
entropy

Review

Molecules and the Eigenstate Thermalization Hypothesis

David M. Leitner ID

Department of Chemistry, University of Nevada, Reno, NV 89557, USA; dml@unr.edu; Tel.: +1-775-784-1968

Received: 3 August 2018; Accepted: 3 September 2018; Published: 5 September 2018
����������
�������

Abstract: We review a theory that predicts the onset of thermalization in a quantum mechanical
coupled non-linear oscillator system, which models the vibrational degrees of freedom of a molecule.
A system of N non-linear oscillators perturbed by cubic anharmonic interactions exhibits a many-body
localization (MBL) transition in the vibrational state space (VSS) of the molecule. This transition
can occur at rather high energy in a sizable molecule because the density of states coupled by cubic
anharmonic terms scales as N3, in marked contrast to the total density of states, which scales as
exp(aN), where a is a constant. The emergence of a MBL transition in the VSS is seen by analysis
of a random matrix ensemble that captures the locality of coupling in the VSS, referred to as local
random matrix theory (LRMT). Upon introducing higher order anharmonicity, the location of the
MBL transition of even a sizable molecule, such as an organic molecule with tens of atoms, still
lies at an energy that may exceed the energy to surmount a barrier to reaction, such as a barrier to
conformational change. Illustrative calculations are provided, and some recent work on the influence
of thermalization on thermal conduction in molecular junctions is also discussed.
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1. Introduction

The Eigenstate Thermalization Hypothesis (ETH) provides justification for replacing time averages
with ensemble averages of closed quantum mechanical systems [1–4]. For chemists, the ETH offers at
least partial rationale for the application of microcanonical transition state theory (TST) to predict the
rate of, say, the conformational change of a molecule. However, concerns about whether molecules
thermalize under their own dynamics have long been raised [5–9]. In the following, we think of a
molecule as a quantum mechanical system of coupled nonlinear oscillators. The system of uncoupled
oscillators is integrable and does not obey the ETH. If, upon perturbation, the ETH is valid for the
coupled oscillator system, i.e., molecule, the time-average for a molecule exploring the vibrational state
space (VSS, sketched in Figure 1) can be replaced by an ensemble average. The molecule, prepared
out of equilibrium, relaxes to equilibrium and stays there, with few significant deviations, as time
progresses. However, the ETH is often not satisfied for molecules [9]. The vibrational eigenstates of
even a large molecule are often localized in the VSS, an example of many-body localization (MBL) [10].
In this article, we review criteria for MBL in the VSS of a large molecule, and discuss implications for
the validity of the ETH for molecules, its application in reaction rate theory and thermal transport
through molecules.
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Figure 1. Vibrational states of a molecule, modeled as a quantum mechanical system of many coupled 
non-linear oscillators. Each state depends on the number of vibrational quanta, n, that occupy the 
modes of the molecule, three of which are plotted. If mode α is excited (red arrow) so that the molecule 
is brought to a new state (red dot), then thermalization, if it occurs, will lead to the equilibrium 
distribution for n (yellow dot). However, if the anharmonic coupling or the local density of resonantly 
coupled states of the molecule is sufficiently small, relaxation occurs only very slowly, or not at all if 
the molecule is isolated, an example of many-body localization (MBL), which is indicated in the figure 
as the absence of a pathway from the initially excited state to the thermalized state. In that case the 
ETH is invalid. Precise criteria for validity of the ETH for molecules are provided in the text. Reprinted 
with permission from Pandey, H.D. and Leitner, D.M. “Influence of thermalization on thermal 
conduction through molecular junctions: Computational study of PEG oligomers,” J. Chem. Phys. 147, 
084701, Copyright (2017), American Institute of Physics. 

Consider a molecule that has been excited to a particular state of the VSS, which could occur 
through collision with another molecule or photoexcitation with a laser. This is illustrated in Figure 
1, where the VSS is depicted in terms of three of the oscillators of the molecule. The full Hamiltonian 
and definition of the VSS will be provided in Section 2. For now, we can think of each zero-order state 
of the VSS as represented by a lattice point, each corresponding to the set of the number of quanta 
occupying the uncoupled oscillators. We excite the molecule to a state out of equilibrium, illustrated 
by one of the lattice points in Figure 1. Since the states are coupled by anharmonic interactions, the 
system is no longer integrable and may thermalize. However, coupling in the VSS is local. If we, e.g., 
consider for now only cubic anharmonic interactions, sites that lie at most a distance 3 positions away 
from the state in which the molecule was prepared are directly coupled. Even if the total density of 
states of the molecule is quite large, relatively few states are coupled by the cubic anharmonic 
interactions. More specifically, though the total density of states increases as exp(aN), where N is the 
number of oscillators and a is a constant, the local density of states coupled by the cubic anharmonic 
interactions increases only as N3. The magnitude of the coupling needed for the ETH to be valid is 
therefore much larger than if all zero-order states of the VSS were coupled. We cannot, of course, 
simply truncate the interactions at third-order in the anharmonicity, since higher-order terms, while 
relatively small, are numerous and become more important in establishing quantum ergodicity as N 
increases. Nevertheless, the locality of coupling remains important. 

