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Abstract: We compare and contrast the statistical physics and quantum physics inspired approaches
for unsupervised generative modeling of classical data. The two approaches represent probabilities of
observed data using energy-based models and quantum states, respectively. Classical and quantum
information patterns of the target datasets therefore provide principled guidelines for structural
design and learning in these two approaches. Taking the Restricted Boltzmann Machines (RBM) as
an example, we analyze the information theoretical bounds of the two approaches. We also estimate
the classical mutual information of the standard MNIST datasets and the quantum Rényi entropy of
corresponding Matrix Product States (MPS) representations. Both information measures are much
smaller compared to their theoretical upper bound and exhibit similar patterns, which imply a
common inductive bias of low information complexity. By comparing the performance of RBM with
various architectures on the standard MNIST datasets, we found that the RBM with local sparse
connection exhibit high learning efficiency, which supports the application of tensor network states
in machine learning problems.

Keywords: born machine; tensor network; mutual information

1. Introduction

The fruitful interplay between statistical physics and machine learning dates back to at least
the early studies of spin glasses and neural networks [1,2]. The two fields share common interests
on the emergent collective behavior of complex systems with a large number of degrees of freedom.
In particular, unsupervised generative modeling is closely related to the inverse statistical problems [3],
where one infers the parameters of a model based on observations. The model can generate new
samples according to the learned probability distribution, hence the name generative modeling.
Inspired by the statistical physics, one can model the data probability according to the Boltzmann
distribution with an energy function of the observed variables

p(v) =
e−E(v)

Z
, (1)

where Z = ∑v e−E(v), the partition function, is the normalization factor of the probability density.
The functional form of E(v), which is usually called the energy function in statistical physics, is typically
predetermined to deliver certain prior knowledge about the data. Structured probabilistic models of
the form in Equation (1) are collectively denoted as energy-based models [4], in which the prominent
examples are the Boltzmann Machine [5]. Figure 1a shows an example of the Restricted Boltzmann
Machines (RBM) [6] whose energy function reads ERBM(v) = −∑i aivi − ∑j ln(1 + ebj+∑i viWij) [7].
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The second term is the result of tracing out hidden units h which couples to the visible units v via the
coupling matrix W.
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Figure 1. (a) Restricted Boltzmann Machines as a realization of the Boltzmann Machine Equation
in Equation (1); and (b) Matrix Product States as a realization of the Born Machine Equation in
Equation (2).

On the other hand, by exploiting the inherent probabilistic nature of quantum mechanics, one can
model the probability distribution of classical data using a quantum pure state

p(v) =
|Ψ(v)|2

N
, (2)

where N = ∑v |Ψ(v)|2 is the normalization factor. The square ensures the positivity of the probability.
Recently, in conjunction with the applications of machine learning techniques to quantum physics
problems [8–16], there emerges a quantum perspective to problems in machine learning [17–25].
In particular, Equation (2) translates the generative modeling of probability density to the problem of
learning a quantum state. In fact, the necessity of this quantum interpretation was also anticipated
in earlier machine learning literature. The mathematical structure of quantum mechanics appears
naturally when one explores more flexible models than Equation (1) while still attempts to ensure the
positivity of the probability density [26,27]. We call these approaches Born Machines to acknowledge
the probabilistic interpretation of the quantum mechanics [28]. Besides preparing the quantum state
using an actual quantum devise [29], one can employ many of the efficient classical ansatz developed
by quantum physicists to represent the quantum many-body state. An example is the matrix product
states (MPS) shown in Figure 1b, which is one of the simplest tensor network states. The MPS
parameterizes the wavefuntion amplitude of a state of N variables as ΨMPS(v) = Tr ∏N

i=1 A(i)[vi],
where A(i) is a matrix for an given vector vi.

