the dimensionless MTD Δ 0T  and length ratio λ . It is easy to see from Figure 8 that when N , k  
and p  are already given, the minimum dimensionless MTD Δ0, minT  decreases with the increase of 

φ  as well as the corresponding λopt  does. This indicates that whereas more high conductivity 

material is available, the HCC seems to be thicker and shorter for a better HCP. From Figure 9, when 
N , φ  and p  are already given, both Δ0, minT  and λopt  decrease with the increase of k , which 

means that the HCP can be improved by increasing the conductivity ratio. 

 

Figure 8. Effect of φ  on Δ 0T  versus λ . 

 

Figure 9. Effect of k  on Δ 0T  versus λ . Figure 9. Effect of k̃ on ∆T̃0 versus λ.



Entropy 2018, 20, 685 11 of 17

Figure 10 depicts the effect of the NUHG coefficient (p) on the relationship of the minimum
dimensionless MTD ∆T̃0,min and HCC number N. From Figure 10, when p is equal to 0 and 15, ∆T̃0,min

tends to be 0.0117 and 0.0159, respectively, with a large value of N. Apparently, the MTD can be
reduced by increasing the HCC number on condition that N varies from 10 to 25. When p is equal to
10, ∆T̃0,min of the disc with 25 HCCs is specifically reduced by 48.8% compared to that with 10 HCCs.
Instead, ∆T̃0,min remains constant when N varies from 25 to 40. Whereupon, one can speculate that it
is costly to further increase the number of HCCs when N > 25, and the HCP is not improved to some
extent in this case.
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3.2. Variable Cross-Sectional HCCs

In order to further improve the HCP of the disc, the model of a TE with variable cross-
sectional [28,29] HCCs is established as shown in Figure 11. The minimum and maximum widths of
the HCCs are D and m · D, respectively, where m is termed as the width ratio. The area ratio φ of kp

material is:
φ = DLN · (m + 1)/(2πR2) (37)
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Similarly, the dimensionless L̃ is:

L̃ = [α/(m + 1) · λφ]1/2 (38)
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When the width ratio m is specified, constructal optimizations of the disc with variable
cross-sectional HCCs can be carried out similar to that in Section 3.1. By invoking the PDE toolbox,
one can numerically obtain the MTD in the heat generating area according to Equations (37) and (38)
and the numerical method given in Section 3.1.

Figure 12 depicts the effect of the width ratio m on the relationship of the minimum dimensionless
MTD ∆T̃0,min and HCC number N with φ = 0.05 and p = 10. From Figure 12, it is clear that ∆T̃0,min

first decreases and then remains a constant with the increase of N. Otherwise, when N is given, ∆T̃0,min

gradually decreases as m increases. According to [46], when the disc is uniformly heat generating
and inserted with constant cross-sectional HCCs, a.k.a. p = 0, ∆T̃0,min is equal to 0.0107 in terms of
k̃ = 500, φ = 0.1 and N = 20. While applying the variable cross-sectional structure in the disc under
the same constraint conditions, ∆T̃0,min is equal to 0.0097 which is reduced by 9.3%. In these two
cases, the optimal constructs of HCCs both have no geometrical connections with the center of the
disc. From Figure 12, one can see that as the disc consists of 15 TEs and the heat is nonuniformly
generated, ∆T̃0,min is equal to 0.0174 in case of m = 1 while ∆T̃0,min is equal to 0.0152 in case of m = 4,
that is, ∆T̃0,min is decreased by 12.6% when m changes from 1 to 4. In these two nonuniform heat
generating cases, the optimal constructs of HCCs likewise have no geometrical connections with the
center. As revealed in Figure 13a,b the isothermal lines are labelled with corresponding dimensionless
temperature differences. In the premise of φ = 0.05, p = 10 and N = 25, for the disc with constant
cross-sectional HCCs (i.e., m = 1), the optimal length ratio (λopt) turns out to be 151 resulting in
∆T̃0,min, which is equal to 0.0147. Besides, for the disc with variable cross-sectional HCCs (i.e., m = 4),
λopt turns out to be 385 resulting in ∆T̃0,min, which is equal to 0.0125. It can be seen that ∆T̃0,min of the
disc with m = 4 is decreased by 15.0% compared to that with m = 1. When the disc is nonuniformly
heat generating, heat is relatively concentrated near the heat sink, i.e., the ends of HCCs situated on
the perimeter of the disc. It is beneficial to place more high conductivity material near the heat sink so
as to efficiently transfer the heat current. Therefore, the geometry of variable cross-sectional HCCs
takes advantage of distributing more high conductivity material near the region where heat is more
concentrated, which can be applied in the constructal design of radial-pattern disc to improve its HCP.
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4. Conclusions