The failure of many isolated molecules to thermalize under their own dynamics has been 
observed experimentally for a long time. A consequence of this is that rates of chemical reactions, 
such as conformational change of organic molecules with of order 10 to 100 degrees of freedom, are 
not well predicted by microcanonical TST [9,11–21]. In this approach, molecules may be prepared in 
any number of states via collision or photoexcitation. The rate of reaction of a molecule that is taken 
to be isolated between collisions is estimated by identifying states from which reaction occurs, and 
calculating the probability that the molecule occupies such states assuming an equilibrium ensemble. 
The product of that probability and the rate to form product given that the molecule occupies such a 

Figure 1. Vibrational states of a molecule, modeled as a quantum mechanical system of many coupled
non-linear oscillators. Each state depends on the number of vibrational quanta, n, that occupy the
modes of the molecule, three of which are plotted. If mode α is excited (red arrow) so that the molecule
is brought to a new state (red dot), then thermalization, if it occurs, will lead to the equilibrium
distribution for n (yellow dot). However, if the anharmonic coupling or the local density of resonantly
coupled states of the molecule is sufficiently small, relaxation occurs only very slowly, or not at all if the
molecule is isolated, an example of many-body localization (MBL), which is indicated in the figure as
the absence of a pathway from the initially excited state to the thermalized state. In that case the ETH
is invalid. Precise criteria for validity of the ETH for molecules are provided in the text. Reprinted with
permission from Pandey, H.D. and Leitner, D.M. “Influence of thermalization on thermal conduction
through molecular junctions: Computational study of PEG oligomers,” J. Chem. Phys. 147, 084701,
Copyright (2017), American Institute of Physics.

Consider a molecule that has been excited to a particular state of the VSS, which could occur
through collision with another molecule or photoexcitation with a laser. This is illustrated in Figure 1,
where the VSS is depicted in terms of three of the oscillators of the molecule. The full Hamiltonian
and definition of the VSS will be provided in Section 2. For now, we can think of each zero-order state
of the VSS as represented by a lattice point, each corresponding to the set of the number of quanta
occupying the uncoupled oscillators. We excite the molecule to a state out of equilibrium, illustrated
by one of the lattice points in Figure 1. Since the states are coupled by anharmonic interactions, the
system is no longer integrable and may thermalize. However, coupling in the VSS is local. If we,
e.g., consider for now only cubic anharmonic interactions, sites that lie at most a distance 3 positions
away from the state in which the molecule was prepared are directly coupled. Even if the total density
of states of the molecule is quite large, relatively few states are coupled by the cubic anharmonic
interactions. More specifically, though the total density of states increases as exp(aN), where N is the
number of oscillators and a is a constant, the local density of states coupled by the cubic anharmonic
interactions increases only as N3. The magnitude of the coupling needed for the ETH to be valid is
therefore much larger than if all zero-order states of the VSS were coupled. We cannot, of course,
simply truncate the interactions at third-order in the anharmonicity, since higher-order terms, while
relatively small, are numerous and become more important in establishing quantum ergodicity as N
increases. Nevertheless, the locality of coupling remains important.

The failure of many isolated molecules to thermalize under their own dynamics has been observed
experimentally for a long time. A consequence of this is that rates of chemical reactions, such as
conformational change of organic molecules with of order 10 to 100 degrees of freedom, are not well
predicted by microcanonical TST [9,11–21]. In this approach, molecules may be prepared in any
number of states via collision or photoexcitation. The rate of reaction of a molecule that is taken
to be isolated between collisions is estimated by identifying states from which reaction occurs, and
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calculating the probability that the molecule occupies such states assuming an equilibrium ensemble.
The product of that probability and the rate to form product given that the molecule occupies such a
state is the microcanonical TST reaction rate. The formalism for this calculation, named for four of its
developers and called RRKM theory (Rice–Ramsperger–Kassel–Marcus theory) [22–24], continues to
enjoy wide use [25]. We shall point out below one of a number of important cases where the theory
fails to predict the reaction rate to illustrate how the breakdown of the ETH and the emergence of MBL
in molecules manifest themselves in chemistry.

