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Abstract: This paper applies effective transfer entropy to research the information transfer in the
Chinese stock market around its crash in 2015. According to the market states, the entire period
is divided into four sub-phases: the tranquil, bull, crash, and post-crash periods. Kernel density
estimation is used to calculate the effective transfer entropy. Then, the information transfer network
is constructed. Nodes’ centralities and the directed maximum spanning trees of the networks are
analyzed. The results show that, in the tranquil period, the information transfer is weak in the
market. In the bull period, the strength and scope of the information transfer increases. The utility
sector outputs a great deal of information and is the hub node for the information flow. In the crash
period, the information transfer grows further. The market efficiency in this period is worse than
that in the other three sub-periods. The information technology sector is the biggest information
source, while the consumer staples sector receives the most information. The interactions of the
sectors become more direct. In the post-crash period, information transfer declines but is still stronger
than the tranquil time. The financial sector receives the largest amount of information and is the
pivot node.
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1. Introduction

After decades of rapid growth, China has become the world’s second largest economy. It plays an
important role in global trade. However, its stock market has displayed poor performance since the
US subprime crisis. Under the background of deepening economic reform, the Chinese stock market
began to boom around July 2014 [1]. Tens of millions of new investors entered the market. The great
majority of them were retail investors, which tended to exhibit herd behavior. Moreover, many of these
novice investors engaged in leveraged trading through various channels, for example margin financing
of brokerages, shadow banking, or grey-market (over-the-counter, OTC) margin lenders [2,3]. Huge
amounts of borrowed money flooded into the market [3]. The Shanghai stock exchange composite
index (SSECI) soared from 2050.38 on 1 July 2014, to a peak of 5166.35 on 12 June 2015. It increased
about 152% in just one year. However, after the peak, the market plunged drastically. From late June
to late August of 2015, the SSECI declined about 40% [4]. It was one of the biggest falls in global
stock market history [2]. In order to stabilize the market, the Chinese government took a series of
actions, including organizing state-backed financial firms collectively called the “national team” to
buy stocks directly, banning short sales, stopping new initial public offerings, etc. [3]. Through these
efforts, the market turbulence ended in February 2016 [5]. This crash brought heavy losses to Chinese
investors and the economy. Market capitalization up to trillions of US dollars evaporated [6]. It also
impacted the world markets.

Analyzing information transfer is one of the fundamental subjects for complex system studies.
It characterizes the interactions between components and provides important insights into the structure
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and dynamics of the system. This issue attracts many researchers from different fields, for instance
neuroscience [7,8], physics [9,10], climatology [11,12], and zoology [13,14], etc. In econophysics,
Kwon and Yang [15] analyzed the strength and direction of the information flow in 25 stock indices.
They found that the US market was the biggest information source, while most information receivers
are located in the Asian Pacific region. Yang et al. [16] used the annual gross domestic product (GDP)
data of 27 Chinese provinces and autonomous regions to study the information transmission before
and after the reform and opening up policy in 1978. The results showed that the policy promoted
regional economy development and changed the influence of different areas. Dimpfl and Peter [17]
analyzed the information transfer between US and European stock markets. They discovered that there
existed bidirectional information flow. The US subprime crisis enhanced this information exchange.
Sandoval [18] investigated the transfer of information in 197 of the largest financial companies in the
world. The bank and insurance companies were found to play important roles in the transmission
of information. Sensoy et al. [19] employed nine developing countries’ currency exchange rate
and stock price data to research the exchange of information between them. The results suggested
strong bidirectional information flow during the US subprime crisis. Bekios et al. [20] studied the
information diffusion between commodity future and stock markets. The results indicated that finance,
automobile, and energy stock sectors transmitted the most information to the commodity future
market. Kim et al. [21] researched the information transfer in economy variables. It was discovered
that Western countries had a strong influence in the world economic network. Japan’s influence
decreased after the Asian currency crisis in 1997.