To illustrate the contrast between Boltzman Machines and Born Machines, you can imagine
that Boltzman Machines maps the probability distribution of the images into a very complex
potential function. The sample with high probability corresponds to the local minimum of the potential
function. The process of the image generating is similar to statistical mechanics hopping between
different local minimums. In Born Machines, the probability distribution of images is mapped to
a pure quantum state in Hilbert space. Each basis of this Hilbert space corresponds to one of all
possible image patterns. The projection of the pure state on each basis corresponds to the probability
of each image pattern. Therefore, the process of the image generating is more like the collapse of a
quantum state.

Both Equations (1) and (2) allow one to import insights and concepts of statistical and quantum
physics, such as symmetry, locality, sparseness and entanglement [30], to unsupervised generative
modeling. Physical considerations can be used to assess the complexity, such as entropy or mutual
information [31,32], of the dataset and the representational power of the corresponding models [9,10,18].
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Moreover, one can employ the mathematical and computational tools developed for statistical and
quantum physics for machine learning. For example, mean-field theory and Markov chain Monte Carlo
methods originate from statistical physics research are by now standard tools for learning structured
probabilistic models [33]. Furthermore, we anticipate that approaches in quantum physics such as
tensor networks and quantum algorithms will play an increasingly significant role in generative
modeling through the quantum inspired representation of probabilities (Equation (2)).

The purpose of this paper is to compare and contrast the Boltzmann Machines (Equation (1))
and Born Machines (Equation (2)) approaches for probabilistic modeling, therefore build up a unified
view and motivate future studies, especially for the quantum machine learning algorithm [24] and the
potential of applying the tensor network method into the machine learning problems [17,20,21].
Classical and quantum information theories provide crucial guidelines for such comparison.
Classical information theory lays a common foundation for many problems in machine learning and
statistical physics [34,35]. On the other hand, quantum information theory has played a crucial role in
characterizing, modeling and simulating quantum states of matter [36]. For example, many methods
with polynomial parameters can successfully model quantum states with exponential possibilities.
It turns out the reason is many of the physically interesting quantum states only occupy a tiny
corner of the Hilbert space, which fulfills the area law of the entanglement entropy [37]. Similar
observations were independently made in the machine learning community [4,30] that the natural
images encountered in machine learning applications occupy a negligible proportion of the volume
of all possible images. This should result in the sparseness of the classic information of the images.
If this is true, then modeling the probability distribution of classical dataset in terms of the quantum
states would become reasonable (Equation (2)), insights for modeling quantum states [36,37] can be
transferred into generative modeling of classical data.

Although early works have noticed this similarity, further research on them has not
progressed much, because calculating the information of high-dimensional data such as pictures
is very challenging and still a cutting-edge research area. In this work, we try to deepen the similarity
between the classical Boltzmann model and the quantum Born model from the information perspective.
In the theoretical analysis aspect, we point out the formalism similarity of classical and quantum
information, which could brings the same statistical bias. Furthermore, we prove an inequality to make
the theoretical analysis of information more useful for model design. In the numerical experiments,
we applied Annealed Importance Sampling, MPS and RBM with only local sparse connection to further
verify that the information in dataset of natural images is indeed local and sparse.

The organization of this paper is as follows. Section 2 defines the complexity of a dataset from
the classical and quantum information theoretical perspectives. Section 3 discusses the implication of
the information theoretic considerations on the probabilistic modeling using the restricted Boltzmann
machines. These two sections together point out the similarities in the formulas of the information
quantity of those two models and proved the inequalities between them. Section 4 compares the
information measures in natural images with the information upper bond, which further illustrate from
the perspective of natural images data that the two models have similar characterizations. Then, we
carried out numerical experiments on the standard MNIST dataset to support our claims that the
information in natural images data is sparse and local. Finally, Section 5 summarizes our main points
and outlook for future directions.