With that practical consideration in mind, we seek criteria for which the ETH is valid for molecules.
In the following section, we review the theory of energy flow in a quantum mechanical system of
many coupled oscillators and MBL in the Fock space of a molecule. The theory of localization in
the VSS, introduced by Logan and Wolynes [7], was later generalized to address higher-order and
off-resonant coupling [26–30], and has recently been the subject of a review [9]. Related theoretical
work on localization in the Fock space of a many-electron system developed later yields a similar
picture [31]. In Section 2, we begin by modeling a molecule as a nonlinear oscillator system coupled by
cubic anharmonic interactions. We truncate the anharmonicity at cubic terms to illustrate the role of
local interactions in the VSS, criteria for localization and violation of the ETH in molecules. We then
generalize to higher-order anharmonicity and examine the effect of higher order terms on localization
in the VSS. In Section 3, we illustrate the importance of thermalization in molecules in chemical
reaction kinetics, where we consider the example of the kinetics of conformational change of an organic
molecule with effectively 60 vibrational modes. In Section 4, we discuss recent work on thermal
transport through molecular junctions, where the issue of thermalization also arises. Conclusions are
presented in Section 5.

2. Criteria for Quantum Ergodicity in Molecules

The coupled nonlinear oscillator Hamiltonian is H = H0 + V,

H0 =
N

∑
α=1

εα(n̂α) (1a)

V =
1
3! ∑

α,β,γ
φαβγ

(
b+α + bα

)(
b+β + bβ

)(
b+γ + bγ

)
(1b)

where the sum in Equation (1b) excludes α = β = γ. The zero-order Hamiltonian H0 consists
of a sum over the energies of the N nonlinear oscillators, where each oscillator has frequency
ωα(nα) = }−1∂εα/∂nα, and nonlinearity ω′α(nα) = }−1∂ωα/∂nα, and the number operator is defined
by n̂α = b+α bα. The potential in Equation (1) includes cubic anharmonic coupling. We will modify the
Hamiltonian to address anharmonicity of higher order later.

We take the set of zero order energies, {εα}, and the cubic anharmonic coefficients,
{

φαβγ

}
, to be

random variables with suitable distributions. For example, the distribution of zero-order energies will
be determined in part by the distribution of normal mode frequencies of the molecule. Equation (1)
represents the perturbation of the integrable system, H0, and we seek criteria for which the perturbation
leads to an ergodic system, where the eigenstates of H satisfy the ETH. Alternatively, we may find
the eigenstates of this many-body system to be localized. Because of the locality of the coupling in
the vibrational state space we refer to the theory as Local Random Matrix Theory (LRMT). The local
coupling in this random matrix model is far more restrictive than, say, a banded random matrix (BRM)
ensemble [32–34], which has been used to examine criteria for quantum ergodicity [1].

LRMT has the form of a tight-binding picture in the VSS with random site energies. Each site in
the VSS is an eigenstate |j〉 of the uncoupled Hamiltonian, H0. If there are n(j)

α quanta in oscillator α in
state |j〉, then this zero-order state is given by |j〉 =

∣∣∣n(j)
1 , n(j)

2 , · · · , n(j)
N

〉
for the N oscillator system. In
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this basis, given the locality of the coupling between the zero-order states, the coupled many-oscillator
Hamiltonian is equivalent to a tight-binding Hamiltonian,

H = ∑
j

ε j|j〉〈j|+ ∑
j,k(k 6=j)

Vj,k|j〉〈k| (2)

where the sums run over all sites in the VSS. The problem of quantum energy flow and ergodicity
in the VSS of a molecule thereby resembles the problem of single-particle quantum transport on a
many-dimensional disordered lattice. Theoretical approaches to address the condensed phase problem
can be brought to bear on describing vibrational energy flow in molecules. Exploiting this connection,
Logan and Wolynes identified criteria for localization in the VSS that occurs at a critical value of the
product of the vibrational coupling and local density of states [7]. This is an example of many-body
localization (MBL), which has been the focus of much attention in recent years [10,31,35–40].

The eigenstates |Eλ〉 of H are expressed in terms of |j〉 as

|Eλ〉 = ∑
j

cjλ|j〉 (3)

It is the nature of the coefficients,
{

cjλ
}

, that is of interest. If the system H is brought to a state
|j〉 by excitation with a laser, then whether or not the time average will resemble the microcanonical
average depends on the coefficients,

{
cjλ
}

. When an eigenstate of H is localized to state |j〉, the
molecule will not relax to a Bose–Einstein distribution. More generally, consider an observable, O.
Individual 〈Eλ|Ô|Eλ〉 will not generally resemble the microcanonical average at energies close to the
total energy of the molecule when an eigenstate of H is localized to state |j〉. When the ETH is valid,
〈Eλ|Ô|Eλ〉 exhibits fluctuations that are exponentially small in N, so that any 〈Eλ|Ô|Eλ〉 lies very close
to the microcanonical average [1–4]. We expect the ETH to be valid if |Eλ〉 is extended and overlaps
many zero-order states, where

∣∣cjλ
∣∣2 is of the order of the inverse of the number of states on the energy

shell, which grows exponentially with N. This is the result one obtains when eigenvectors of H are
those of random matrix ensembles such as the Gaussian Orthogonal Ensemble (GOE), which have
been suggested to model spectral statistics of quantum systems for which the corresponding classical
system exhibits chaos [41]. We seek to learn under what conditions we can make this association
for molecules.

