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Abstract: In this paper, a new family of binary LRCs (BLRCs) with locality 2 and uneven availabilities
for hot data is proposed, which has a high information symbol availability and low parity symbol
availabilities for the local repair of distributed storage systems. The local repair of each information
symbol for the proposed codes can be done not by accessing other information symbols but only by
accessing parity symbols. The proposed BLRCs with k = 4 achieve the optimality on the information
length for their given code length, minimum Hamming distance, locality, and availability in terms of
the well-known theoretical upper bound.
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1. Introduction

Distributed storage systems (DSSs) which efficiently store information on several distributed
nodes have been proposed [1,2]. The purpose of DSSs is to ensure reliable and efficient storage of
information. The first techniques for DSSs were based on replication and have been adopted in
various storage systems. However, the main disadvantage of replication is the large amount of storage
overhead required, resulting in serious inefficiency as the amount of stored information increases.
As a means of solving this problem, erasure coding schemes were proposed to achieve reliable storage
of information with very small amounts of storage overhead compared to that required by replication
methods [3].

However, it is well known that traditional erasure codes, such as Reed-Solomon (RS) codes,
are not optimal for DSSs, because DSSs have different performance criteria. Specifically, these erasure
codes do not have the optimal performance in local repair, which is one of the important criteria
for DSSs. Local repair refers to a repair process that reconstructs the original data of an erasure
symbol (node) using a small number of other symbols. During the local repair process, the repair
bandwidth [4], disk input/output (I/O) [5-7], and locality [8] are known to be the main repair cost
metrics. The repair bandwidth and disk I/O represent the number of bits communicated and read
during the local repair process, respectively. In addition, locality refers to the number of symbols
(nodes) participating in the local repair. Each of these metrics is considered in DSSs for different
purposes, and their fundamental bounds for optimality have not been completely determined yet.

In particular, locality is considered to be important in applications of erasure codes in DSSs.
In order to reduce the degree of locality, various studies have been done, and codes with a small
locality are commonly referred to as locally repairable codes (LRCs) [8-10]. Recently, as another
performance criterion associated with LRCs, availability was introduced [11,12]. Availability is defined
as the number of disjoint sets of symbols which can be used to repair a symbol. In DSSs with LRCs,
a high availability makes local repair flexible so that hot data are loaded without lagging.
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In this paper, a new family of binary LRCs (BLRCs) is proposed to enhance performance of local
repair in the DSSs. The proposed BLRCs have all-symbol locality two and uneven availabilities for the
local repair of LRCs in DSSs. The proposed BLRCs also have a high information symbol availability and
low parity symbol availabilities, which improve performance of the DSSs, especially for information
data. In addition, most local repair groups of the proposed BLRCs have one information symbol and
two parity symbols and thus we do not need to access other information symbols for the local repair
of each information symbol. This property is desirable for information symbols in hot data storage
systems. The proposed BLRC with k = 4 can achieve optimality of the information length for a given
code length and the minimum Hamming distance while maintaining the practically good locality and
uneven availabilities.

The rest of the paper is organized as follows. In Section 2, for easy understanding of the
conventional and the proposed LRCs, several notations, definitions, and fundamental properties
are introduced. Subsequently, in Section 3, the new family of BLRCs with locality two and uneven
availabilities is proposed and various characteristics of the proposed BLRCs are analyzed. Finally,
conclusions are given in Section 4.

2. Preliminaries

2.1. Notations and Definitions

In this paper, all vectors and matrices are denoted with a boldface font. For vectors a and b of the
same length, [a b] and ; denote row-wise and column-wise concatenations of a and b, respectively.
Similarly, for matrices A and B of the same column length, [A B] denotes the row-wise concatenation
of A and B. Also, for matrices C and D of the same row length, []():] denotes the column-wise

concatenation of C and D.

Suppose that a binary vector x has at least one zero element. For the given binary vector x,
we define a random function Z (x) to convert x to a binary vector of the same length by changing
a randomly selected zero element to one. Let z(x) denote an instance of Z(x). For I > 1, we also
introduce a random function Z' (x) as the composite function of Z (x), which is recursively defined as

Z@yzz@”W@)

where z0(x) is defined to be x. Then, the function Z'(-) becomes equal to Z(-).

