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Abstract: The Gibbs Paradox is essentially a set of open questions as to how sameness of gases or
fluids (or masses, more generally) are to be treated in thermodynamics and statistical mechanics.
They have a variety of answers, some restricted to quantum theory (there is no classical solution),
some to classical theory (the quantum case is different). The solution offered here applies to both
in equal measure, and is based on the concept of particle indistinguishability (in the classical case,
Gibbs’ notion of ‘generic phase’). Correctly understood, it is the elimination of sequence position
as a labelling device, where sequences enter at the level of the tensor (or Cartesian) product of
one-particle state spaces. In both cases it amounts to passing to the quotient space under permutations.
‘Distinguishability’, in the sense in which it is usually used in classical statistical mechanics, is a
mathematically convenient, but physically muddled, fiction.

Keywords: Gibbs paradox; indistinguishability; quantum; classical; entropy of mixing; irreversibility;
permutation symmetry

1. Introduction

The Gibbs paradox is usually broken down into two puzzles:

(i) Why is the entropy of the mixing of two gases independent of their degree of similarity—and
only zero when the gases are the same? (the discontinuity puzzle).

(ii) How, in classical statistical mechanics, can an extensive entropy function be defined? (the
extensivity puzzle).

To these we add a third, which in one form or another was highlighted in all the early discussions
of the paradox:

(iii) How can there not be an entropy of mixing, even for samples of the same gas, in statistical
mechanics, classical or quantum?—because surely the particles of the two gases undergo much
the same microscopic motions on mixing, be they exactly alike or only approximately similar (the
microrealism puzzle).

The latter is, in part, a question about the physical interpretation of the entropy quite generally.
The three puzzles are far from independent. Thus, if there is always an entropy of mixing, even for

identical gases in answer to (iii), there is no discontinuity puzzle (i); and since, in that case, the entropy
is not extensive, there is no extensivity puzzle (ii) either. Answers to (i) and (ii) are frequently silent
on (iii). Further, each can be approached in ways that differ in classical and quantum theory. As sich,
the Gibbs Paradox is complicated.

Nevertheless, we argue all three can be coherently solved in a way that takes the same form in
classical and quantum theories, leading to considerable simplifications. The key concept is particle
indistinguishability. Although introduced by Gibbs in a purely classical setting [1], it was subsequently
annexed to quantum theory—to the point that, in classical theory, the idea has routinely been dismissed
as unintelligible [2–5]. Where it has been defended, it has been interpreted in instrumentalist terms [6],
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or in terms of the classical limit of quantum statistical mechanics [7], or as a property of certain
probability distributions [4]. These defences are perfectly adequate so far as they go, but here we
take the concept further, to apply literally, at the microscopic level, to classical particle motions
realistically conceived.

Section 2 is introductory, and reviews the two well-known solutions. Section 3 is on the concepts
of particle identity and indistinguishability (mostly) in classical statistical mechanics; it concludes with
a sketch of a solution to (i), the discontinuity puzzle. Section 4 is on (iii), the microrealism puzzle.
Technical complications will be kept to a minimum. The system studied throughout is the simplest
possible using the simplest tools: the ideal gas, completely degenerate with respect to energy, using
the Boltzmann definition of the entropy.

2. Solutions

2.1. Thermodynamics and the Discontinuity Puzzle

Consider a volume VA of a gas composed of NA particles in region A, and a volume VB of a
gas composed of NB particles in region B. Suppose they are at the same temperature and pressure
and in thermal contact with a reservoir at temperature T (see Figure 1, the ‘Gibbs set-up’), so that
NA/VA = NB/VB.
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Figure 1. The Gibbs setup. In (a) the membrane MA is permeable to A, impermeable to B, whilst MB is
permeable to B, impermeable to A; the pistons are allowed to expand; In (b) the gases are the same and
a partition is removed. The pressures and temperatures in both chambers are the same.
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Let the gases in A and B be distinct from each other, in the sense that they can be separated by
pistons faced by membranes MA and MB, where MA is permeable to gas A but impermeable to gas B,
and vice versa for MB (Figure 1a). Let them slowly expand under the partial pressures of the two gases,
doing work. The process is reversible, so from the work done and the equation of state the entropy
increase can be calculated directly. It is (setting Boltzmann’s constant equal to unity) shown by:

(NA + NB) ln(VA + VB)− (NAlnVA + NBlnVB) (1)

This entropy change (the entropy of mixing) is the same, however, like or unlike the two gases, so
long as they are not the same.