The local density of states, ρ3(E), coupled to a zero-order state of the VSS via third-order
anharmonic interactions scales with the number of oscillators, N, as N3. Let 〈|V3|〉 be the average
magnitude of an off-diagonal matrix element that couples two states via third-order anharmonic
interactions. Detailed analysis reveals that the eigenstates of H are localized when [7],

T(E) ≡ 2π

3
(〈|V3|〉 ρ3)

2 < 1 (4)

Indeed, one finds that the probability distribution of
∣∣cjλ
∣∣2 corresponds to the Porter–Thomas

distribution when T > 1 [27], the result for the GOE. More specifically, we obtain for the probability
distribution for y ≡

∣∣cjλ
∣∣2, where the transition criterion has been satisfied [27],

Py(y) = (2πy〈y〉)−1/2 exp(−πy/(2〈y〉)) (5)

The Porter–Thomas distribution is predicted to describe the distribution of
∣∣cjλ
∣∣2 for extended

eigenstates of a many-body system when T > 1 as well as the eigenstates of a low-dimensional
system at energies where the corresponding classical Hamiltonian exhibits chaotic dynamics [41,42].
We thus expect that when T > 1, the ETH should hold for molecules. The transition bears some
resemblance to the resonance overlap criterion for classical chaos [41,43], and there indeed appears
to be correspondence between the onset of chaos and quantum ergodicity found in computational
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studies of small systems [40,44,45]. We take, however, the coupled nonlinear oscillator system defined
by Equation (1) to be relatively large, and the MBL transition may occur with on average less than one
quantum per oscillator, away from the semiclassical limit.

In general, we need to consider higher-order anharmonic coupling. We thus generalize the
Hamiltonian to include anharmonic coupling of arbitrary order. We express a coupled nonlinear
oscillator Hamiltonian, H = H0 + V, as [9,26]

H0 =
N

∑
α=1

εα(n̂α) (6a)

V = ∑
m

∏
α

Φm(b+α )m+
α (bα)

mα (6b)

where m =
{

m±1 , m±2 , . . .
}

. As expressed by Equation (6b), V includes anharmonicity of all orders. For
example, cubic anharmonicity includes terms where ∑

α
m±α is at most 3. For higher order anharmonicity,

we assume [9,26]
Φm = Φ3σp−3, p ≥ 3 (7)

where p = ∑α(m+
α + m−α ) and the sum is over all modes, which has been validated numerically for

molecules [46]. As in a random matrix theory, the set of zero order energies, {εα}, and coefficients,
{Φm}, are treated as random variables with suitable average and variance for each m.

To lowest order in the perturbation expansion [9], in which only direct resonant coupling is taken
into account, one finds the criterion for localization [9,26],

T(E) ≡ 2π

3

[
∑

Q=3

〈∣∣VQ |〉ρQ

]2

< 1 (8)

where Q represents an order in the anharmonic coupling. (Corrections due to higher-order terms in the
perturbation expansion have been addressed and T(E) retains a form like Equation (8) [9,26,47].) In the
limit where N/σ is of order 1 or less, terms beyond Q = 3 make little contribution to T and a potential
truncated at cubic anharmonic interactions is sufficient. However, when N is very large, higher order
terms need to be taken into account. More specifically, let M be the average occupation number of each
oscillator and ωrms the root-mean-square oscillator frequency; one finds that a good approximation to
T is [26]

T(E) =
2π

3
φ̃2σ6F2(κ) (9a)

κ =
2NM1/2

σ
(9b)

φ̃ = Φ3(πωrms)
−1 (9c)

F(κ) = (2π)−1/2

(
∞

∑
Q=3

Q−1
(

κe
Q

)Q
)

(9d)

The order of anharmonicity that contributes most to the localization transition depends on values
of σ and N. The term, Qm, that contributes most to the transition is Qm ≈ κ − 1, if this is greater
than 3, and is otherwise the cubic anharmonic term [26]. Since often σ ≈ 10 [46], the model given by
Equation (1), where the anharmonicity is truncated at third order, provides a reasonable predictor for
the localization transition for many molecules, but for molecules with ≈ 10 or more atoms we need to
consider higher order anharmonic terms to locate the localization transition.

We can plot the separation of localized from extended states in terms of parameters that represent
vibrational properties of the molecule, and its energy. We do this in Figure 2, where we plot values of
energy where T = 1 using Equation (9) at different N from 21 to 78. We have used as representative
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values Φ3 = 6.4 cm−1, ωrms = 1127 cm−1, and σ = 10. (1 cm−1 corresponds to about 1.5 K). Some of
these values have been obtained for the molecule stilbene, which is discussed in the next section, but
they are anyway reasonable and representative of a sizable organic molecule. Importantly, the energies
at which localized states are found can be higher than barriers to chemical reactions, even for large
molecules. Reactions such as the change of structure of a molecule often occur over energy barriers on
the order of 1000 cm−1.
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21 to 78. This curve separates localized states at lower energy from extended states at higher energy.
The ETH would be expected to be valid in the extended domain. Representative values for organic
molecules are used for the distribution of vibrational frequencies and anharmonic couplings, and are
given in the text.

