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Abstract: Causal states are minimal sufficient statistics of prediction of a stochastic process, their
coding cost is called statistical complexity, and the implied causal structure yields a sense of
the process’ “intrinsic computation”. We discuss how statistical complexity changes with slight
changes to the underlying model– in this case, a biologically-motivated dynamical model, that of a
Monod-Wyman-Changeux molecule. Perturbations to kinetic rates cause statistical complexity to
jump from finite to infinite. The same is not true for excess entropy, the mutual information between
past and future, or for the molecule’s transfer function. We discuss the implications of this for the
relationship between intrinsic and functional computation of biological sensory systems.

Keywords: statistical complexity; intrinsic computation; excess entropy

1. Introduction

Intrinsic computation [1] is a theory of how a dynamical system “intrinsically” computes. In short,
one makes a minimal maximally predictive model (or ε-machine) of the process generated by a
dynamical system. States of the ε-machine are called “causal states”, although these states are normally
not causal in the sense of Ref. [2]. Certain words are forbidden, in that those words can never be
seen. The words that are seen and thus accepted by the ε-machine constitute the ε-machine’s language,
in a nod to the computation performable by finite and infinite automata. The “memory stored by the
process”, the statistical complexity, is taken to mean the coding cost of the ε-machine’s states.

One interesting hypothesis is that the ε-machine’s structure provides a guide to the “functional”
computation of the corresponding dynamical system. Functional computation–biologically-relevant
computation, e.g., transformation of information with fitness consequences–might include everything
from estimating past input [3,4] to predicting future input [5] to performing logical computations on
input [6]. A more rigorous definition of “functional computation” remains an open problem; here,
we merely list examples of quantities that can be identified with functional computations. As of yet,
no link between intrinsic and functional computation has been found.

Here, we investigate the intrinsic computation and two functional computations (ligand
concentration transduction and low-pass filtering) of a Monod-Wyman-Changeux (MWC) molecule,
a widely-used model of a biological sensor [7–9]. This is the first time that the intrinsic computation of
an MWC molecule–which here is limited to the ε-machine structure, the statistical complexity, and the
excess entropy–has been calculated. The calculational techniques used here can be applied to study
intrinsic computation of a more general class of biological sensors than previously studied.

We find that certain arbitrarily small perturbations to the underlying MWC molecule can lead to
arbitrarily large perturbations in the process’ intrinsic structure but lead to arbitrarily small changes
in the stated functional computations. To the author’s knowledge, this is the first such example in
the literature. These results therefore suggest that causal structure and functional computation are
orthogonal characterizations of a process, at least for oft-considered functional computations.
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However, intrinsic computation could be taken to include several newer structure-related
information-theoretic measures of a process, including excess entropy [10–12]. These newer measures
do not suffer the same sensitivity as the ε-machine and statistical complexity, suggesting that these
measures might help characterize functional computation.

Section 2 reviews the definition of ε-machine and MWC molecules. Section 3 explores how
variations in kinetic rates change the molecule’s intrinsic and functional computation. Section 4
discusses future research directions for intrinsic computation.

2. Background

The subject of interest here is a continuous-time, discrete-event process. However, for reasons
explained later, for characterization of statistical complexity we will consider time-binning the process
and treating it as a discrete-time, discrete-event process. Hence, we are also interested in discrete-time,
discrete-event processes.

First, we discuss discrete-time, discrete-event processes. We code these processes as
. . . , x−1, x0, x1, . . . where xi is the i-th symbol appearing. The past←−x (with corresponding random
variable

←−
X ) is taken to be . . . , x−2, x−1 while the future −→x (with corresponding random variable

−→
X ) is

taken to be x0, x1, x2, . . ..
Next, we discuss continuous-time, discrete-event processes. We code these processes as

. . . , (x−1, τ−1), (x0, τ0), (x1, τ1), . . . where xi is the i-th symbol, appearing for a total duration τi.
We enforce xi 6= xi+1 so as to ensure a unique coding. The present is said to occur sometime
during the presentation of x0, and so we denote the past

←−−−
(x, τ) (with corresponding random variable←−−−

(X, T )) as . . . , (x−1, τ−1), (x0, τ+) and the future
−−−→
(x, τ) (with corresponding random variable

−−−→
(X, T ))

as (x0, τ−), (x1, τ1), . . . where τ+ + τ− = τ0.
Section 2.1 reviews the definition of causal states, statistical complexity, the continuous-time

ε-machine, and the mixed-state simplex. Section 2.2 reviews the dynamical models of
Monod-Wyman-Changeux molecules used here.