The aim of this paper is to apply effective transfer entropy (ETE) to research the information
transfer in Chinese stock market around the crash of 2015, and to reveal the impacts of this crash on
the interactions between sectors. To the best of our knowledge, this question has not been studied
systematically in the existing literature.

Transfer entropy (TE), introduced by Schreiber [22], is a very popular tool for measuring
information transfer between time series. It has some remarkable properties. First, it is directional
and can assess the direction of information. Second, it can be used in both linear and nonlinear
environments. Third, it does not need specific model hypotheses. It is model-free and data-driven [23].
Because of these advantages, TE has been widely used in various domains [7–16]. In practice,
the sample data is usually small and contains noise. To reduce these influences, Marschinski and Kantz
combined a random shuffling procedure with TE and proposed ETE [24]. Lungarella et al. suggested
that TE or ETE was the first choice when prior knowledge of the system is unknown [25]. In this
paper, we consider the stock indices as continuous variables, avoiding information loss caused by data
discretization. Since kernel density estimation (KDE) performs well in inferring probability density
function [26,27], we adopt it to calculate ETE. The main contributions of this paper to the relevant
literature are in three aspects: first, it analyzes the strength and scope of the information transfer in
10 Chinese stock sectors around the crash in 2015. Second, it applies node strength and betweenness
centrality to assess sectors’ influences in different sub-periods. Third, it uses Chu-Liu-Edmond’s
algorithm [28,29] to construct directed maximum spanning trees (MSTs) to research the backbones of
the information transfer networks.

The rest of this paper is organized as follows. Section 2 introduces the methods. Section 3
describes the data and some preliminary analyses. Section 4 gives the results and some discussion.
Section 5 concludes the paper.

2. Methodology

2.1. Transfer Entropy

Before introducing TE, we present the concept of Shannon entropy, which is fundamental for
information theory. Let Rm denote the m-dimensional real space and A ∈ Rm. Its Shannon entropy
H(A) is defined as [30]:
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H(A) = −
∫

Rm
p(A) log p(A)dA (1)

where p(A) is the probability density function (PDF). Shannon entropy quantifies the amount of
information that is needed to describe the variable, or the uncertainty of the variable. In this paper,
the logarithm uses base 2; thus, the entropy is measured in bits.

Let another variable B ∈ Rn; the conditional entropy H(A|B) is [31]:

H(A|B) = −
∫

Rm+n
p(A, B) log p(A|B)dAdB (2)

where p(A, B) and p(A|B) are the joint and conditional PDFs. They characterize the uncertainty of A
given that B is known.

Given two stationary time series X ∈ R1 and Y ∈ R1, the TE from X to Y is defined as [32]:

TEX→Y = H(yt+1|y
(k)
t )− H(yt+1|y

(k)
t , x(l)t )

=
∫

Rk+l+1 p(yt+1, y(k)t , x(l)t ) log( p(yt+1|y
(k)
t ,x(l)t )

p(yt+1|y
(k)
t )

)dyt+1dy(k)t dx(l)t
(3)

where y(k)t = (yt, yt−1, . . . , yt−k+1), x(l)t = (xt, xt−1, . . . , xt−l+1) are the past states; p(yt+1, y(k)t , x(l)t ),

p(yt+1|y
(k)
t , x(l)t ), p(yt+1|y

(k)
t ) are the joint and conditional PDFs. TEX→Y measures the uncertainty

reduction or predictability improvement of yt+1, which gains from x(l)t that is not contained in y(k)t
itself [33]. In this way, it quantifies the predictive information transfer between variables [33,34]. By a
simple transformation, Formula (3) can be rewritten as follows [31,35]:

TEX→Y = H(y(k)t , x(l)t ) + H(yt+1, y(k)t )− H(yt+1, y(k)t , x(l)t )− H(y(k)t ) (4)

2.2. Effective Transfer Entropy

In practical applications, TE can produce spurious positive values for two independent time
series because of limited data and random noise. ETE was proposed to reduce this bias. It is defined
as [24,35]:

ETEX→Y = TEX→Y −
1
M∑ TEXshu f f ed→Y (5)

where Xshu f f ed is the random shuffled series of X. M is the number of shuffles and it is set to
1000. In this paper, we first applied TEXshu f f ed→Y to test the significance of TEX→Y. Referring to
References [27,33], if TEX→Y is larger than the 95th percentile of TEXshu f f ed→Y, TEX→Y is considered
significant nonzero, and the ETE is calculated according to Formula (5). Otherwise, it is considered
that there is no transmission of information, and ETE is 0.

2.3. Kernel Density Estimation

According to Formulas (4) and (5), ETE can be calculated through Shannon entropy. Because the
KDE-based method has good performance [26,27], we can apply it to compute ETE in this study.

Let u1, u2, . . . , uN be a sample of U ∈ Rd. Then, its PDF value p̂(uj) estimated by KDE with a
kernel function K(·) is [26]:

p̂(uj) =
1

Nhd

n

∑
i=1

K(
uj − ui

h
) (6)
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where h is the bandwidth. In this paper we choose the Gaussian kernel, which is commonly used in
practice. Therefore, Formula (6) can be written as [26,36]:

p̂(uj) =
1

Nhd

n

∑
i=1

1√
(2π)ddet(S)

exp(−
(uj − ui)

TS−1(uj − ui)

2h2 ) (7)

where S is the covariance matrix of the data; det(S) is the determinant of S.
The bandwidth is calculated by Formula (8), with reference to [26,36]:

h= (
4

d + 2
)

1/(d+4)
N−1/(d+4) (8)

After obtaining p̂(ui), the Shannon entropy can be computed by Formula (9) [37,38]:

H(U) = − 1
N

N

∑
t=1

log p̂(ut) (9)

where N is the length of the time series.
Thus, the TE in Formula (4) can be estimated by Formula (10):

TEX→Y = − 1
N (

N
∑

t=1
log p̂(y(k)t , x(l)t ) +

N
∑

t=1
log p̂(yt+1,y(k)t )−

N
∑

t=1
log p̂(yt+1,y(k)t , x(l)t )−

N
∑

t=1
log p̂(y(k)t )) (10)

Applying the above methodology, we calculate the ETE between two linear autoregressive
processes [32]:

Xi+1 = αXi+1 + ηX
i ; Yi+1 = βYi+1 + γXi + ηY

i (11)

where ηX and ηY are random numbers that obey standard normal distributions; α = 0.5 and β = 0.6.
Let k = l = 1. Then, the analytical value of TEX→Y for the two processes is [32]:

TEX→Y =
1
2

log
detC(Yi, Xj)detC(Yi+1, Yi)

detC(Yi+1, Yi, Xi)detC(Yi)
(12)

where C(·) is the theoretical covariance matrix; det(·) denotes the determinant of a matrix.
For each γ, we generate 50 sample series of Formula (11) with a length of 200. This length is

approximated to the sub-periods around the crash, which are divided in the later part of this paper.
We then calculate the ETEs for these samples. The average values of these ETEs are displayed in
Figure 1. It can be observed that the calculated ETEs match the theoretical TE well. The mean absolute
error is just 0.0064. This supports the good performance of the methodology.
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3. Data

According to the CICS Industry Classification issued by China Securities Index (CSI) Co., Ltd,
all mainland China listed companies are divided into 10 first-level sectors. This paper therefore uses
the daily closing price of the 10 CSI sector indices for the study. Their numbers and names are listed
in Table 1. All data are downloaded from the WIND database, which is a leading Chinese financial
information provider.

Table 1. The numbers and names of the 10 China Securities Index (CSI) sector indices.

