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Abstract: This editorial explains the scope of the special issue and provides a thematic introduction
to the contributed papers.
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Symbolic data analysis has received a great deal of attention over the last few years and has
been applied to many research areas, including astrophysics and geophysics, biology and medicine,
fluid flow, chemistry, mechanical systems, artificial intelligence, communication systems, and, recently,
data mining and big data [1–3]. A fundamental step in this methodology is the quantization of
original data into a corresponding sequence of symbols. The resulting time series is then considered a
transformed version of the original data, allowing to highlight its temporal information. Indeed, it has
been proven that this symbolization procedure can notably improve signal-to-noise ratios in some
noisy time series [4]. Moreover, symbolic data analysis also makes communication and numerical
computation more efficient and effective, compared with the processing of continuous-valued time
series [5].

However, symbolization of a time series always involves information loss and, hence, this process
deserves special attention [4]. Classical approaches to this problem consist of subdividing the data
range into a finite number of intervals or in an ordinal manner, for example by considering the up and
down behavior of subsequent measured values [1,2]. Nonetheless, for both cases the optimal size of
the symbol alphabet that retains the most relevant information from the original time series is still a
key aspect under debate [6]. To address this challenge, one of the 17 papers published in this Special
Issue has introduced a novel symbolization approach, which automatically generates a set of symbols
by considering dependencies between the original samples [7].

In a similar line, Li & Roy [8] have proposed another innovative symbolization algorithm by
maximizing mutual information of the selected symbols. More precisely, the method is an unsupervised
approach that initially establishes a set of partitioning thresholds and then iteratively adds new
boundaries whenever mutual information among the symbols increases. In this way, uncertainty in
the constructed symbol alphabet was completely removed and high insensitivity to the presence of
zero-mean Gaussian and background noises was reached.

After symbolization, information retained in the transformed data has been traditionally
quantified through statistical indices (e.g., frequency and transition probabilities between symbols)
and information theoretic measures (e.g., Shannon Entropy, Rényi entropy and Conditional entropy),
providing well-known symbolic metrics such as Lempel–Ziv complexity (LZC), Permutation entropy
(PerEn), and Transfer Entropy (TrEn), among others [1,9]. Interestingly, these indices and some variants
have been analyzed in novel applications in the remaining papers collected in this Special Issue.

Given the scientific and social impact of health research, as well as the burgeoning need for ever
better diagnostic and therapeutic tools, it is not surprising that many symbolic indices have been used in
biomedical applications. Indeed, García-Martínez et al. [10] have customized PerEn, and modified it to
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be amplitude-aware, for discerning emotional states of calmness and stress from electroencephalogram
(EEG) recordings. Both indices reported a very similar discriminant ability of about 65%, which notably
increased to 80% when they were combined with another entropy-based metrics that quantify
irregularity of time series, such as quadratic sample entropy. According to the authors, the obtained
results suggested that both kinds of entropy-based indices highlight complementary neural dynamics,
thus revealing a synchronized behavior between frontal and parietal counterparts from both
hemispheres of the brain. This finding about how the brain works under different emotions could be
helpful for incorporating affective intelligence in brain–computer interfaces.

In a similar way, Shumbayawonda et al. [11] have applied PerEn to magnetoencephalogram
recordings with the aim of determining changes due to age and gender in the fingerprint of background
brain activity in a large population of healthy subjects. Although the effects of age were seen for
all brain areas, no differences were observed in any region for both genders across all ages. As a
consequence, the authors concluded that these interesting observations might be useful to assist in the
early diagnosis of neurodegenerative conditions.

In the context of out-of-hospital (OHCA) cardiac arrest, PerEn has also been used to predict
defibrillation success [12]. To assess the dynamics characterizing poor heart performance during
cardiac arrest, this metric, along with other symbolic, non-linear and linear indices, were applied to five
second-length electrocardiogram (ECG) intervals just prior to each electrical shock. Although PerEn
was not a successful predictor, conditional entropy reached a diagnostic accuracy very similar to the
best harbinger, fuzzy entropy. Hence, the authors suggested that symbolic analysis of ECG dynamics
could be a promising tool to optimize OHCA treatment, however further experimentation is still
required.

A recently proposed variant of PerEn combined the symbolization procedure of this index
with the symbol counting approach of common LZC to provide a novel metric able to work with
times series showing fast amplitude changes and an unknown origin. This novel algorithm is called
Permutation LZC (PLZC) and has been used by Deniz et al. [13] to report notable differences in
mouse EEG recordings for between baseline and recovery from sleep deprivation. In contrast to LZC,
PLZC revealed an interesting ability to discern activated brain states associated with wakefulness and
REM sleep. In both cases, higher levels of complexity were observed in comparison with non-REM
sleep. The authors concluded that PLZC could be useful to assess EEG alterations induced by
environmental and pharmacological manipulations.