With the high demand to efficient cooling systems for heat generating area, the heat conduction
model of a radial-pattern disc considering the NUHG is established in this paper, which is closer to
real problems in the field of electronics cooling. Constructal optimizations of the discs with constant
and variable cross-sectional HCCs are implemented, and their MTDs are minimized. The influences of
the NUHG coefficient p, HCC number N and conductivity ratio k̃ on the optimal results are analyzed.
The HCP comparisons obtained by analytical and numerical solutions as well as constant and variable
cross-sectional HCCs are carried out. The results are given as follows:

(1) For the disc with constant cross-sectional HCCs, the optimal length ratio λopt increases with the
increase of p, in this case that the HCCs need to protrude into the center of the disc where the
heat is relatively concentrated. The deviation of the optimal constructs obtained from analytical
method and finite element method is comparatively slight. When p is equal to 10, ∆T̃0,min of the
disc with 25 HCCs is specifically reduced by 48.8% compared to that with 10 HCCs. As a result,
the HCP of the disc can be efficiently improved by properly increasing the number of HCCs.
In addition, the approach of increasing k̃ can also contribute to reduce the MTD and improve the
HCP of the disc.

(2) For the disc with variable cross-sectional HCCs, the ∆T̃0,min of the disc in case of m = 4 is
decreased by 15.0% compared to that of m = 1 in the premise of φ = 0.05, p = 10 and N = 25.
Therefore, the geometry of variable cross-sectional HCCs takes advantage of distributing more
high conductivity material near the region where heat is more concentrated, which can be applied
in the constructal design of radial-pattern disc to improve its HCP.

In this paper, the heat conduction problem of the radial pattern disc with a single high conductivity
channel arranged in each element is studied. In the following research, the radial-pattern disc with
more complex multistage tree-shaped high conductivity channels will be investigated wishing to
further improve the heat transfer performance. Furthermore, the effects of the location where the heat
sink is situated on the heat conduction performance can be studied. Additionally, the percentage of the
surface/volume in which the temperature is above a certain value is worth taking into consideration
to improve the existing work.
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Nomenclatures

D Width [m]
f (r) Heat generating rate function
k0 Thermal conductivity of heat generating area [W/(m·K)]
kp Thermal conductivity of high conductivity material [W/(m·K)]
L Length [m]
m Width ratio
N Number of high conductivity channels
p Nonuniform heat generating coefficient
q0
′′′ Heat generating constant in per unit volume [W/m3]

qr ′′ Heat current collected at the longitudinal direction of y axis [W/m2]
q′tip Heat current q′tip generated in the wedge-shaped area [W/m]

R Radius [m]
r Horizontal axis
T Temperature [K]
y Vertical axis
Greek symbols
α Apex angle of each sectorial element
λ Length ratio L/D
φ Area ratio of high conductivity material area to whole disc area
Subscripts
c Center of disc
max Maximum
min Minimum
opt Optimum
r Rim of disc
superscript
~ nondimensionalized

Abbreviations

The following abbreviations are used in this manuscript:

HCC High conductivity channel
HCP Heat conduction performance
HGR Heat generating rate
MTD Maximum temperature difference
NUHG Nonuniform heat generation
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