No. Index Name No. Index Name

1 CSI Energy 6 CSI Health Care
2 CSI Materials 7 CSI Financials
3 CSI Industrials 8 CSI Information Technology
4 CSI Consumer Discretionary 9 CSI Telecommunication Services
5 CSI Consumer Staples 10 CSI Utilities

The time range of the data is from 1 July 2013 to 28 February 2017. According to the market
states, we divide the time into four sub-periods: the tranquil, bull, crash, and post-crash periods.
This can help to analyze the influence of market states on the information transfer between sectors.
The tranquil period extends from 1 July 2013 to 30 June 2014—approximately one year. During this
period, the market was quite calm [1]. The bull period extends from 1 July 2014 to 12 June 2015.
The market soared in this stage [3,39]. It reached the peak on 12 June 2015. After that day, it plunged
drastically [3,39]. So, we take this day as the end of the bull period. The crash period starts on
15 June 2015 and ends on 29 February 2016. Because the dates of 13 June 2015 and 14 June 2015 fall
on weekends, the start of the crash period is considered to be the latest trading day, 15 June 2015.
Zhai analyzed the structural breaks of the Chinese stock market, and found that the crash of 2015 ended
in February 2016 [40]. We therefore take 29 February 2016 as the end of the crash. This time is also in
agreement with the literature [5,41]. The post-crisis period is from 1 March 2016 to 28 February 2017.
It is also about one year. During this period, the market became stable again. Figure 2 shows the SSECI
and the four sub-periods.
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Figure 2. Shanghai stock exchange composite index (SSECI) and the four sub-periods around the time
of the crash of 2015. The horizontal axis is the sample time ranging from 1 July 2013 to 28 February
2017. The red lines correspond to the dates of 1 July 2014, 12 June 2015, and 29 February 2016 from left
to right.

We apply Formula (13) to calculate the daily logarithmic returns of the 10 sector indices:

Rt = ln Pt − ln Pt−1 (13)
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where Rt represents the logarithmic return; Pt and Pt−1 denotes the price on day t and t− 1, respectively.
Since TE needs the time series to be stationary, we apply the augmented Dickey-Fuller (ADF)

test to examine the stationarity of the whole return series. The lag length is selected by Schwarz
Information Criterion. The maximum lags are defined as 20. We also use the Jarque-Bera test to
examine whether the whole return series obey Gaussian distribution. Table 2 shows the results.

Table 2. Results of the augmented Dickey-Fuller (ADF) and Jarque-Bera tests for the whole return
series of the 10 sectors.

No. ADF Statistic Jarque-Bera Statistic No. ADF Statistic Jarque-Bera Statistic

1 −28.6154 *** 765.3783 *** 6 −28.4199 *** 902.8109 ***
2 −28.2453 *** 823.1612 *** 7 −28.7902 *** 953.3962 ***
3 −26.7147 *** 783.1250 *** 8 −27.1013 *** 351.2834 ***
4 −27.7279 *** 753.9022 *** 9 −27.6364 *** 548.0041 ***
5 −23.0576 *** 867.0495 *** 10 −27.9620 *** 970.4217 ***

Note: *** denotes statistical significance at the 1% level.

From Table 2, it can be concluded that all 10 return series are stationary. However, they do not
obey Gaussian distribution as a whole. In addition, we conducted the ADF and Jarque-Bera tests
on the four sub-periods of the return series. The results of the ADF test are all significant at the 1%
level. This indicates that the series are also stationary in the four sub-periods. However, the results of
Jarque-Bera test are mixed at the 1% significance level. Some are significant and some are not.

We use the autocorrelation function to determine the delay time k and l. The lag of its first
zero-crossing, or the lag required for the function to decrease to 1/e, can be selected as the delay
time [42,43]. The results show that the first zero-crossings of all sectors’ autocorrelation functions are
between 1 and 2, and the functions’ values of lag 1 are already below 1/e. We therefore set k = l = 1
in this paper. This indicates the weak memory of the daily stock returns. This configuration is in
accordance with the literature [15,18,20,44,45].