We assume knowledge of information theory at the level of Ref. [13], but we briefly review
definitions here. When X is a discrete random variable with probability distribution p(x), then its
entropy is H[X] = −∑x p(x) log p(x); when X is a continuous random variable with probability
density function ρ(x), then the differential entropy is H[X] = −

∫
ρ(x) log ρ(x)dx; and when X is a

mixed random variable (as is the case here), the entropy H[X] is given by Ref. [14]. Entropy can be
thought of as a measure of uncertainty. Conditional entropy of X conditioned on random variable
Y is H[X|Y] = 〈H[X|Y = y]〉y, and the mutual or shared information I[X; Y] between two random
variables X and Y is merely I[X; Y] = H[X]− H[X|Y].

2.1. Causal States S , Statistical Complexity Cµ, the ε-Machine, and the Mixed-State Simplex

Consider the equivalence relation ∼ε that clusters two semi-infinite pasts,←−x and←−x ′, together
if Pr(

−→
X |←−X = ←−x ) = Pr(

−→
X |←−X = ←−x ′)–that is, if the two pasts are equivalent from the standpoint of

prediction. The corresponding clusters are causal states σ, which are realizations of the random variable
for the causal states S . The statistical complexity Cµ is simply their coding cost, Cµ = H[S ]. In short,
causal states S are minimal sufficient statistics of prediction; the statistical complexity Cµ = H[S ] is
the coding cost of those causal states [15]; and the ε-machine is the minimal maximally predictive
model constructed from those causal states [16].

The same constructions apply when considering continuous-time, discrete-event processes.
In that case, the equivalence relation ∼ε clusters two semi-infinite pasts

←−−−
(x, τ),

←−−−
(x, τ)′ together if

Pr(
−−−→
(X, T )|

←−−−
(X, T ) =

←−−−
(x, τ)) = Pr(

−−−→
(X, T )|

←−−−
(X, T ) =

←−−−
(x, τ)′). Again, the clusters are causal states σ,

realizations of the random variable for causal states S .
For what follows, we must define two terms: mixed state simplex, and unifilar. Consider any

hidden Markov model whose hidden state at time t is a random variable; now consider the probability
distribution over hidden states given observations ←−x . Each one of these conditional probability
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distributions is a mixed state, and it lies in the mixed state simplex, the set of all possible probability
distributions over hidden states. The hidden Markov model is unifilar when, given one’s hidden
state at time t and an observation at time t, one knows exactly which hidden state comes next at t + 1.
There is a connection between unifilarity and the mixed state simplex: when the hidden Markov model
under study is unifilar, then the mixed states will lie at the edge of the simplex. (This is not true
for nonunifilar hidden Markov models.) The causal states are just the mixed states of the minimal
(potentially nonunifilar) generative model.

The causal states of discrete-time processes are usually uncountably infinite. When this is the
case, then the box-counting dimension of the mixed state presentation in the mixed state simplex
is nonzero. Let’s unpack this statement. Suppose that a (potentially nonunifilar) Hidden Markov
model with states g generates the observed discrete-time process. Then we use p(g|←−x ) to denote
the probability over hidden states in the generative model given past output. Typically, p(g|←−x ) is
in the interior of the mixed state simplex–the space of probability distributions over hidden states.
The box-counting dimension of the mixed state presentation is obtained by gridding the mixed state
simplex by cubes of side length ε, counting the number of non-empty cubes Nε (which contain
coarse-grainings of histories) [17], and then calculating the scaling of Nε with ε–so the box-counting
dimension is limε→0

log Nε

log 1
ε

. A cube is considered non-empty when there is at least one history that

leads to a mixed state in the cube. When there are countable causal states for a discrete-time process,
the box-counting dimension is 0.