2. Complexity of Dataset: Classical Mutual Information and Quantum Entanglement Entropy

Modeling data probability using an energy based model (Equation (1)) calls for a classical
information theoretical analysis. Mutual information (MI) is a fundamental information theoretical
concept which quantifies the complexity of probability distribution π(v) associated with the dataset.
Assuming x ∈ X and y ∈ Y are two subset of the variables and v = x ∪ y, their marginal probability
distributions are π(x) = ∑y∈Y π(x, y), and π(y) = ∑x∈X π(x, y), respectively. The MI reads
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I(X : Y) = ∑
x∈X ,y∈Y

π(x, y) ln
[

π(x, y)
π(x)π(y)

]
, (3)

The MI measures the amount of information shared between the two sets of variables. MI is zero
only for independent variables. In this sense, the MI is a stronger criterion than the correlation of
variables since having zero correlation does not necessarily imply vanishing MI. The MI can be used as
the objective functions in machine learning applications [38–40]. Here, we adopt a different point view,
which treats MI as a complexity measure of the dataset to be modeled.

On the other hand, if we view the target dataset as snapshots of the same quantum state
collapsed on a fixed basis (Equation (2)), it is natural to measure its complexity using the second
Rényi entanglement entropy

SR = − ln Tr(ρ2
X ), (4)

where (ρX )x,x′ = ∑y∈Y Ψ(x, y)Ψ(x′, y) is the reduced density matrix, and Ψ(v = x ∪ y) is the
probability amplitude associated with the probability, such that p(v) in Equation (2) approaches
to the data probability distribution π(v). The second Rényi entanglement entropy is a lower bound of
the von Neumann entanglement entropy SvN = −Tr[ρX ln(ρX )].

To reveal connection of the classical and quantum information theoretical measures, we write the
MI as

I(X : Y) = −
〈

ln
〈

π(x, y′)π(x′, y)
π(x′, y′)π(x, y)

〉
x′ ,y′

〉
x,y

, (5)

and the second Rényi entropy as

SR = − ln

〈〈
Ψ(x, y′)Ψ(x′, y)
Ψ(x′, y′)Ψ(x, y)

〉
x′ ,y′

〉
x,y

, (6)

where the expected value 〈· · · 〉x,y is with respect to the dataset probability π(x, y).
There are apparent similarities between Equations (5) and (6). Both equations contain swap

ratios of probability or probability amplitude [41,42]. To illustrated the effect of the swap ratio,
Figure 2a shows two samples from the MNIST dataset ((x, y) and (x′, y′)) and Figure 2b,c shows the
corresponding swapped images ((x′, y) and (x, y′)) for up/down and checkerboard bipartitions. The
ratio in Equations (5) and (6) would be smaller if the swapped images are less likely to appear in
the original dataset π(v), and therefore make larger contribution to the mutual information or the
entanglement entropy. Earlier work argued that the dominant correlations in the natural datasets
encountered in physics and machine learning applications are the local ones due to the physical law of
the nature [43]. Therefore, it is natural to expect that the checkerboard bipartition (Figure 2c) has higher
MI and entanglement entropy compared to the up/down bipartition (Figure 2b) because of strong
local correlations between nearby pixels of natural images. Similar discussions on the information
measures of different bipartitions were also considered in machine learning [19] and in quantum
physics [44,45] studies.

The formal similarity between Equations (5) and (6) underlines the analogy between modeling
classical data and modeling quantum states [17–24]. Quantum entanglement entropy is not merely a
“metaphorical vehicle” to measure the complexity of classical dataset, but is also of practical relevance
if one models the data using the quantum approach (Equation (2)). Since the general theories about
the entanglement entropy scaling for various quantum states [37] are very instructive for estimating
required resources to model the target quantum states, developing similar theory for typical datasets
in machine learning would be very helpful for selecting generative models.
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(a) (b) (c)

Figure 2. Illustration of the swap operation in Equations (5) and (6) using handwritten digits from
the MNIST dataset: (a) two original images; (b) swapped images for up/down bipartition; and (c)
swapped images for checkerboard bipartition of the pixels. The blue and red colors indicate the regions
of the bipartition X and Y , respectively.