Suppose now the gases in A and B are the same. Then no membranes of the required kind exist,
and the Gibbs setup is as in Figure 1b, consisting of a single partition that is slowly removed. No work
need be performed, the process is isothermal, the heat flow is zero; if the process is reversible (it seems
that it is) the entropy change is zero.

The same conclusion follows from extensivity of the entropy function (given that the entropy
scales with the size of homogeneous systems, along with particle number, mass, volume, and energy).
The total equilibrium entropy of the two gases before the partition is removed is the sum of the two
taken separately (by additivity); the total equilibrium entropy after the partition is removed is the sum
of the entropy of the two sub-volumes (by extensivity); the two are the same. The change in the total
entropy is zero.

How similar do two samples of gas have to be for this conclusion to follow? This is the
discontinuity puzzle, as stated, for example, by Denbigh and Redhead [8] (p. 284):

The entropy of mixing has the same value . . . however alike are the two substances, but
suddenly collapses to zero when they are the same. It is the absence of any ‘warning’ of the
impending catastrophe, as the substances are made more and more similar, which is the truly
paradoxical feature.

A natural response is to leave the question to the experimenter—with an attendant down-playing
of an objective meaning to the entropy function. In the words of van Kampen [3] (p. 307):

Whether such a process is reversible or not depends on how discriminating the observer
is. The expression for the entropy depends on whether or not he is able and willing to
distinguish between the molecules A and B. This is a paradox only for those who attach more
physical reality to the entropy than is implied by its definition.

Similar remarks were made by Maxwell in his classic statement of the paradox (although he did
not call it that by that name). He spoke of ‘dissipated energy’, defined as work that could have been
gained if the gases were mixed in a reversible way (thus, he meant entropy):

Now, when we say that two gases are the same, we mean that we cannot separate the one
from the other by any known reaction. It is not probable, but it is possible, that two gases
derived from different sources but hitherto regarded to be the same, may hereafter be found
to be different, and that a method be discovered for separating them by a reversible process.
If this should happen, the process of inter-diffusion that we had formerly supposed not to
be an instance of dissipation of energy would now be recognised as such an instance. [9]
(p. 646)

Gibbs, himself, when he first considered the entropy of mixing a year or two earlier, went
even further:

We might also imagine the case of two gases which should be absolutely identical in all
their properties (sensible and molecular) which come into play while they exist as gases
either pure or mixed with each other, but which should differ in respect to their attractions
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between their atoms and the atoms of some other substances, and therefore in their tendency
to combine with such substances. In the mixture of such gases by diffusion an increase in
entropy would take place, although the process of mixture, dynamically considered, might be
absolutely identical in its minutest details (even with respect to the precise path of each atom)
with processes which might take place without any increase in entropy. In such respects,
entropy stands strongly contrasted with energy. [10] (p. 167)

It is undeniable that whether or not there is an entropy of mixing of two kinds of gas or fluids
depends not just on the actual process, whereby the gases are mixed, but on other processes (perhaps,
even, all possible processes). Entropy change, in the context of mixing, has a comparative dimension.
However, whether that licenses the subjectivist interpretation of the entropy that Maxwell went on to
draw is far from clear:

It follows from this that the idea of dissipation of energy depends on our knowledge.
Dissipated energy is energy which we cannot lay hold of and direct at pleasure, such
as the energy of the confused agitation of molecules which we call heat. Now, confusion,
like the correlative term order, is not a property of material things in themselves, but only in
relation to the mind that perceives them. [9] (p. 646)

Gibbs [1,10] spoke rather of the entropy as defined by ‘sensible qualities’ (thermodynamic
macrostates); Jaynes [11] of the entropy of a microstate as defined by a reference classs, a macrostate—so
that one and the same microstate might have different entropies, depending on the macrostate
associated with it. Van Kampen [3] best encapsulates the pragmatic tradition; it has recently been
championed by Dieks and his collaborators [5,12–14].