3. Quantum Ergodicity and the Kinetics of Conformational Change

It is convenient to assume thermalization in molecules when estimating rates of a chemical
reaction, such as A→ B , where A and B are two different structures of a molecule. In that case it may
be possible to calculate the reaction rate using microcanonical transition state theory (TST). We assume
that the reaction takes place at a fixed energy, E, that the molecule in structure A has enough energy for
reaction to structure B, i.e., there is sufficient energy to surmount an energy barrier (or tunnel through
it in a reasonable amount of time). If A and B are stable structures, the transition from one structure to
another is a rare event that involves passage through a transition state, A*.

The reaction rate may be conveniently calculated using equilibrium statistical mechanics to
determine the probability, P*, that a molecule in structure A is in a transition state, A*. The reaction
rate is then calculated as the product of P* and the rate to pass from the transition state to structure B,
which we will call νA. The reaction rate, k(E), at energy E is thus νAP∗. In practice, P* is very small
and νA may be on the order of ps−1 or faster. There are well-developed methods for carrying out such
calculations, notably RRKM theory, mentioned in Section 1, which have been applied to the calculation
of rates of unimolecular reactions, those in which a molecule, after collision or photoexcitation, forms a
new chemical species. We do not review RRKM theory here; the calculation is straightforward and has
been applied for many years [48]. We refer to the RRKM theory microcanonical unimolecular reaction
rate as kRRKM(E).

In microcanonical TST there is an implicit assumption about relaxation times, which can be seen

as follows: Consider the kinetic model A
k′ IVR↔
kIVR

A∗ νA→ B. Here kIVR is the rate constant for what is often

referred to as intramolecular vibrational redistribution (IVR), specifically for population transfer from
a state of the transition region to a state outside the transition region. k′ IVR is the rate constant for
population transfer from a state outside the transition region to a state in the transition region. Detailed
balance gives k′ IVR = kIVRP∗(E), where P∗(E) is the probability that the reactant is in a transition state
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at energy, E. As already noted, the RRKM theory rate constant is kRRKM(E) = νA(E)P∗(E). Applying
the steady state approximation, the rate of isomerization from structure A to structure B is

k(E) =
kIVR(E)

kIVR(E) + νA(E)
kRRKM(E) (10)

This correction to kRRKM(E) includes the relaxation time, 1/kIVR, to equilibrate following
depletion of a transition state due to reaction in the time 1/νA. Therefore, for the formalism of
RRKM theory to provide an accurate estimate to the rate of conformational change both the ETH
must be satisfied and the relaxation rate must be faster than the vibrational time for passing from
a transition state to product. If the energy barrier to a reaction such as conformational change, or
isomerization, lies below the energy at which the ETH is valid then RRKM theory clearly breaks down,
and alternatives that address dynamics at these energies are required [49]. Even if the ETH is valid for
that molecule at energies above the reaction barrier, the rate of reaction is often lower than predicted
by RRKM theory due to the correction introduced in Equation (10). In that case transition rates, kIVR,
in the VSS need to be calculated separately to calculate the rate of reaction.

To illustrate the influence of thermalization on chemical reaction kinetics, we consider the example
of isomerization of stilbene, which has been very well studied experimentally [50]. Stilbene has 72
vibrational modes, but 12 of them are too high in frequency to contribute significantly to energy flow
in the VSS, so that this molecule can be described effectively as a coupled 60-nonlinear oscillator
system. Change in structure from trans to cis, shown in Figure 3, occurs efficiently with the absorption
of a UV photon, which brings the molecule into an excited electronic state. In that state there is
an energy barrier of about 800 cm−1 to conformational change from the trans structure, which has
been determined by ab initio electronic structure calculations [15]. The rate of isomerization of trans
stilbene has been measured in molecular beam experiments [51], in which the molecules collide only
infrequently and can be prepared in states of well defined energy. If isomerization occurs more rapidly
than fluorescence the rate can be detected.

Isomerization of trans stilbene is only observed at energies corresponding to about 1200 cm−1 or
more vibrational energy in the excited electronic state [51]. Therefore 1200 cm−1 was assumed to be
close to the barrier to reaction [52]. However, as seen in Figure 3, the RRKM theory rate calculated
with that barrier was nevertheless found to be an order of magnitude greater than the rates that were
measured [13] for the isomerization of trans stilbene in molecular beams. After ab initio electronic
structure calculations set the reaction barrier at about 800 cm−1, it was recognized that the reason
reaction was not observed at energies between about 800 and 1200 cm−1 is that the molecule is prepared
experimentally in states that do not have access to transitions states, from where it can react, at least
before it fluoresces back to the ground electronic state. Using LRMT, the quantum ergodicity threshold
for stilbene was found to correspond to about 1200 cm−1 [15,16]. Therefore, above 1200 cm−1 the
molecule has access to transition states regardless of the state in which it is prepared.