The causal states inherit a dynamic, and the ε-machine of a process is the pairing of causal
states together with that dynamic. For discrete-time, discrete-event processes, tractable ε-machines
are merely countable unifilar Hidden Markov models [16], where unifilarity implies that the next
hidden state is determined uniquely by the previous hidden state and the present emitted symbol.
For continuous-time, discrete-event processes, tractable ε-machines can (for instance) take the form of
joined conveyer belts [18]. Continuous-time causal states are then usually accompanied by labeled
transition operators O(x), and the list of labeled transition operators specifies the continuous-time
ε-machine. A “tractable ε-machine” is one for which Cµ is finite, with the exception of the ε-machines
of continuous-time periodic processes (which are tractable but which correspond to infinite Cµ).

2.2. Monod-Wyman-Changeux Molecules

A Monod-Wyman-Changeux (MWC) molecule has two configurations, active (A) and inactive (I),
and n binding sites. Each configuration can bind any number of molecules, from 0 to n. This gives a
total of 2n+1 possible states. If binding sites are indistinguishable, then a simplified model can be made
based on the symmetry in binding sites so that there are only 2(n + 1) distinguishable possible states:
it can be either active or inactive, with any number of binding sites occupied by ligand molecules.
As our argument holds for any n, we focus on the case that n = 1. The four states of the corresponding
MWC molecule–{A0, A1, I0, I1}, standing for active/inactive (A/I) with either 0 or 1 ligands bound as
written in the subscript–are shown in Figure 1, along with allowed transitions.

We denote the probability distribution of being in various states as

~p =


p(A0)

p(A1)

p(I0)

p(I1)

 . (1)

This probability distribution evolves via the master equation

d~p
dt

= M(c(t))~p (2)
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where

M(c) =


−( fT + fAc) bA bT 0

fAc −( f ′T + bA) 0 b′T
fT 0 −(bT + f Ic) bI
0 f ′T f Ic −(b′T + bI)

 (3)

with fT , fA, bA, bT , f ′T , b′T are kinetic parameters. In fixed ligand concentration c, Equation (2) is
solved as

~p(t) = eM(c)t~p(0) (4)

where ~p(0) is the initial probability distribution over the MWC molecule’s states.

A0

A1

I0

I1

fT

bT

fAcbA fIcbI

f ′
T

b′T

Figure 1. A dynamical single-site Monod-Wyman-Changeux molecule, with kinetic rates as shown.
States marked Ai are active with i bound ligand molecules, while states marked Ii are inactive with i
bound ligand molecules. When transitioning from states A0, A1, A is emitted, while when transitioning
from states I0, I1, I is emitted.

3. Results

We suppose that we are only allowed to see whether or not the MWC molecule is active or
inactive, as would be true for most experimental observations of ligand-gated ion channels. This is a
key constraint, as otherwise, the minimal generative model would be the minimal maximally predictive
model and none of the discrepancies described here would arise. In what follows, we explore the
effects of kinetic rates on intrinsic and functional computation.

Intrinsic computation as it was originally defined included the ε-machine and statistical
complexity, and today includes other information measures, such as the excess entropy [10–12].
The number of functional computation-related quantities is unbounded, but we focus on two here due
to their presence in the literature: the binding curve, or the probability of the MWC molecule being
active as a function of ligand concentration; and the transfer function, or how the MWC molecule
responds to sinusoidal perturbations of the ligand concentration.

Our argument will essentially be a proof by contradiction. We will start by assuming that there
is some relationship between at least one aspect of intrinsic computation and at least one aspect of
functional computation. If there were a relationship between these two quantities, then we should
not be able to change kinetic rates so that one quantity changes by an arbitrarily small amount and
the other by an arbitrarily large amount. (If so, these kinetic rates would then be of incredible
importance to the process’ causal architecture, say, but of vanishingly small importance to the
so-called functional computations.) We will then show in the following analysis that arbitrarily small
perturbations in the kinetic rates f ′T , b′T induce arbitrarily large perturbations to the ε-machine and
statistical complexity, but induce arbitrarily small perturbations to excess entropy and the functional
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computations considered here. We therefore conclude that if there is a relationship between intrinsic
computation and functional computation for these kinds of molecules, it will more likely come from
excess entropy (or other more recently-studied information measures of time series [19]) than from
statistical complexity or the ε-machine. We discuss the possibilities of finding functional computations
that are sensitive to arbitrarily small increases in f ′T , b′T in Section 4.