Let C be an (n,k, d) linear code, which encodes k information symbols to a codeword of length n,
thatis, ¢ = (co,c1, - - ,¢p—1) with a minimum Hamming distance of d. A k x n generator matrix G of
code C is said to be in a systematic form if

G = [I; P]

where I} denotes the identity matrix of size k x k corresponding to the systematic (information) part
and P denotes a k x (n — k) matrix corresponding to the parity part. For the (n,k,d) binary code C,
if the k x n generator matrix G is in a systematic form, the (n — k) x k parity-check matrix H is easily
obtained as

H= [PT I, k}

where PT denotes the transpose of P.

2.2. Locally Repairable Codes

In this paper, an LRC of length 1, information length k, locality 7, availability {, and minimum
Hamming distance d is referred to as an (n,k,r,t,d) LRC. In an (n,k,r,t,d) LRC, n symbols of any
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codeword have at least  disjoint groups, each of which includes at most r other symbols used to repair
the erasure symbol. An LRC is sometimes denoted by (n,k), (n,k,r), or (n,k,r,d) LRC depending
on which parameters we deal with. If an (n,k, ,t,d) LRC supports locality r for only k information
symbols, it is referred to as an (n, k, 7, t,d) LRC with information symbol locality. On the other hands,
if it supports locality r for all n symbols of codewords, it is referred to as an (1, k,r,t,d) LRC with
all-symbol locality. Similarly, (n,k,r,t,d) LRCs can be classified based on the type of availability
as follows.

Definition 1 (Information-symbol availability). Ifan (n,k,r,d) LRC supports availability t for local repair
on each of k information symbols, it is referred to as an (n, k,r,t,d) LRC with information symbol availability.

Definition 2 (All-symbol availability). Ifan (n,k,r,d) LRC supports availability t for all local repair of each
of n symbols, it is referred to as an (n, k,r,t,d) LRC with all-symbol availability.

Note that Definitions 1 and 2 are valid for a case in which an (u,k,r,t,d) LRC achieves
all-symbol locality.

Further, in order to consider a case that each symbol has different availabilities, a new definition
for the availability is needed as follows.

Definition 3 (All-symbol availability profile). Foran (n,k,r,d) LRC C, the all-symbol availability profile of
C is defined as a vector t = [t1,t2,- - -, t,] of length n, where t; (> 1) denotes the availability for local repair of
the i-th symbol of a codeword in C. The LRC C is denoted by (n,k,r,t,d) LRC.

If an (n,k,r,d) LRC C has an all-symbol availability profile t, whose elements are not all identical, it is
said that C has uneven availabilities.

2.3. Bounds for Optimality of LRCs

In pioneering researches on the bound for the optimality of LRCs, it was shown that the minimum
Hamming distance d of an (1, k,r,d) LRC C should satisfy an upper bound in Reference [8],

d<n—k—|—2—“-‘, 1)
which is a modification of the Singleton bound, where [-] denotes the ceiling function. Various
constructions of LRCs achieving the bound in Equation (1) have been proposed [12-15].

Subsequently, a bound for (1, k,r,d) LRCs was introduced [16] to additionally take the symbol
size q into account compared to the bound in Equation (1). This bound indicates that the information
length k of an (1, k,7,d) LRC C over F, has the following upper bound,

; (@)
k< tré'%rl{tr—i-kopt (n—t(r+1),d)} ()
where kg@t (n,d) denotes the largest possible code dimension of an n-length code for a given alphabet

size g and a given minimum distance d. Note that Equation (2) represents the bound for the information
length k, whereas Equation (1) indicates that for the minimum Hamming distance d. The explicit
constructions of the family of BLRCs in earlier works [16,17] achieve the bound in Equation (2).

Recently, another bound for (1, k,r, t,d) LRCs was introduced in Reference [12]. This bound also
takes both locality r and availability ¢ into account similar to the bound in Equation (2), but it does not
consider the symbol size g. It is derived for a case in which each local repair group has only one local
parity symbol, where the local parity symbol denotes the parity symbol used for local repair.

dgn—k—FﬂHH 3)
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3. A New Family of BLRCs

In this section, a new family of BLRCs is proposed and their locality and availability are analyzed.
The proposed BLRC with the information length k = 4 is found to be optimal in terms of the bound in
Equation (2) for the given code length, locality, availability, and minimum Hamming distance.