Above 1200 cm−1 the rate of conformational change from trans to cis is nevertheless lower than
the rate predicted by RRKM theory, as seen in Figure 3, because the relaxation time in Equation (10)
is rather slow compared to the time to form product from a transition state. When the relaxation
rates are separately calculated [15,16,53], agreement between theory and experiment is very good, as
seen in Figure 3, where three barriers to reaction close to 800 cm−1 are used in the calculations of the
isomerization rate.
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Figure 3. The RRKM theory (dotted curves) prediction for the reaction rate, in one case using an energy
barrier to reaction of about 800 cm−1, as obtained by ab initio electronic structure calculations [15],
and in another case using a 1200 cm−1 reaction barrier, as was assumed for some RRKM theory
calculations [52]. Also plotted are corrections to the RRKM theory estimate to the rate using LRMT
to establish where the quantum ergodicity threshold lies, as well as corrections due to the finite
relaxation rate (solid line) for trans→cis isomerization of stilbene, shown at the top. Experimental
results from Reference [13] are plotted as circles. LRMT rates are plotted for several barrier heights
consistent with ab initio electronic structure calculations −750 cm−1 (black solid line), 800 cm−1 (light
grey solid line), and 900 cm−1 (dark grey solid line). Reprinted with permission from Leitner, D.M.,
Levine, B., Quenneville, J., Martinez, T.J. and Wolynes, P.G. “Quantum energy flow and trans-stilbene
photoisomerization: an example of a non-RRKM reaction,” J. Phys. Chem. A 107, 10706–16. Copyright
(2003) American Chemical Society.

4. Thermalization and Thermal Transport in Molecules

Recently there has been much interest in the role of thermalization in thermal conduction through
molecular junctions [54–76]. The study of thermal conduction through molecules of order 10 to
1000 atoms [14,77–91] has been motivated by the more general desire to control thermal transport at
the nanoscale towards the design of nanoscale devices [92,93], small composite materials in which
interfaces often mediate heat flow. Work on this problem has been driven by potential applications that
include avoiding high concentrations of heat in small devices [92,93], thermoelectric applications [94],
the possibility of thermal rectification at the nanoscale [61,95–101], and the contribution of thermal
gradients to electron transfer [62,69,70].

On molecular scales of 1 nm, the energy diffusion picture and Fourier’s heat law break
down, as revealed by numerous experimental measurements probing vibrational energy and
thermal transport in molecules, which indicate absence of thermalization and often ballistic heat
transport [54,55,60,102–104]. Of course, a molecule at a junction, such as the alkane chain illustrated in
Figure 4, is not isolated. Still, we may ask if the molecule were isolated whether it would thermalize
under its own dynamics, or if, for energies corresponding to thermal energies in experiments,
thermalization does not occur? If a molecule exhibits MBL when isolated, it thermalizes only very
slowly when its end-groups are in contact with its environment, and thus does not thermalize on a
time that is relevant to thermal transport in a junction on the nm length scale [68]. We illustrate this
here for alkane chains.
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Figure 4. Calculations of thermal conductance between Au and sapphire (red) and between Al and
sapphire (black) with carbon-chain molecular interface that is fluorinated (solid) or not (dashed),
for temperatures from 100–400 K. The Landauer model is used, where thermalization is neglected,
with a junction length of 2 nm and elastic scattering length calculated to be 0.55 nm [68]. For
Au-perfluoroalkane-sapphire we compare with a calculation where thermalization is assumed to
be rapid (red dotted curve), for comparison. Experimental results from Reference [60] are plotted
(Au-sapphire red circles, Al-sapphire black squares, closed and open, respectively, for carbon-chain
molecular interfaces that are fluorinated and not fluorinated) with reported error bars. The results
of the experiments match those calculated using a Landauer picture, and are thus consistent with
incomplete thermalization in these molecules to at least 2 nm. Reprinted with permission from Pandey,
H.D. and Leitner, D. M., “Thermalization and Thermal Transport in Molecules,” J. Phys. Chem. Lett. 7,
5062–5067. Copyright (2016) American Chemical Society.