3.1. Intrinsic Computation

If b′T , f ′T > 0, then there is no “sync word”–that is, no string of observed past symbols that
uniquely determines the underlying present state of the MWC molecule. (Note again that this would
not be the case if we were allowed to observe the full state, and not just whether or not the MWC
molecule is active or inactive.) This has important consequences for Cµ and for the process’ ε-machine.

To analyze Cµ, we move to the discrete-time domain, so as to avoid the interpretational difficulties
with differential entropy [18]. By observing the process every ∆t for ∆t much smaller than any
inherent time constant in the problem, the process is turned into a discrete-time process. The transition
probabilities of this new process have corresponding labeled transition matrices T(x) = eM(x)∆t,
which are approximated to lowest order in ∆t by T(x) = I(x) + M(x)∆t, where x is an emitted symbol:

M(A)(c) =


−( fT + fAc) bA 0 0

fAc −(bA + f ′T) 0 0
fT 0 0 0
0 f ′T 0 0

 and

M(I)(c) =


0 0 bT 0
0 0 0 b′T
0 0 −(bT + f Ic) bI
0 0 f Ic −(bI + b′T)


and

I(A) =

(
I2×2 02×2

02×2 02×2

)

I(I) =

(
02×2 02×2

02×2 I2×2

)
.

The causal states correspond to the mixed states Pr(S|←−X =←−x ) defined by either (a, 1− a, 0, 0)
or (0, 0, 1− b, b). When b′T , f ′T > 0, all a’s and b’s are allowed; there are an uncountable infinity
of these causal states because there is no sync word. As such, the ε-machine is uncountable and
intractable, and statistical complexity is very likely infinite. However, when b′T = f ′T = 0, then only
a countable set of a’s and b’s are allowed according to the discrete-time analogue of Theorem 1 of
Ref. [18]. In particular, the causal states are identified as both the present configuration (active or
inactive) and the number of time steps since last configuration switch. As a result, the ε-machine is
countably infinite and tractable, and statistical complexity is finite, though it increases with log 1

∆t [20].
This can be seen more directly by considering the mixed-state presentation’s box-counting

dimension h0 when the process is turned into a discrete-time process with small time resolution
∆t = 0.01. We coarse-grain mixed-state simplex into cubes of side-length ε, and count the number of
non-empty boxes Nε, as described in Ref. [17,21]. The scaling of Nε with ε reveals the box-counting
dimension h0 of the mixed-state presentation, via Nε ∼ (1/ε)h0 . Figure 2 shows the scaling of Nε with
ε for an MWC molecule with and without f ′T = b′T = 0. When f ′T = b′T = 0, h0 = 0; when f ′T , b′T > 0,
the box-counting dimension h0 > 0.



Entropy 2018, 20, 599 6 of 13

100 101 102 103

1/ε

100

101

102

103

N
ε

fT =́0.1, bT =́0.2

fT =́bT =́0

Figure 2. Box-counting dimension of the mixed-state presentation changes drastically with f ′T , b′T .
For both processes, we have: fT = 1.0, fAc = 2.9, bA = 3.4, bT = 3, f Ic = 4, bI = 2. The process with
nonzero f ′T , b′T has a scaling of log Nε ∼ log(1/ε) and thus a nonzero box-counting dimension h0 > 0,
whereas the process with f ′T = b′T = 0 has a scaling of log Nε ∼ log log(1/ε) and thus a box-counting
dimension h0 = 0.

The reason for the former fact lies in Theorem 1 of Ref. [18]. When f ′T = b′T = 0, the dynamic
MWC molecule of Figure 1 generates a semi-Markov process, a restricted version of the unifilar hidden
semi-Markov processes analyzed in Ref. [18]. This is true even when there is more than one ligand
binding site. Causal states are characterized by x, whether or not the MWC molecule is presently
active, and τ+, the time since the MWC molecule last switched between activities. The now-tractable
ε-machine takes the form shown in Figure 3.