3.1. Construction of New BLRCs

In this subsection, a new family of high-rate BLRCs with locality two and uneven availabilities is
proposed. The construction of the proposed BLRCs requires the following intermediate procedure.
Firstly, a k-tuple binary column vector z; with Hamming weight one is generated, where the position
of the nonzero element is random. Based on z, k X k square matrices Py; for 1 < [ < k—1 are
constructed one by one by increasing I as

Py = [Zl (z) Zpyy (z) - Z{g (Zk)}

where Z!(z;) is obtained for given z'~1(z;) by the order of construction and Zéi) (zx) denotes the i
circularly downward-cyclic-shifted vector of Z' (z;). Next, a k x k(k — 2) matrix Py, for the parity part

of the generator matrix is generated by concatenating the matrices Py 1, Py, - - -, Py 2 as

Pp=[Pr1 Pro, -+, Pryoal. 4)

The construction of the proposed BLRCs is based on the construction of the generator matrix
as follows.

Construction 1: Let G(,, 1) denote the systematic generator matrix of the proposed (1, k) BLRC C. Then,
ak x n generator matrix G, x) in the systematic form is constructed as

Gk = [Ik Pil. )
Note that the generator matrix G has size of k x k (k—1) and coderateof R =1/ (k—1).
g (nk)

Example 1. Figure 1 shows an example of the procedure of Construction 1 for the proposed (n = 12,k = 4)
BLRCs. For the generator matrix G(13,4), the column vector z4 = (100 O)T is used. The example BLRC has a
code length of n = 12 and a code rate of R = 1/3.

........................
*

100010011011
010011001101
0010601101110}

— Gi2,4) =

N
&
|
o oo =

........................

Figure 1. A generator matrix of the (12,4) BLRCs in Construction 1.

3.2. Locality and Availability of the Proposed BLRCs

In this subsection, the locality » and availability profile t of the proposed BLRCs are analyzed as
the main performance criteria for local repair in LRCs. As noted above, in an (1, k, 7, t,d) LRC, the i-th
symbol can be repaired using at least ¢; disjoint groups, each consisting of at most r other symbols.
In case of an LRC with multiple locality values, there were some research results [18,19]. Our proposed
BLRCs have a uniform all-symbol locality value but various values of availability. This is explained in
the latter part of this subsection.
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In general, the locality and availability of LRCs are easily analyzed from corresponding
parity-check matrix as follows.

Lemma 1 ([17]). An (n,k) LRC has locality r if for every index i,1 < i < n, its parity-check matrix has a row
vector x, which has a Hamming weight at most r + 1 and has a nonzero element in the i-th position.

Lemma 2 ([12]). An (n,k,r) LRC has availability t if for every index i,1 < i < n, there exist at least t row
vectors, of which each commonly has a nonzero element in the i-th position and, disjointly, has other r nonzero
elements in positions except i in its parity-check matrix.

In the proposed BLRCs, all-symbols have locality two as follows.

Theorem 1 (Locality of the proposed BLRCs). Foran (n,k) LRC according to Construction 1, all-symbol
locality is r = 2.

Proof. In the proposed BLRCs, for local repair, a parity-check matrix H modified by elementary row
operations is utilized instead of the original parity-check matrix H. The modification procedure for H’
is as follows. The parity-check matrix in a systematic form is obtained from the generator matrix as

T
- | Pe1 Pr2 Pre—a | ©)
| P
Let the parity-check matrix be represented in another form as
T
H= [Qk,l Qw2 -+ Qk,kfz} @)

where the sub-matrices Qy;,1 < I < k — 2, are n X k matrices. All of the row vectors of le,l have
Hamming weight [ + 2, of which ! 4+ 1 nonzero elements and one nonzero element are in their left
sub-vector of length n — k and their right sub-vector of length k, respectively. Then, the parity-check
matrix is modified as

T
H ={Qr1 Qr1+0Qk2 - Qi+ Qrioa| - 8)