There are nevertheless differences in the two information measures of Equations (5) and (6). First,
the swap operation in Equation (5) is defined for the probability density other than the quantum
wavefunction. The probability amplitude may contain phase information which is however irrelevant
to probabilistic modeling of the dataset [20]. Second, the logarithmic functions is sandwiched between
two expectations in Equation (5), which hiders direct Monte Carlo estimate of the MI similar to the
Rényi entanglement entropy [41,42]. To circumvent this difficulty, one may consider computing
alternative quantities such as the Rényi mutual information [46].

3. Probabilistic Modeling Using Restricted Boltzmann Machine

As a concrete example, we consider the RBM [47] for probabilistic modeling. RBM is a prominent
approach for generative modeling with deep connections to statistical physics. It has also played an
important role in the recent resurgence of deep learning [48,49]. Recently, the RBMs have attracted
heated attentions in the quantum many-body physics community. Viewed as a variational ansatz
for quantum states [8,50], the representational power of RBM was investigated from a quantum
entanglement [9] and computational complexity theory [10] perspectives. Moreover, its connection
to the tensor network states was explored extensively [11,14–16,18]. Besides representing quantum
states, RBMs also find applications in identifying order parameters, quantum error correction and
accelerating Monte Carlo simulations [51–56]. The later applications adopted the conventional usage
of the RBMs, i.e., modeling probability density of observed data.

Conventionally, the RBM models probability distribution of data via an energy-based model with
hidden units. By tracing out the hidden variables, the RBM represents a probability distribution of the
visible variables. RBM can in principle approximate any probability density by using a sufficiently
large number of hidden units [7,57–61]. However, one should note that these theorems mostly concern
about the worst cases and do not take into account of typical distributions of interests. It is thus
crucial to exploit the inductive bias of the RBM in terms of the information measures and match them
to the characteristics of the target dataset. To do this, we define the mutual information IRBM and
entanglement entropy SR(vN)

RBM of the RBM analogously to Equations (3) and (4), except that we now use
the probability density p(v) and the corresponding probability amplitude of the RBM.

Given an RBM architecture, one can identify two set of visible variables X ,Y are connected via a
minimal set of hidden variables Z (see Figure 3). The variables X and Y are independent once all the
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values of Z are given. This conditional independence property is denoted symbolically as X⊥Y|Z in
the probabilistic graphical model notation [33]. The MI between the regions X and Y can be captured
by the RBM is bounded by the size of the intermediate region

IRBM(X : Y) ≤ IRBM(X : Z) ≤ |Z| ln 2, (7)

where |Z| denotes the number of hidden units in the set Z . The factor ln 2 is due to the binarization of
the data in this paper. The first inequality follows directly from the data-processing inequality [62],
which states that the information cannot be increased through a random channel. Alternatively, one
can show that IRBM(X : Y) ≤ IRBM(X : Y ∪ Z) using the strong subadditivity property of the MI [63]
and note that IRBM(X : Y ∪Z) = IRBM(X : Z) [64]. The second inequality in Equation (7) uses the fact
that mutual information is bounded by the size of the subsystem. We note that the mutual information
of target data is used for structural learning of fully visible probabilistic graphical model of tree
structures [65]. For RBMs, information theoretical studies have mostly focused on the MI between the
visible and hidden variables [66–68]. According to Equation (7), one can arrange the hidden neurons
of an RBM into a deep architecture, thus to enlarge the size of the intermediate region and increase the
expressibility of the information measures. This motivates the deep Boltzmann Machines [69] for more
challenging classical datasets with even larger mutual information.

X Y

Z

Figure 3. A restricted Boltzmann machine consists of visible neurons (red) and hidden neurons (blue
with double line) coupled together. The two sets of visible variables X and Y are independent once
the hidden variables in Z are given. The red lines are the connections that mediate the interactions
between X and Y via Z .