A I

1|A, τ ∼ φA

1|I, τ ∼ φI
AI

Figure 3. At left, a generative model of the process generated by the MWC molecule in fixed ligand
concentration c of Figure 1 with f ′T = b′T = 0. The dwell time distributions φA(t) and φI(t) are given in
Equations (8) and (9). At right, the corresponding topological ε-machine. While emitting A, one moves
along the “conveyer belt” starting with state A to the left; while emitting I, one moves along the
conveyer belt starting with state I to the right. To switch the letter that one is emitting, one jumps to
the other conveyer belt. The states along the conveyer belt to the left correspond to the time that one
has been inactive, and the states along the conveyer belt to the right correspond to the time that one
has been active.

In the continuous-time limit, which one can derive by considering the limit of the discrete-time
process considered above with appropriate renormalization (e.g., compare Ref. [20] to Ref. [22]),
all probability distributions over mixed states become probability density functions. Continuous-time
statistical complexity can be defined using the entropy of mixed random variables [18,22], though
differential entropy does have some troubling properties mentioned in those references. Given the
analysis above, there is likely a singular limit in the continuous-time statistical complexity as the
kinetic rates b′T , f ′T tend to 0.

Not all structure-based characterizations of a process lack robustness in this way, as different
structure-based metrics pick up on different kinds of structure. To show this, we now compare the
statistical complexity Cµ and the excess entropy E = I[

←−−−
(X, T );

−−−→
(X, T )] [10–12] when f ′T = b′T = 0.

(We calculate E of the continuous-time process, as the excess entropy of the discrete-time process
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converges to that of the continuous-time process in the ∆t→ 0 limit [20].) The latter can be calculated
via E = I[S+;S−] [23,24], while Cµ = H[S+], and so calculation of both merely requires the joint
distribution p(σ+, σ−). For that, we need φA/I(t), the dwell time distributions of activity and inactivity.
Note that emission of an A implies that one has just landed in A0, and similarly, emission of an I
implies that one has just landed in I0. Hence, φA(t) is the first-passage time distribution to state I0 in
which one starts in A0; similarly, φI(t) is the first-passage time distribution to state A0 in which one
starts in I0. To aid with the calculation, we recall the labeled transition matrices of Equation (5) when
f ′T = b′T = 0. The matrix M(A) includes only the transitions between various active conformations and
the only transition from active to inactive, A0 → I0. Therefore, the probability of not having stayed in
active states given that one started in A0 after a time t is given by

1−ΦA(t) = (ê3 + ê4)
>~p(t),

d~p
dt

= M(A)(c)~p(t), ~p(0) = ê1, (5)

where êk is the vector with elements δi,k. Hence, the survival function ΦA(τ) =
∫ ∞

τ φA(τ
′)dτ′,

the probability that one stays in the active conformation (one of A0, A1) after time t given that
one started in A0, can be calculated via

ΦA(t) = 1− (ê3 + ê4)
>eM(A)(c)t ê1. (6)

Similarly,

ΦI(t) = 1− (ê1 + ê2)
>eM(I)(c)t ê3. (7)

After differentiation, we find that

φA(t) = − dΦA(t)
dt

= (ê3 + ê4)
>M(A)(c)eM(A)(c)t ê1

(8)

φI(t) = − dΦI(t)
dt

= (ê1 + ê2)
>M(I)(c)eM(I)(c)t ê3.

(9)

Examples of φA(t) for various ligand concentrations c and kinetic rates are shown in Figure 4.

2 4 6 8 10
t

0.5

1.0

1.5

2.0

2.5

3.0

ϕ(t)

Figure 4. φA(t) for fA = bA = 1.0 and fT = 1.0 (blue), fT = 2.0 (orange), and fT = 3.0 (green),
calculated using Equation (8).

From Lemma 1 of Ref. [18], we find that the statistical complexity of this semi-Markov process is
given by

Cµ = Hb(p(A))− ∑
x∈{A,I}

p(x)
∫ ∞

0
(µxΦx(τ)) log(µxΦx(τ))dτ, (10)
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where p(A) = µI
µA+µI

, µx = 1/
∫ ∞

0 Φx(τ)dτ, and Hb(x) := −x log x − (1− x) log(1− x). Figure 5
shows how Cµ smoothly varies with changes in fT , bT for fT , bT > 0. Statistical complexity
is maximized at small kinetic rates, fT , bT → 0; when those kinetic rates are small, dwell time
distributions have longer tails, and the memory required to losslessly predict increases. Interestingly,
if either fT or bT is exactly 0, then the generated process emits only A or I (see Figure 1) and thus has
Cµ = 0. In other words, the limits fT , bT → 0 are singular, as were the limits f ′T , b′T → 0.