It is easily checked in Equation (6) that the row vectors in the identical positions of le,l and
le,l 1< I <k — 3, have Hamming distance three by construction, with one occurring in their left
sub-vectors of length n — k and the other two occurring in their right sub-vectors of length k. Therefore,
for QkT,l + le,l ey 1 <1 < k — 3, the Hamming weight of their row vectors is three. In addition, all of
the column vectors in le,l + Q,;F,l 4+1» 1 <1 < k—3 have nonzero Hamming weights. According to
Lemma 1, because for all indices i,1 < i < n, there exists a row vector which has Hamming weight of
three and one non-zero element in the i-th position in H’, the proposed BLRCs have all-symbol locality
r=2. 0

In addition, the proposed BLRCs have uneven availabilities while achieving the locality r = 2
as follows.

Theorem 2 (Availability of the proposed BLRCs). An (n,k) BLRC C with Construction 1 has all-symbol
availability profile represented as

t:[k_lllk_]'l 2//2/ 1//1] (9)
~—————— —— ——
k k(k—3) k

for local repair with all-symbol locality v = 2.
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Proof. To prove this, H' in Equation (8) is used again. The first k column vectors and the next k column
vectors of Q,Zl have Hamming weights of two and one, respectively, whereas the remaining column
vectors have a Hamming weight of zero. In QIT,I + QI{,Z 1< | < k — 3, the first k column vectors
have Hamming weight one and the column vectors from the (Ik 4+ 1)-th position to the (Ik 4 2k)-th
position also have Hamming weight one, whereas the remaining column vectors have a Hamming
weight of zero. Therefore, the first k column vectors, the next k (k — 3) column vectors, and the last k
column vectors have Hamming weights of k — 1, two, and one, respectively.

Now, we must show that all local repair groups which repair the same error symbol are disjoint.
For every index i, 1 < i < k, there are k — 1 row vectors of which each has one in the i-th index
and the other r ones in disjoint positions, except for the i-th position in H'. In addition, for every
index i, k+1 < i < k(k — 2), there are two row vectors of which each has one in the i-th position
and other r ones in disjoint positions, except for the i-th position in H'. Lastly, for every index
i, k(k—2)+1 <i<k(k—1), there is a row vector which has one in the i-th position in H'. Therefore,
according to Lemma 2, the proposed BLRCs have the uneven all-symbol availability profile expressed
in Equation (9). O

Note that the proposed BLRCs C have constant information symbol availability k — 1 but the
uneven all-symbol availabilities for local repair.

Example 2. The proposed (n = 12,k = 4,r = 2) BLRC C constructed in Example 1 has a parity-check matrix
H and the modified form H' as shown in Figure 2. It is verified in H' that C has all-symbol locality r = 2.
In addition, C has the all-symbol availability profile t = [333322221111].

11 00 100 000 0 07
001 10010000 00|gl
00 11 0071 000 0 o0f°%™
H=]1.0 0 1 000 100 0 o0}
11 10 000 010 0 0]
01110000010 0],
1011000000 1 0fR2
11 0 1 00 0 0 0 0 0 11
Elementary operations
ﬂ on rows of the
original parity-check matrix
1 1 0 0 1 0 0 0 0 0 0 07
01 10010000 0 0|gr
0 01 1 001000 0 off**
w=lL 001000100 0 0
00 10 100 010 0 0
00010100010 0f, -
10 00 00 1 00 0 1 0| QuitQuz
01 00 000100 0 1

Figure 2. An example of a parity-check matrix and its modified form in the proposed
(12,4,2,[3,3,3,3,2,2,2,2,1,1,1,1],6) BLRCs.

3.3. Optimality of the Proposed BLRCs

In this subsection, the optimality of proposed BLRCs is evaluated in terms of the bound
in Equation (2) for given code length and minimum Hamming distance, while achieving high
performance with regard to locality and uneven availabilities. Initially, in order to determine the
minimum Hamming distance of the proposed BLRCs, the following lemma is used.
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Lemma 3 (Minimum Hamming distance by parity-check matrix). The minimum Hamming distance
of a code is equal to the smallest number of column vectors of its parity check matrix, which form a linearly
dependent set.