On the other hand, one can repurpose the RBM to represent the quantum state [8], i.e.,
the probability amplitude shown in Equation (2). In terms of the entanglement entropy,
the representational power of RBM is also limited by its connectivity [9–11,18],

SR
RBM ≤ SvN

RBM ≤ |Z| ln 2, (8)

Equations (7) and (8) quantify the expressibility of the RBM in terms of information theoretical
measures solely by its architecture. For an RBM with dense connection, the region Z will span
to all the hidden units irrespective of the information pattern of the target dataset. Information
perspective provides a guiding principle for RBM architecture design conditioned on the typical
information pattern of the target dataset. Equation (7) shows that two sets of visible variables of an
RBM should connect to at least I(X : Y))/ ln 2 hidden neurons to adequately capture the MI of the
dataset. We anticipate that the MI of natural images and physical model should be much smaller
than the maximum value min (|X |, |Y|) ln 2 due to physical nature of the probability distributions.
The connectivity of the RBM puts a constraint on the maximum information that can be captured,
therefore limits its expressibility. Conversely, this also provides an inductive bias towards natural
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datasets of low information complexity. Interpreting the generative modeling in terms of capturing the
MI or entanglement of the target dataset sheds new light on the learning process.

An important question relevant to quantum machine learning is to identify realistic datasets which
are significantly easier to model in the quantum approach than the classical approach [70]. In light
of the above discussion, one is inclined to look for those cases in datasets where the entanglement
entropy lower bound in Equation (8) is much smaller than the classical mutual information lower
bound in Equation (7). We verified numerically that in general there is no definite inequality between
Equations (5) and (6). Therefore, it would be interesting to construct explicit examples where the
quantum approach requires fewer resources.

One should nevertheless be careful when drawing the analogy between modeling quantum states
and classical datasets. For example, it is sometimes argued that one needs deep neural nets to model
classical dataset with critical correlations in analog to critical quantum systems which can only be
captured by hierarchical tensor networks [71]. However, the scaling behavior of the mutual information
of a critical classical system is different from the entanglement entropy of a critical quantum system.
The MI of statistical physics model with short-range interactions scales only with the boundary size
between subsystems [64], which holds irrespective whether the system is critical or not. As a concrete
example, the critical Ising model only requires a shallow RBM to be modeled exactly [18], which is in
line with the area law scaling of its mutual information [72,73]. Other results [55] also showed that
deep architectures do not seem to exhibit advantages for modeling the critical Ising data.

We also mensioned the work [12] using an RBM to model the probability of a quantum state on a
fixed basis for quantum state tomography. Since the approach corresponds to Equation (1), the required
resources are determined by the Shannon mutual information of quantum states [74,75], instead of the
entanglement entropy. The two entropies exhibit similar scaling behavior for the examples discussed
in Refs. [74,75]. However, in general, this may not be the case. Thus, it remains open to see whether it
is advantageous to use an RBM to model the probability or using a complex valued RBM to model the
quantum state directly.

4. Information Pattern of MNIST Dataset and Its Implication to Generative Modeling

We considered generative modeling the MNIST dataset by exploiting the information pattern of
the target dataset. First, it is extremely challenging to accurately compute the MI of high-dimensional
distribution such as the images with 784 pixels. We employed the approach of Ref. [76] to estimate
the MI of the MNIST dataset. The approach is based on the nearest neighbor estimate of the Shannon
entropy widely adopted in the statistics literature. Figure 4a shows how the MI increases as one cuts
into the center of the image. The vertical and horizontal bipartition of the images exhibits a similar
behavior of MI. The MI between the margin and the remaining part of the image is zero since the
margin of the MNIST image is always fixed.