We now wish to calculate E = I[
←−−−
(X, T );

−−−→
(X, T )] which is E = I[S+;S−] [23], and so

E = H[S−]− H[S−|S+]. (11)

As a semi-Markov process is causally reversible, we have

H[S−] = H[S+] = Cµ (12)

as given in Equation (10). Furthermore, the reverse-time causal states are the pair (x−, τ−) (the time
to next symbol and present symbol) while the forward-time causal states are still the pair (x+, τ+)

(the time since last symbol and present symbol) [18], so that x+ = x− almost surely, implying that
H[X−|X+] = 0. Hence,

H[S−|S+] = H[X−, T−|X+, T+]
= H[X−|X+, T+] + H[T−|X−, X+, T+]
= H[T−|X0, T+]

(13)

where x0 is just the present symbol. We then note that

p(τ−|x0, τ+) =
φx0(τ+ + τ−)

Φx0(τ+)
, (14)

as was derived in Ref. [22] for a continuous-time renewal process, but the same derivation holds for
the semi-Markov process. It is then straightforward to show that excess entropy is

E = H[X] + ∑
x

p(x)E[φx(t)] (15)

where

E[φx(t)] =
∫ ∞

0

∫ ∞

0
µxφx(t + t′) log

φx(t + t′)
µxΦx(t)Φx(t′)

dtdt′. (16)

Figure 5b shows how excess entropy E varies with fT , bT . Interestingly, E varies in opposition
to Cµ, attaining its lowest values at low values of fT and bT . Hence, the singular limits fT , bT → 0
that plague Cµ are not singular limits for E. Nor are f ′T , b′T → 0 singular limits for E, as arbitrarily
small values of f ′T , b′T lead to arbitrarily small perturbations to the trajectory distribution, and thus
arbitrarily small perturbations to the mutual information between past and future.

How different would the results be for n > 1, i.e., when the number of binding sites of the MWC
molecule exceeded 1? In short, we would expect the same qualitative trends and singular limits.
In this more general case, we allow an active MWC molecule with k ligands bound to transition to
an inactive MWC molecule with k ligands bound, and vice versa, both with rates f ′T and b′T , as for
n = 1. Meanwhile, also as for n = 1, the active MWC molecule with no ligands bound can transition to
the inactive MWC molecule with no ligands bound with rate fT , and the reverse transition can occur
with rate bT . The observed process for fixed ligand concentration would still be semi-Markov when
f ′T = b′T = 0, as was true for n = 1. Then, decreases in fT , bT would lead to longer dwell times in active
and inactive states, thereby increasing the statistical complexity Cµ; and the dwell time distributions
would become closer to exponential, decreasing the excess entropy E. When f ′T , b′T become small but
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nonzero, all pasts are causal states, and so Cµ shoots to infinity, while E (because it is a function of
trajectory distributions) barely changes.

0 2 4 6 8 10
0

2

4

6

8

10

fT

b T

1.5

2.0

2.5

3.0

3.5

(a) (b)

0.2

0.4

0.6

0.8

0 2 4 6 8 10
0

2

4

6

8

10

fT

b T

Figure 5. Contour plot of Cµ (a) and E (b) as a function of fT , bT when f ′T = b′T = 0, fAc = f Ic = bA =

bI = 1.

There are some well-known examples of how arbitrarily large ε-machines can still have arbitrarily
small excess entropies, e.g., the almost fair coin. Indeed, Ref. [23] defined crypticity as the difference
between statistical complexity Cµ and excess entropy E. The dynamical MWC molecule described
above adds another such example to the literature, finding not only that a familiar process can have
arbitrarily large crypticity, but that Cµ and E can be anti-correlated with respect to underlying kinetic
rates, as is true for the process generated by the parametrized Simple Nonunifilar Source [25]. There are
also examples in the literature of processes with uncountable ε-machines and nonzero box-counting
dimensions of their mixed-state presentation, e.g., the Cantor process in Ref. [26].