For a given information length k, the minimum Hamming distance of the proposed BLRCs is
determined as shown below.

Theorem 3 (Minimum Hamming distance of the proposed BLRCs). An (1, k) BLRC C with Construction
1 has a minimum Hamming distance of d = 2k — 2 for a given k.

Proof. It is verified in the parity check matrix H of C in Equation (6) and (7) that for a given &,
two column vectors selected properly from the first k column vectors have a minimum Hamming
distance of 2 (k — 2) and thus can be represented as 2 (k — 2) column vectors selected properly from
the last n — k column vectors. Thus, these selected 2k — 2 column vectors form a linearly dependent
set, of which the cardinality is smallest in the linearly dependent sets of the column vectors in H.
Therefore, the minimum Hamming distance d of C is 2k —2. [

Example 3. The proposed (n = 12,k = 4) BLRC C constructed in Example 1 has the parity-check matrix H
shown in Figure 2. It is easily verified in H that C has a minimum Hamming distance of d = 6.

The proposed BLRCs achieve optimality in terms of the bound in Equation (2) for k = 4 as follows.

Theorem 4 (Optimality of the proposed BLRCs). For k = 4,a (k(k—1), k, 2,1, 2(k—1)) BLRCC
with Construction 1 achieves optimality in terms of the bound in Equation (2).

Proof. In Reference [17], (2’” —4,m, 2,1, 2m1 —2) BLRCs for m > 4 was proved to have
the bound in Equation (2). The information length k in C corresponds to m and for
k = 4, (12,42,[3,3,3,3,2,2,2,2,1,1,1,1],6) BLRCs can be constructed by Construction 1.
Therefore, (12,4,2,(3,3,3,3,2,2,2,2,1,1,1,1],6) BLRCs with Construction 1 achieve the bound in
Equation (2). O

The BLRCs in two earlier studies [16,17] also achieve the bound in Equation (2) and we compare
those codes with our proposed BLRCs in Table 1. S-BLRC represents the simplex code in Reference [16],
A-BLRC represents the binary LRC constructed from anti-codes in Reference [17], and P-BLRC
represents our proposed BLRC. Remind that S-BLRC meets the bound in Equation (2) for all k while
A-BLRC does so for only 4 < k < 6. Though P-BLRC meets the bound for only k = 4, P-BLRC has a
higher rate and more abundant choice of 7 than the others and the number of symbols with availability
two or more in P-BLRC is larger than that of the others.

Remark 1. Most of the local repair groups in the proposed BLRCs have one information symbol and two parity
symbols. This means that the proposed BLRCs can access no other information symbols, but only the parity
symbols for the local repair of each information. This property is desirable for hot data because the network traffic
for temporal repair of an information symbol can be distributed to parity symbols so that congestion of traffic
around hot information data is avoided.

Remark 2. Despite the fact that the condition that every local repair group has only one local parity symbol is
not satisfied, the proposed BLRCs with k = 4 achieve the bound in Equation (3). However, given that the local
repair groups in the proposed LRCs have not only one parity symbol but also two parity symbols, an evaluation of
the proposed BLRCs with regard to the optimality of the minimum Hamming distance requires stricter conditions
compared to those in Equation (3). As further research, a bound tighter than that in Equation (3) should be
derived to evaluate optimality for the minimum Hamming distance of the proposed BLRCs.
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Table 1. Parameter comparison of BLRCs in References [16,17], and this paper.

Parameter S-BLRC [16] A-BLRC [17] P-BLRC
Code length (1) P 2k Ik +3k—2 K-k
k 2k 1
Code rate 1 KT _j243k—2 —1
Locality 2 2 2
Number of symbols with availability 2 or more n—2k-1 n—2k+1 n—k
2
Minimum distance 2k-1 2k=1_ {@J 2k —2

4. Conclusions

In this paper, a family of BLRCs is proposed, which have all-symbol locality two and a high
information symbol availability and low parity symbol availabilities, that is, good uneven all-symbol
availabilities for the local repair. The proposed BLRCs with k = 4 achieve optimality for the
information length while maintaining high performance on locality, availability, and the minimum
Hamming distance.
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