Another modification of LZC has been proposed by Simons & Abásolo [14]. Distance-based LZC
(dLZC) was introduced to quantify changes between pairs of EEG channels, so that the index reports
higher values for pairs of EEG signals with few sub-sequences in common than for those with a large
percentage of similar patterns. Accordingly, the authors noticed that in most brain regions had lower
dLZC values for patients suffering from Alzheimer’s disease than for age-matched control subjects,
suggesting a more limited richness of the neural information in the dementia patients.

For jointly dealing with several human gait signals, Yu et al. [15] have proposed a multivariate
multi-scale symbolic entropy analysis. More precisely, they computed Shannon entropy for the
accumulated symbol histogram obtained from several coarse-grained time series to report notable
differences between walking conditions for healthy subjects and neurodegenerative patients. In view
of this finding, the authors suggested that the proposed tool might be successfully embedded into
wearable devices for long-term monitoring of patients with neurodegenerative disorders.

In the final work introducing a biomedical application, Shannon entropy has been used to quantify
changes in statistical properties of ultrasound signals induced by fatty infiltration in the liver [16]. Thus,
entropy both from ultrasound radio-frequency and uncompressed envelope signals was computed for
different levels of fat in the liver. The obtained results showed that fatty infiltration increased signal
uncertainty of backscattered echoes from the liver, but Shannon entropy was still able to identify fatty
livers with sensitivity, specificity and accuracy values of about 90%. As a consequence, the authors
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pointed out that ultrasound entropy imaging has the potential for routine use in examination of fatty
liver disease.

In a completely different context, Yao et al. [17] have studied information transfer routes among
cross-industry and cross-region electricity consumption data through the well-established TrEn.
This metric has proven to be highly efficient and robust for quantifying the dominant direction
of information flow among time series from structurally identical and non-identical coupled systems.
Thus, the authors observed that target and driven industries tend to contain much more information
flow than driving ones in the Guangdong Province and, additionally, they are more influential on
determining the degree of order of regional industries.

On the other hand, it is worth noting that symbolic analysis also plays a key role in the context
of machine learning and two interesting papers have been included in this Special Issue. Duan and
Wang [18] have presented an ensemble classification approach, named k-dependence Bayesian forest,
which induces a specific attribute order and conditional dependencies among attributes. The algorithm
was validated on 40 databases, providing better classification outcomes than other common ensemble
classifiers. However, despite this sound performance and that Bayesian classifiers have demonstrated
competitive classification accuracy in a variety of real-world applications, they are not completely
successful for discriminating between high-confidence labels. To alleviate this issue, Sun et al. [19]
have proposed an innovative label-driven learning framework, which incorporates three components:
a generalist classifier, a refined classification approach by measuring mutual dependence among
attributes and, finally, an expert classifier tailored for each high-confidence label. The experiments
conducted on several datasets proved that the proposed algorithm performance was better than other
well-established Bayesian network classifiers.

Another interesting application of symbolic analysis has been presented by Bat-Erdene et al. [20].
In this work, an approach has been introduced to detect several packing algorithms. Recently,
the proportion of packed malware has rapidly grown due to the use of some packing techniques
that conceal malware attacks and, hence, the identification and classification of these algorithms
are becoming vital for revealing their real intention. Precisely, with the aim of identifying three
methods extensively used in malware development—single-layer packing, re-packing and multi-layer
packing—the proposed approach converts entropy values of the executable file into symbolic
representations, making use of a well-known symbolic aggregate approximation (SAX) methodology.
Considering 2196 programs and 19 packing algorithms, the detector reached values of precision,
accuracy, and recall of 97.7%, 97.5% and 96.8%, respectively.

From a stricter mathematical point of view, Zhao et al. [21] have inferred a formula of packing
pressure of a factor, as well as presenting its application to conformal repellers. Meanwhile,
Li et al. [22] have introduced the set of quasi-regular points in countable symbolic space and, moreover,
estimated the sizes of those sets using Billingsley–Hausdorff dimension (defined by Gibbs measures).
Furthermore, with the aim of clarifying dynamics of some real-world complex systems that are
unexplained by classical theories, including phenomena such as combustion, drug delivery or solid
component separation in mixtures, Grigorovici et al. [23] have introduced fractal entropy. This novel
index was established through non-differentiable Lie groups compatible with a Hamiltonian-type
formalism and applied to some physical systems and biological structures.

In the last paper published in the Special Issue, Mladenovic et al. [24] have presented the use
of symbolic processing to reduce the number of calculation operations in iteration-based simulation
methodologies, as well as to accelerate their computation. The proposed algorithm was validated on
two examples—the computation of non-coherent amplitude shift keying with shadowing, interference,
and correlated noise; and the estimation of second-order statistics in wireless channels. According to
the authors, the method may be easily extrapolated to many other applications where fast computation
in one-step simulation runs is required.
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