4. Results and Discussion

4.1. ETE between Sectors

We calculate the ETEs between 10 Chinese stock sectors during the four sub-periods. In order
to visualize and compare them conveniently, we use colormaps to display them. All colorbars are
adjusted to the same range. Figure 3 and Table 3 shows these colormaps and the mean ETE of each
sub-period. The direction of the ETE is from the vertical axis to the horizontal axis. The numbers
on the axes are the serial number of the sectors in Table 1. From Figure 3 and Table 3, it can be
observed that the information transfer exists in only a few sectors in the tranquil period, and that
its strength is weak. This indicates feeble interactions between sectors in this stage. In the bull
period, the strength and scope of the information transfer increases, suggesting stronger interactions.
In Figure 3b, there are two high ETE blocks with the coordinates (8, 3) and (8, 10). This means that the
industry (No. 3) and the utility (No. 10) sector indices transmit much information to the information
technology sector index (No. 8). One of the possible reasons for this is that during the booming
market phase, informatization construction in the industry and the utility fields (for example, the
state-prompted smart city, intelligent grid, “Made-in-China 2025”, and “Internet-plus” plans [46–49])
provides huge demands and opportunities for information technology companies. This potential
economical link may enhance the information transfer [50]. In the crash period, the strength and
scope of the information flow increases further, and it reaches the maximum of the four sub-periods.
This implies the strongest interactions between sectors. In the post-crash period, the market becomes
stable again. The information transfer weakens, but it is still stronger than the tranquil period.
The scope of the information transfer is also different from that in the tranquil stage.
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Table 3. Average ETE between sectors in the four sub-periods

Tranquil Bull Crash Post-crash

Average ETE 0.0049 0.0384 0.0619 0.0123

From the perspective of market microstructure, the movement of the stock price is determined
by the arrival of new information, and by the process that absorbs the information into the price [51].
According to the Efficient Market Hypothesis, if the market is perfectly efficient, the price reflects
all current information. Newly arrived information is incorporated instantaneously into the price.
In this ideal condition, there is no predictability and information transfer between the stocks [52,53].
However, researchers have discovered that market frictions widely exist in capital markets; for instance,
the limited attention of investors, asymmetric information, and noise traders, etc. [54]. They cause
a difference in the speeds of the information absorption of prices, and result in the predictability
and information transfer from the faster one to the slower one [50,54,55]. In practice, bidirectional
information transfer can be seen. This is because different information may coexist in the market.
Different stock may react to different information at different speeds. On the other hand, predictability
can be an important indicator of market efficiency [56–58]. From this aspect, it can be inferred that the
market efficiency in the tranquil period is relatively high. It deteriorates in the bull time, and it is the
worst in the crash period. In the post-crash stage, it obtains some recovery. Contrasting with the drastic
boom and crash of the stock market, the macroeconomic variables of China are steady. We conclude
that their effect on the change of market statuses and ETE is weak in these periods. This conclusion is
line with Song [2]. He applied multifactor models to examine the effect of macroeconomic variables
and found that the bull market was not sensitive to the macroeconomic variables.

4.2. Centrality of Sectors

For the further study of the sectors’ interactions, we construct the information transfer network.
The sectors are considered as the nodes in the network. If there is a nonzero ETEi→j, a directed edge is
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added from sector i to sector j, with the weight of ETEi→j. Then we obtain the network. Node strength
is a common centrality measure. For a weighted directed network, it can be divided into Out Node
Strength NSout and In Node Strength NSin:

NSi
out = ∑

j
ETEij; NSi

in = ∑
k

ETEki (14)