The maximum of MI is much smaller than its theoretical limit in Equation (7), which indicates
densely connected RBM has significant redundancy. Meanwhile, MI of the checkerboard bipartitions
(e.g., Figure 2c) is significantly higher than the left/right or up/down bipartitions. This suggests that
introducing hidden units which couple to the nearby pixels are more efficient in capturing the MI of
the MNIST dataset.

One should note that the MI estimator [76] is only approximate, especially for highly dependent
variables [77]. It is generally a difficult task to estimate the MI of image dataset rigorously. On the
other hand, estimating the Reńyi entropy (6) is feasible by using tensor network [17,20,21] or Monte
Carlo approaches [41,42]. We estimated the Reńyi entropy of the MNIST dataset in Figure 4b. First, we
employed the approach of [20] to train an MPS on 10,000 MNIST images. When the MPS is trained well,
we calculate its reduced density matrix (ρX )x,x′ = ∑y∈Y Ψ(x, y)Ψ(x′, y) at each bipartition position.
The goodness of the learning is measured by the negative log-likelihood (NLL) evaluated on the

dataset L = − 1
|D| ∑v∈D ln

[
|Ψ(v)|2

N

]
where |D| = 10000. In this case, the NLL of MPS for training data

is 39.634. Then, we obtained the second Reńyi entropy (Equation (4)). The second Reńyi entropy can



Entropy 2018, 20, 583 8 of 14

be used as a measure of the correlation between two parts of the pictures by left-right bipartition
or up-down bipartition, depending on the lay out of the MPS on the 2D image. The value of Reńyi
entropy in the MNIST dataset has reached the one of the 2D quantum spin system computed using
DMRG [78], which shows a similar level of complexity. Interestingly, not only its value, but also the
distribution of the Reńyi entropy exhibit similar behavior as the mutual information, which confirms
the connection between Equations (5) and (6).
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Figure 4. (a) Classical mutual information (Equation (3)) of 10,000 MNIST dataset for various
bipartitions of images; and (b) Rényi entropy (Equation (4)) of 10,000 MNIST dataset by
well-trained MPS.

Both the maximum value of the mutual information in RBM and the maximum value of the Reńyi
entropy in MPS are much smaller than their theoretical maxima. They both suggest that MI are highly
redundancy. The traditional fully-connected models of equal weights have great redundancy and are
very inefficient under the condition of same number of parameters. This can be easily checked by
numerical experiment. For example, we can compare the performance of a fully connected model with
a sparsely connected model under same number of parameters.

For sparsely connected model, the relatively higher values of the checkboard bipartition than the
up-down/left-right bipartition suggests the local connections are more important for capturing the
dataset probability distribution. If this is correct, we could expect a sparsely connected model with
only sparse local connection can perform relatively well than the sparse random connected model.
This assumption also can be easily checked by numerical experiments.

We confirm these two assumptions by training RBMs with the same number of parameters but
with different connection architectures and different number of hidden neurons. Dense connection
means that the visible and hidden units of the RBM are fully connected and hidden units will be
less than visible units. For 1D, 2D and Random RBM, they have the same number of hidden and
visible neurons. Random means that we randomly connect the visible and hidden neurons. While 1D
connection means that each hidden neurons of the RBM is connected only to a 2l1 + 1 fragment of the
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entire image vector, where l1 is denoted as the 1D connection length, see Figure 3, 2D RBM means
that each hidden neuron connects to a small 2(l2 + 1)× (l2 + 1) window of a 2D image, where l2 is
denoted 2D connection length.

The goodness of the learning is measured by the NLL evaluated on the test dataset
L = − 1

|D| ∑v∈D ln
[

e−E(v)

Z

]
, where |D| is the size of the test set. To compute the NLL one has to

estimate the intractable partition function, for which we employed the Annealed Importance Sampling
approach [79,80]. The estimated NLL provides an up bound of the entropy of the dataset, which also
bounds the MI between two arbitrary division of the variables, i.e. L ≥ I(X : Y).