How are experimentalists supposed to go about discriminating among molecules? Here one
might think questions of sameness, or even the identity of molecules, and their dynamical interactions,
might have something to do with it. However, both van Kampen and Jaynes set themselves against
these kinds of ideas (calling them ‘mystical’ [3] (p. 309), ‘irrelevancies’ [11] (p. 6)) (ideas that had,
however, been defended by Maxwell, for whom particles of a given chemical kind must be thought of
as exactly identical and imperishable [15] (p. 254)). The microrealism puzzle was not addressed. What
did remain a difficulty, in this approach, is (ii), the extensivity puzzle.

2.2. Extensivity

For simplicity, we use the Boltzmann definition of the equilibrium entropy. Denote the one-particle
phase space by Γ, which we suppose includes the specification of the state-independent properties of
the particle, like mass and charge. The phase space for N identical particles is then ΓN = Γ× . . .× Γ
(N factors in all). The volume of the equilibrium macrostate is of the form ( f (α)V)N , where α stands
for the intensive variables, yielding the equilibrium entropy:

S = Nln f (α) + N ln

The second term on the RHS spoils extensivity, but it appears to be forced: if each of the N particles
can be anywhere in the spatial volume V, independent of the location of any other, the available phase
space volume as defined by the Lebesgue measure must be proportional to VN .

To give a simple combinatorial model (convenient for the later comparison with the quantum
approach), suppose that all the particles have the same energy, so that the region of the one-particle
phase space that we are interested in is of the form ΓV = [p, p + dp]×V. Let ΓV be fine-grained into
C cells each of equal volume τ. Then there are CN different ways of independently distributing N
particles over C cells, where each distribution has equal phase space volume τN (or equal probability–I
shall use the former, but nothing hangs on the distinction). As before, the entropy cannot be extensive.

This was the form of Gibbs’ paradox on its first naming, as first raised by Neumann [16] in 1891
and then by Duhem the year after [17] (see [18] for more on history):
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In a recent and very important writing, a good part of it is devoted to the definition [of a
gaseous mixture according to Gibbs], Mr. Carl Neumann points to a paradoxical consequence
of this definition. This paradox, which must have stricken the mind of anyone interested in
these questions and which, in particular, was examined by Mr. J. W. Gibbs, is the following:

If we apply the formulas relative to the mixture of two gases to the case when the two gases are
identical, we may be driven to absurd consequences.

The absurdity lies in an entropy of mixing even for samples of the same gas; the unwanted
conclusion that the entropy cannot be extensive. Indeed, if the volume measure is VN , the entropy of
mixing Equation (1) follows immediately. By additivity, the total initial entropy is:

SA + SB = lnVNA
A + lnVNB

B

whereas after the partition is removed, the entropy for the system A ∪ B is:

SA∪B = ln(VA + VB)
NA+NB .

The difference is (1).
A simple solution is to divide the volume measure VN by N! (where, in the Stirling approximation,

lnN! ≈ NlnN − N), a factor introduced by hand by both Gibbs and Boltzmann with no comment
or justification. Following the challenge laid down by Neumann and Duhem (and in the very title
of Wiedeburg’s essay two years later [19], ‘das Gibbs’sche paradoxen’), Gibbs was surely aware of
it. He offered an answer of sort in his last major work, Elementary Principles of Statistical Mechanics,
completed in the spring of 1901. The division by N! was interpreted in terms of the use of ‘generic
phases’ (rather than ‘specific phases’, as hitherto) [1] (pp. 187–189)—the use of the quotient space of
phase space under the permutation group. However, his only explicit justification for the move was
that it gave the right answer:

Suppose a valve is now opened, making a communication between the chambers. We do not
regard this as making any change in the entropy, although the masses of gas or liquid diffuse
into one another, and although the same process of diffusion would increase the entropy
if the masses of fluids were different. It is evident, therefore, that it is equilibrium with
respect to generic phases, and not with respect to specific, with which we have to do in the
evaluation of entropy, and therefore that we must use the average [over the quotient space]
and not [over phase space] as the equivalent of entropy, except in the thermodynamics of
bodies in which the number of molecules of the various kinds is constant. [1] (pp. 206–207)

Few found this adequate. However, the puzzle was, anyway, soon lost in the undertow of the
coming tsunami that was the discovery of the quantum. Gibbs’ notion of generic phase was endorsed
by Planck, but thereby associated with obscurities in Planck’s own writings on entropy and the
quantum (and condemned as such by Ehrenfest and Einstein [18]). It has since found few defenders.
The new quantum statistics, replacing Boltzmann’s, in the limit of dilute and high-temperature gases,
contained the needed correction. In the decades that followed the missing N! was widely seen as
evidence of the inadequacy of classical ideas, one of many shadows of the quantum.

There is, however, a notable alternative approach, which is to embrace Boltzmann’s counting
methods and volume measure and to follow them to their logical conclusion—under the premise
that the total number of particles does not change (for any non-extensive function of this number
will cancel on going to differences in the total entropy; and entropy differences are all that can
measured). The entropy of subsystems, meanwhile, able to exchange particles with one another,
may yet be extensive.

The idea was first introduced by Ehrenfest and Trkal [20] in connection with disassociated gases,
which cool to give equilibrium distributions of different kinds of molecules. It has subsequently taken



Entropy 2018, 20, 552 6 of 24

a number of forms [3,12,21] usually motivated by the idea that the only circumstances in which the
dependence of the entropy on particle number is even defined are those in which particle number
can actually be varied—when the system of interest can exchange particles with a particle reservoir.
Computing the total phase-space volume, as before, the entropy is not extensive, but in accordance
with this philosophy it does not have to be: the dependence of the entropy on the total particle number
would only be defined were there an open channel enabling particle exchange with a further, and still
larger, reservoir which, ex hypothesis, is not in place. However, for the open subsystem the entropy
is extensive.

To see this, consider a system of N particles in volume V connected by an open channel with a
particle reservoir of N∗ identical particles in volume V∗. The equilibrium macrostate (again assuming
complete degeneracy in the energy) is not just the Cartesian product of the two phase space volumes
VN∗

V∗ and VN
V , for there will be (N∗ + N)!/N∗!N! distinct ways of drawing N particles from the particle

reservoir. The total count of available microstates should be the product of the three expressions:

S = ln
[
(N∗ + N)!

N∗!N!
V∗

N∗
VN
]
= ln

(N∗ + N)!
N∗!

+ lnVN∗ + ln
VN

N!
(2)

In the limit of the Stirling approximation, the last term, for the entropy of the subsystem,
is extensive.

As applied to the Gibbs setup, suppose there are two subsystems of interest (of volumes VA, VB
summing to V, and so on for the numbers of particles), initially in communication with the reservoir of
N∗ particles. Then the initial total equilibrium entropy is:

S = S∗ + SA + SB = ln
[
(N∗+N)!

N∗ !N! V∗
N∗ N!

NA !NB ! V
NA VNB

]
= ln (N∗+N)!

N∗ ! + lnVN∗ + ln V
NA
A

NA ! + ln VNB
B

NB !

(3)

If now the channel to the larger reservoir is closed, we suppose the equilibrium entropy is
unchanged. We then have the Gibbs setup, Figure 1b. After the partition between A and B is removed,
the volume measure is the same as before but for replacement of the term N!

NA !NB ! V
NA VNB in Equation

(3) by (VA + VB)
NA+NB , yielding for the equilibrium entropy:

S = S∗ + SA∪B = ln
(N∗ + N)!