Out Node Strength reflects the influence of a node on others. In Node Strength measures the
influence of a node receiving from others [59]. Tables 4 and 5 display the Out and In Node Strengths
of the sectors. The largest values are in bold. In the tranquil period, we can observe that the Out
and In Node Strengths of the sectors are small. The energy (No. 1) and material (No. 2) sectors have
relatively larger In Node Strengths than others. According to Cohen and Shahrur [50,60], the stock
prices of downstream companies usually lead the upstream companies’ stock prices. In supply chains,
energy and material companies are usually upstream. It may therefore cause the two sectors to
receive relatively more information. In the bull period, the Out and In Node Strengths all increase.
The utility sector (No. 10) has the largest Out Node Strength. China has invested heavily in the
infrastructure construction for years. There are great opportunities in this field. A booming market
enhances investors’ confidence. The utility sector, which is an important domain of infrastructures,
may attract significant attention from investors. This could cause the utility sector to react fast to
information and output more information than others in this period. The information technology
(No. 8) sector receives the most information, indicating that it is affected greatly by other sectors.
In the crash period, apart from the Out Node Strength of the utility sector, which exhibited a slight
decrease, other sectors’ values continue to increase. The information technology sector outputs the
largest amount of information in this time. Since the herding activities in this sector are found to be
stronger than others [61] and information technology companies usually have a high price-earnings
(P/E) ratio, it may make this sector more sensitive to market turmoil. Meanwhile, the financial (No. 7)
and energy sectors also have relatively strong Out Node Strengths. In this period, except for the
utility sector, others’ In Node Strengths all grow. The consumer staples (No. 5) sector receives the
most information. Companies in this sector usually produce essential commodities in people’s daily
lives. This may make it less sensitive to market turbulence, and it results in receiving relatively
more information from other sectors. In the post-crash period, the Out and In Node Strengths of
the sectors all decline. The telecommunication service (No. 9) sector outputs the most information.
The In Node Strength of the financial sector is much larger than others, indicating that it is heavily
impacted by other sectors. This is because many large financial firms are part of the “national team”,
which aims to buy huge amount of stocks during the crash time in order to stabilize the market [3].
These financial firms therefore become the stakeholders and important money providers for many
companies in different sectors. Other sectors’ statuses therefore may influence the financial condition
of these financial firms, as well as the investors’ moods and strategies. This further impacts the price
of these financial companies.

Table 4. Out Node Strengths of the 10 sectors in the four sub-periods.

No. Sector Name Pre-Bull Bull Crash Post-Crash

1 Energy 0.0474 0.4301 0.7006 0.0396
2 Materials 0.0811 0.3366 0.6279 0.0392
3 Industrials 0.0407 0.3985 0.5149 0.1133
4 Consumer Discretionary 0.0714 0.3055 0.4283 0.1918
5 Consumer Staples 0.0316 0.1557 0.5451 0.0471
6 Health Care 0.0682 0.2251 0.3525 0.1048
7 Financials 0 0.3147 0.7130 0.0965
8 Information Technology 0.0628 0.3573 0.7729 0.0989
9 Telecommunication Services 0.0361 0.3045 0.3194 0.2176

10 Utilities 0 0.6259 0.5983 0.1565
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Table 5. In Node Strengths of the 10 sectors in the four sub-periods.

No. Sector Name Pre-Bull Bull Crash Post-Crash

1 Energy 0.1509 0.2314 0.3450 0
2 Materials 0.1156 0.3289 0.6136 0
3 Industrials 0 0.3278 0.6609 0
4 Consumer Discretionary 0.0345 0.3319 0.4932 0.1367
5 Consumer Staples 0 0.0435 0.7335 0.0521
6 Health Care 0.0393 0.2888 0.4924 0.0396
7 Financials 0 0.2835 0.5885 0.4808
8 Information Technology 0.0337 0.6807 0.6157 0.0832
9 Telecommunication Services 0.0653 0.3646 0.4743 0.1325

10 Utilities 0 0.5725 0.5558 0.1806

Betweenness is another centrality measure. It quantifies a node’s underlying ability to control the
information flow in the network [62]. Its definition is based on the number of shortest paths between
nodes. For a weighted directed network, the shortest path dw

ij between node i and j is [62]:

dw
ij = min(

1
wih0

+
1

wh0h1

+ · · ·+ 1
whk j

) (15)

where vh0 , vh1 , · · · , vhk
are the intermediary nodes on the path from node vi to vj. The shortest path

can be derived using Dijkstra’s algorithm and the weighted betweenness centrality (WBC) is defined
as [62]:

WBC(i) = ∑
i 6=s,i 6=t,s 6=t

gw
st(i)
gw

st
(16)

where gw
st is the number of the shortest paths from node vs to vt. gw

st(i) is the number of the shortest
paths from vs to vt that also pass through vi.