To date, thermal conductance due to molecular vibrations in a single-molecule junction has not been
measured. Instead, thermal conductance of a variety of monolayer junctions has been measured, where it
is often assumed that thermal transport through individual molecules occurs in parallel [105]. Bonding
between molecule and substrate has been found to control thermal transport at the interface [54,63], but
in studies that have controlled for bonding while varying the length of the molecule [105] conductance
does not appear to change in many cases, e.g., for alkane chain monolayers, indicating that thermal
transport through the molecule occurs essentially ballistically. In the absence of thermalization a quantum
mechanical approach based on the Landauer method, which neglects effects of inelastic scattering
and thermalization [55,106,107], may be appropriate for modeling thermal conduction. The Landauer
formalism, introduced to quantify electrical conductance in mesoscopic systems [108,109], can be applied
to thermal transport through molecules between two leads at different temperature. We find that this
approach yields results for the thermal conductance, hBd, where Bd refers to thermal conductance across a
boundary, through alkane chains and fluorinated alkane chains bridging gold and sapphire that are in
good agreement with experiment [60], as shown in Figure 4.

If thermalization within the molecule were rapid, the variation of the thermal conductance with
change in temperature would be quite different from the variation seen in Figure 4. Phonons from
gold enter the molecular layer up to a frequency corresponding to the Debye temperature of gold,
about 170 K. The molecule has many higher frequency modes, but if thermalization in the molecule
occurs only very slowly then only modes corresponding to about 170 K transport energy to sapphire.
On the other hand, if thermalization within the junction occurs sufficiently rapidly, up-conversion of
vibrational energy in the molecule to vibrational modes of higher frequency occurs, enhancing thermal
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conduction, more so as temperature increases. This is illustrated in Figure 4 by the dotted red curve for
perfluoroalkanes between gold and sapphire, which is calculated using a model where thermalization
is assumed to occur rapidly. We see a striking contrast to the results using the Landauer model, where
thermalization is neglected, which fit the experimental data [60] quite well.

To further illustrate the contrast between thermal conductance when thermalization occurs and
when it does not occur in the junction, we plot in Figure 5 the results of a calculation for polyethylene
glycol (PEG) oligomer junctions, again between gold and sapphire. The PEG oligomers vary in
length from 4 units (PEG4), about 1.6 nm in length, to 10 units, about 4 nm in length. Differences
in predictions where thermalization does and does not occur are again striking. For these systems,
separate calculations for PEG oligomers indicate that thermalization is expected to be quite rapid,
and we expect thermal conductance to rise more rapidly with temperature than the Landauer model
predicts [66]. Which of these trends actually occurs can be settled by the kind of experiments [60] that
were carried out on alkane and perfluoroalkane chains, which produced the results plotted in Figure 4.

Thermalization in the junction effectively opens additional channels for heat transfer from gold to
sapphire, and can be thought of as an analog to the RRKM theory limit for chemical reactions, where
the molecule can reach the transition region from any state on the energy shell. In contrast, when
thermalization in the junction is very slow, there are vibrational states in the junction that cannot be
reached, which could otherwise transfer energy between the leads. For that reason, thermalization
tends to enhance the rate of energy transfer across the junction and the thermal conductance.

Entropy 2018, 20, x 10 of 17 

 

If thermalization within the molecule were rapid, the variation of the thermal conductance with 
change in temperature would be quite different from the variation seen in Figure 4. Phonons from 
gold enter the molecular layer up to a frequency corresponding to the Debye temperature of gold, 
about 170 K. The molecule has many higher frequency modes, but if thermalization in the molecule 
occurs only very slowly then only modes corresponding to about 170 K transport energy to sapphire. 
On the other hand, if thermalization within the junction occurs sufficiently rapidly, up-conversion of 
vibrational energy in the molecule to vibrational modes of higher frequency occurs, enhancing 
thermal conduction, more so as temperature increases. This is illustrated in Figure 4 by the dotted 
red curve for perfluoroalkanes between gold and sapphire, which is calculated using a model where 
thermalization is assumed to occur rapidly. We see a striking contrast to the results using the 
Landauer model, where thermalization is neglected, which fit the experimental data [60] quite well. 

To further illustrate the contrast between thermal conductance when thermalization occurs and 
when it does not occur in the junction, we plot in Figure 5 the results of a calculation for polyethylene 
glycol (PEG) oligomer junctions, again between gold and sapphire. The PEG oligomers vary in length 
from 4 units (PEG4), about 1.6 nm in length, to 10 units, about 4 nm in length. Differences in 
predictions where thermalization does and does not occur are again striking. For these systems, 
separate calculations for PEG oligomers indicate that thermalization is expected to be quite rapid, 
and we expect thermal conductance to rise more rapidly with temperature than the Landauer model 
predicts [66]. Which of these trends actually occurs can be settled by the kind of experiments [60] that 
were carried out on alkane and perfluoroalkane chains, which produced the results plotted in Figure 
4. 

Thermalization in the junction effectively opens additional channels for heat transfer from gold 
to sapphire, and can be thought of as an analog to the RRKM theory limit for chemical reactions, 
where the molecule can reach the transition region from any state on the energy shell. In contrast, 
when thermalization in the junction is very slow, there are vibrational states in the junction that 
cannot be reached, which could otherwise transfer energy between the leads. For that reason, 
thermalization tends to enhance the rate of energy transfer across the junction and the thermal 
conductance. 