However, the dynamical MWC molecule is more than just an example of a process with potentially
arbitrarily large crypticity or an uncountable ε-machine; it is also an example of how arbitrarily small
changes to a generative model can lead to arbitrarily large changes in the causal structure of a process.
Of course, it may be obvious to those familiar with intrinsic computation that sometimes, arbitrarily
small perturbations in transition probabilities of a generative model can lead to arbitrarily large
perturbations in ε-machine structure. However, to the author’s knowledge, the above MWC molecule
example is the first such example in the literature.

3.2. Functional Computation

Monod-Wyman-Changeux (MWC) molecules have been used to model everything from
ligand-gated ion channels to gene regulation [8]. The functional computations that an MWC molecule
is thought to perform include transduction of ligand concentration and low-pass filtering of input [7].

Let eig0(M(c)) be the normalized eigenvector of eigenvalue 0 of matrix M(c), normalized so
that 1>eig0(M(c)) = 1; and let peq,A(c) be the equilibrium probability of being in state A. The MWC
molecule’s ability to convey the ligand concentration via its activity is a static property, relying only on
how the equilibrium distribution

peq,A(c) = peq,A0(c) + peq,A1(c)
= (ê1 + ê2)

>eig0(M(c))
(17)

varies with kinetic rates. An observer that can only see whether or not the MWC molecule is active can
discern, to some extent, the external ligand concentration c. Such a situation might occur, for instance,
for the nicotinic acetylcholine receptors at the neuromuscular junction that transduce information
about whether or not a muscle fiber should seize, based on acetylcholine concentration. Though
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eig0(M(c)) in principle might be a non-smoothly varying function of f ′T , b′T , a Mathematica calculation
finds that eig0(M(c)) and thus peq,A(c) varies smoothly with kinetic rates f ′T , b′T :

eig0(M(c)) ∝


bAbIbT + bAbTb′T + bAb′T f Ic + bIbT f ′T

(bIbT fA + bTb′T fA + b′T fA f Ic + b′T fT f I)c
bAbI fT + bA fTb′T + f ′TbI fAc + bI fT f ′T

(bA fT f I + bT fA f ′T + f ′T f I fAc + f ′T fT f I)c

 ,

where the normalization constant is chosen so that 1>eig0(M(c)) = 1. The smooth variation of peq,A(c)
with respect to f ′T , b′T is depicted for a random choice of kinetic rates in Figure 6.

0.02 0.04 0.06 0.08 0.10
c

0.6

0.7

0.8

0.9

1.0

peq(c)

Figure 6. Probability of being in the active state, peq,A(c), as a function of ligand concentration c,
for fT = 1, fA = 100, bA = 0.1 and bT = 1, f I = 1, bI = 1, and: f ′T = b′T = 0 (blue); f ′T = 0.01 and
b′T = 0 (orange); and f ′T = 0 and b′T = 10 (green), almost overlaying the blue.

The MWC molecule is a low-pass filter of ligand concentration c. Suppose that c(t) = c0 + δc sin ωt,
where δc is small. Then peq,A(t) will also take the form peq,A = peq,A(c0) + G(ω)δc sin ωt + O(δc2),
where G(ω) is the transfer function. This transfer function therefore characterizes the dynamical response
of the MWC molecule to fluctuations in the ligand concentration. From Equation 49 of Ref. [8], we find
that the transfer function G(ω) is

G(ω) = (ê1 + ê2)
>(iωI −M0)

−1M1eig0(M(c0)) (18)

where

M0 =


− fT bA bT 0

0 −( f ′T + bA) 0 b′T
fT 0 −bT bI
0 f ′T 0 −(b′T + bI)

 and

M1 =


− fA 0 0 0

fA 0 0 0
0 0 − f I 0
0 0 f I 0

 .