Figure 4 shows the WBCs of the 10 sectors in the four sub-periods. In the tranquil period, the
material (No. 2) sector has the largest WBC. In the bull period, the utility (No. 10) sector has the largest
WBC, while other sectors have much smaller values. This implies that the utility sector is the hub node,
and it is very important for the information transmission in this stage. In the crash period, the WBCs
are generally smaller. This is because in this phase, the information flow grows and sectors have more
routes to connect with each other. The information technology (No. 8) sector has a relatively larger
value. In the post-crash period, the financial sector (No. 7) has the largest WBC and is the pivot node
of the information flow.
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4.3. Directed Maximum Spanning Tree

The MST is one of the spanning trees of a network with the maximum total edge weights. It can
help to disentangle the network and visualize the key structures [63]. For the undirected network,
the MST can be built using the algorithms of Kruskal or Prim. However, in this paper, the information
transfer network is a directed one. Thus, we adopt Chu-Liu-Edmond’s algorithm [28,29] to build the
directed MST. It is also called the maximum arborescence, and is the backbone of a network [29].

Figure 5 shows the directed MSTs in the four sub-phases. It can be seen that the structures of the
trees are very different. This indicates that the market state has heavy impacts on the structure of the
information transfer network. It also implies that information transfer can be a potential indicator for
the market status. From Figure 5, we can observe that there are isolated sectors in both tranquil and
post-crash periods. These isolated sectors have weak interactions with others, indicating that they
could be references for portfolio diversification. In the bull and crash periods, the stronger information
flow leads to the improvement of connectivity of the network. All sectors are contained in the trees.
This means that the opportunity for asset diversification declines. Let the number of hops from the
root node to itself be 0, so that the average hops of nodes to the root is 3.7 in the bull period. However,
the value decreases to 1.9 in the crash time, suggesting that the tree has a more compact structure and
the interactions between sectors are more direct in the crash stage.
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5. Conclusions

Using ETE and the 10 sectors’ data from July 2013 to February 2017, this paper studies the
information transfer in the Chinese stock market around its crash in 2015. According to the market
states, the time range is divided into four sub-periods: the tranquil, bull, crash and post-crash periods.
The stock data is considered as a continuous variable to avoid the subjectivity and information loss
induced by data discretization. The KDE method is applied to compute the ETEs between sectors.
Then, the information transfer network is constructed based on the ETEs. The influences of the sectors
are analyzed by centrality measures. Lastly, a directed MST is used to disentangle the network.

The results display that the information transfer between sectors is weak in the tranquil period.
The energy and material sectors are the main information receivers. In the bull period, the strength
and scope of the information transmission both increase. The utility sector outputs much information,
and it is the hub node. The information technology sector receives the most information in this stage.
In the crash period, the information flow continues to grow, and it reaches the maximum of the
four sub-periods, indicating the worst market efficiency. The information technology sector outputs
the most information in this phase. The consumer staples sector is the biggest information receiver.
The directed MST has a compact structure, suggesting more direct interactions between sectors. In the
post-crash period, the strength and area of the information flow decreases, but it is still larger than
that in the tranquil period. The telecommunication service sector emits the most information in this
stage. The financial sector receives the largest amount of information, and it is the pivot node for the
information transmission.

These findings can help us to understand the structure of the Chinese stock market. As information
transfer reveals the predictability of the market, this study can also provide references to investors for
the selection of investment strategies.
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