One clearly sees that, in Figure 5, the RBM structure with local connections which respects the
2D nature of the images reaches the lowest NLL quickly, and with the least number of parameters,
while the NLL of the RBM with 1D connections exhibits an abrupt drop when the two nearby pixels
from the different row are connected. The RBM with dense connections performs even worse than the
random connections with the same number of parameters.

To further reveal the connection between the captured MI and the quality of the learned RBM,
we calculated the MI of different 1D and 2D sparse RBMs (Figure 6) via Equation (5). The MI of 1D
sparse RBMs exhibits an abrupt increase at l1 = 14, which is just the moment when the fragment is
long enough to be able to include two neighboring pixels from different row. Compared with Figure 5,
the abrupt increase of MI corresponds exactly to the sudden drop of NLL. Meanwhile, 2D sparse RBMs
captures more MI than the RBM with 1D connections. From these comparisons, we see that learning
via minimizing the NLL is also a process of learning MI of the dataset.

Our results on the NLL of sparse RBM, and the surprisingly small MI and Renyi entropy,
are consistent with the previous experiments on RBMs with sparse connections [81–84]. Earlier
work [85] showed the neural network works fine, even with 80% randomly dropped out. Moreover,
A sparsely connected RBM with small-world network structure and found that it performs well
compared with a densely connected RBM is also been proposed [86]. Since RBMs with local and
sparse connections has close connections to the tensor networks which can be handled in practical
computation [18], these results support the applications of tensor network states in practical machine
learning problems [17,20,21]. In those applications, it is natural to adopt Equation (2) and the associated
quantum information perspectives in machine learning problems.
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Figure 5. Negative log-likelihood for various RBM architectures plotted against the number of
parameters in the model.
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Figure 6. (a) Mutual information Equation (5) of 10,000 MNIST dataset for various bipartitions
of images. The result is estimated with trained 1D sparse local RBM. (b) Mutual information of 10,000
MNIST dataset for various bipartitions of images. The result is estimated with trained 2D sparse
local RBM.

5. Summary

In summary, revealing the similarity of the two information theoretical measures Equations (5)
and (6) suggests that the statistical physics and quantum physics inspired approaches for generative
modeling using Boltzmann Machines (Equation (1) and Born Machines (Equation (2)) have similar
inductive biases. Therefore, successful wavefunction representations in quantum physics have the
potential to be good generative models for machine learning, and vice versa.

Classical and quantum information theories shed light on the expressibility and architecture
design of generative models. Our discussions and numerical experiments suggest that it is rewarding
to design architectures which take into information pattern of the target dataset. In particular, imposing
locality greatly increases the learning efficiency by exploiting the mutual information structure of
the typical dataset. This is akin to the success of the convolutional neural network structure for
discriminative tasks.

Besides the expressibility issue discussed in this paper, learning and sampling of the energy-based
models can be slow due to the intractable partition functions. Conventionally, this is solved
by using Markov chain Monte Carlo sampling or mean-field theory approaches. The quantum
representation offers an alternative solution to these problems. For example, modeling the probability
amplitude as matrix product states or tree tensor networks offer advantages in efficient learning
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and sampling [17,20,21]. Moreover, representing the probability distribution using a quantum
state [24,87] obviously permits efficient sample generation by simply performing measurement to the
quantum state.

In the above discussions, we have separated the energy-based models and quantum state
representations for probabilistic modeling of classical data. Nevertheless, a combined approach
with a “quantum statistical model” is also possible, in which one models the classical probability
density using mixed quantum states. In this respect, the quantum Boltzmann machines [88–90] can
be viewed as an example. Finally, this paper focuses on modeling the probability of data without
labels. In a general setting, one could also model the joint probability distribution of the data and label.
In this case, one can generate samples conditioned on the class label and elaborate on the entanglement
entropy of each class individually [21].
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