 
Figure 5. Thermal boundary conductance between Au and sapphire (black), and the thermal 
boundary conductance with a layer of PEG4 (violet), PEG6 (blue), PEG8 (green), PEG10 (red) between 
Au and sapphire, where calculations were carried out using both the Landauer model (solid curves) 
and a model where thermalization within the molecular junction is assumed rapid (dashed curves). 
Reprinted with permission from Pandey, H.D., Leitner, D.M., “Influence of thermalization on thermal 
conduction through molecular junctions: Computational study of PEG oligomers,” J. Chem. Phys. 147, 
084701, Copyright (2017), American Institute of Physics. 

For sufficiently slow thermalization, a calculation that neglects thermalization altogether can 
predict thermal conductance of a molecular junction quite well. In this respect, the question of 
whether or not the ETH is valid for the molecule that forms the junction is not that important. 

Figure 5. Thermal boundary conductance between Au and sapphire (black), and the thermal boundary
conductance with a layer of PEG4 (violet), PEG6 (blue), PEG8 (green), PEG10 (red) between Au and
sapphire, where calculations were carried out using both the Landauer model (solid curves) and a
model where thermalization within the molecular junction is assumed rapid (dashed curves). Reprinted
with permission from Pandey, H.D., Leitner, D.M., “Influence of thermalization on thermal conduction
through molecular junctions: Computational study of PEG oligomers,” J. Chem. Phys. 147, 084701,
Copyright (2017), American Institute of Physics.

For sufficiently slow thermalization, a calculation that neglects thermalization altogether can
predict thermal conductance of a molecular junction quite well. In this respect, the question of
whether or not the ETH is valid for the molecule that forms the junction is not that important.
Nevertheless, quantum mechanical effects that give rise to localization in the VSS of isolated molecules
can substantially reduce the rate of thermalization when the molecules form a junction. For example,
an isolated alkane chain with 15 carbon atoms and energy corresponding to about 200 K is predicted
to exhibit localization in the VSS. Even accounting for coupling to the leads, the rate of thermalization,
below 0.1 ps−1, is much too slow to influence thermal conduction through the ≈ 2 nm junction [68].
Longer alkanes thermalize in ≈1 ps, fast enough that thermalization in the junction may contribute to
thermal conduction.
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5. Conclusions

We reviewed a theory for ergodicity and localization in a quantum mechanical coupled non-linear
oscillator system, which models the vibrational degrees of freedom of a molecule. If a system of
N uncoupled non-linear oscillators is perturbed by anharmonic interactions, there is a many-body
localization (MBL) transition in the vibrational state space (VSS) of the molecule. This transition can
occur at rather high energy in a sizable molecule. If the Hamiltonian includes only cubic anharmonic
interactions, the density of states coupled by cubic anharmonic terms scales as N3, in marked contrast
to the total density of states, which scales as exp(aN), where a is a constant. The locality of coupling
is due to the selection rules that arise from the anharmonic interactions. Selection rules have been
incorporated into random matrix ensembles as needed for a long time [42,110–112]. In this case, a
random matrix ensemble that captures the locality of coupling in the VSS due to the selection rules
imposed by the order of anharmonicity, which we refer to as local random matrix theory (LRMT),
gives rise to the emergence of a MBL transition in the VSS (Fock space) of this system. LRMT has been
generalized to include anharmonicity of arbitrary order and applied to locate the MBL transition for
many molecules [9]. We have provided an illustrative calculation here that reveals that for the ETH to
be valid, even a sizable molecule, with tens of atoms, may require energy that exceeds the energy to
surmount a barrier to reaction.

Because the ETH is often not valid for even large molecules at energies corresponding to a
barrier to reaction or higher, simple theories to predict chemical reaction rates, such as microcanonical
transition state theory (TST), where equilibrium statistical mechanics is adopted to predict the reaction
rate, are found to break down. We have illustrated that here with the example of trans-stilbene
isomerization, which has been very well studied experimentally. Numerous other reactions where
the standard TST predictions break down have been reviewed recently [9]. The recognition that
chemical reactions are more complex than can be captured by traditional theories based on equilibrium
statistical mechanics, and the development of new approaches to this problem, accounting for complex
dynamics in the VSS of a molecule, continue to be an active research topic [44,45,113–130]. We have
also reviewed here some recent work examining the role of thermalization in thermal conduction in
molecular junctions.

Computational studies of coupled many-oscillator systems [131], reviewed elsewhere [9,132],
support the picture presented here, and we expect future computational work will further probe the
localization transition in the VSS of molecules and the validity of the ETH. We also anticipate that the
MBL transition in molecules will be further tested by experimental and computational studies of the
vibrational states of cold molecules and their chemistry in cold environments [133–155].
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