A series expansion not shown here confirms that G(ω) varies smoothly with kinetic rates f ′T , b′T ,
as would be expected from the realization that all expressions in Equation (18) are smoothly varying
with f ′T , b′T . To illustrate this, the magnitude of the transfer function, |G(ω)|, is plotted in Figure 7 for
a randomly chosen initial concentration of c0 = 1.
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Figure 7. Transfer function G(ω) as a function of input frequency ω at randomly chosen initial
concentration c0 for fT = 1, fA = 100, bA = 0.1 and bT = 1, f I = 1, bI = 1, and: f ′T = b′T = 0 (blue);
f ′T = 0.01 and b′T = 0 (orange); and f ′T = 0 and b′T = 10 (green), almost overlaying the blue.

Again, it is worth commenting on how these results would vary with larger n, i.e., a larger number
of potential ligands bound to the MWC molecule. We consider the dynamical model for this more
complex MWC molecule as specified in Section 3.1. Just as for the case when n = 1, the eigenvector
of eigenvalue 0 for this larger MWC molecule’s rate matrix is a continuous function of kinetic rates
fT , bT and f ′T , b′T ; as a result, both the binding curve and the transfer function vary smoothly with
these rates.

4. Discussion

Our overarching aim here was to study the link between intrinsic computation and functional
computation by focusing on a popular model of a biological sensor–the Monod-Wyman-Changeux
(MWC) molecule. While studying its intrinsic computation, we found interesting singular limits for
Cµ. In particular, we found that statistical complexity was infinite and that all pasts were causal states
when two of the kinetic rates were nonzero, f ′T , b′T 6= 0, no matter how small f ′T , b′T ; and we found
that statistical complexity was zero when fT = bT = 0 but nonzero and arbitrarily large for arbitrarily
small fT , bT > 0. While studying the MWC molecule’s functional computation and its process’ excess
entropy E [10–12], we found no such singular limits with respect to these kinetic rates.

The reason for this is that the studied functional computations and excess entropy is a continuous
function of trajectory distributions alone, while statistical complexity must be written in terms of
a distribution of causal states, which can vary in a non-continuous manner with the trajectory
distribution. As a result, statistical complexity (and the mixed state presentation’s box-counting
dimension h0) and the ε-machine are incredibly sensitive to a particular type of process structure, which
includes but is not limited to forbidden words. On the other hand, the studied functional computations
and excess entropy are smoothly varying functions of the generative model’s kinetic rates.

From the study of the MWC molecule alone, we can conclude that a restrictive definition
of intrinsic computation, e.g., only causal structure, does not necessarily provide a guide to the
functional computation of a dynamical system, at least for the functional computations considered
here. Accordingly, high statistical complexity does not imply biological function.

It’s well worth emphasizing that the functional computations listed here are far from an exhaustive
list of all possible functional computations, and so future research might uncover a functional
computation that depends sensitively on the process’ causal structure. Also, even if no such functional
computation is identified, the sensitivity of causal structure to certain changes in the generative model
might be considered by some to be an interesting feature, and not a bug, perhaps as a case study
in how limited computational resources yield innovation [1]. However, for those wishing to study
functional computation only, the extreme sensitivity of statistical complexity to particular types of
process structure might prove to be a bug rather than a feature.
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However, even then, the ε-machine finds use. In more recent years, intrinsic computation has been
expansively defined to include a study of other structure-related information-theoretic statistics of a
process besides statistical complexity [21]. This list includes but is not limited to excess entropy [10–12]
as studied here, bound information rate [27], and predictive rate-distortion functions [28,29]. The last
is particularly notable here in that predictive rate-distortion includes statistical complexity and excess
entropy as limiting cases. On the whole, these quantities enjoy the label “information anatomy” [19]
or the more broadly-construed “informational architecture”. Most of these quantities are smoothly
varying functions of the transition probabilities in the minimal generative model and thus trajectory
distribution, and so are not as sensitive to the underlying structure of the process as is statistical
complexity. (The statistical complexity can vary discontinuously with transition probabilities in
the minimal generative model, but varies smoothly with the transition probabilities in the minimal
maximally predictive model; the structure of the minimal maximally predictive model, the ε-machine,
can change by an arbitrarily large amount with arbitrarily small changes to the minimal generative
model.) Those that are not so sensitive to the process’ structure are often easily calculable from the
process’ ε-machine [29,30]. In the future, these quantities might provide interesting statistics with
which to interpret the functional computation performed by biological or social systems, e.g., as
in Ref. [31].
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