N∗!
+ lnVN∗ + ln

(VA + VB)
NA+NB

(NA + NB)!
(4)

The non-extensive factors in Equations (3) and (4) are exactly the same, so do not contribute to
the entropy change. The difference between the remaining (extensive) expressions on the RHS of
Equations (3) and (4) vanish in the Stirling approximation. (The argument as it stands is flawed, if only
because if A and B can initially exchange particles with the larger reservoir, then they can initially
exchange particles with each other. For further discussion, see [21–23].)

Call this the distinguishability approach to the extensivity puzzle. Particles are treated as
distinguishable, in the sense that states that differ by the exchange of a particle in the reservoir
with a particle in region V are counted as distinct, no matter that the particles are in all relevant
statistical mechanical senses the same (for otherwise it would matter as to which N of the N + N∗

particles are in V, or which NA of the N particles are in VA, etc.) (this sits uncomfortably with the
supposedly pragmatic, instrumental philosophy favoured by van Kampen and Dieks).

2.3. The Quantum Approach

The other standard solution to Gibbs’ paradox (and the one to be found in most textbooks) is
to appeal to quantum mechanics. For simplicity, consider the semi-classical treatment, in which the
fine-graining of the one-particle state space is determined by Planck’s constant (so τ = h). The number
of (‘elementary’) cells C now has a physical meaning. When the particles are identical, the further
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essential assumption is that interchange of two or more particles leaves the microstate unchanged—the
particles are treated, not as ‘distinguishable’, in the sense just defined, but in exactly the opposite
way: states that differ by particle interchange are not distinct, hence, the rubric indistinguishable, now
standard terminology in quantum statistical mechanics.

It follows that microstates (‘Planck distributions’) are fully specified by the number of particles in
each elementary cell, without regard as to which particles are in which cell. Let these non-negative
(‘occupation’) numbers be n1, . . . , nC, subject to the constraint:

C

∑
k=1

nk = N (5)

To determine the number of these distributions, consider sequences of N + C − 1 symbols,
composed of N symbols ‘x’ (one for each particle), and C − 1 symbols ‘|’ (to denote the C cells,
counting the number of x’s before the first|as n1). There are (N + C− 1)! permutations of the N + C − 1
symbols by sequence position, but not all of them yield distinct sequences: each sequence recurs N!
times (for permutations of the x’s among themselves), and (C − 1)! times (for permutations of the |’s
among themselves). The number of distinct sequences is therefore [24]:

(C + N − 1)!
(C− 1)!N!

(6)

This expression was found by Planck, working backwards from the black-body spectral
distribution law, in turn obtained by interpolating between the Rayleigh-Jeans distribution (valid at
low frequencies) and the Wien distribution (valid at high frequencies). He interpreted it as the number
of ways of distributing N ‘energy quanta’ over C cells (‘resonators’), for radiation of frequency ν, to be
obtained by dividing the total energy by hν—and, thus, did Planck’s constant make its first appearance.
Einstein’s ‘light quantum’ hypothesis led to the Wien distribution instead (because based on the volume
measure CN), as shown by Ehrenfest [25] in 1911. That same year Natanson traced the difference to
the indistinguishability of particles (they were ‘undistinguishably alike’ [26] (p. 136), to be distributed
over ‘distinguishable receptacles’, yielding Equation (6); but the receptacles were not clearly identified
as specifying the state-dependent properties of their incumbents. He muddied the waters accordingly,
adding ‘were each of the [indistinguishable particles] separately sensible to us, the conditions of the
case would be profoundly modified’ [26] (p.136), yielding the count CN instead. (‘Sensible perception’,
evidently, will depend on state-dependent properties, as well as state-independent ones.) Equation (6)
has a significance beyond the semi-classical treatment: in terms of Hilbert space, it is the dimension of
the totally symmetrised sub-space ofHN , whereH has dimension C.

To see more clearly the departure from the classical case, consider again the combinatorics
argument leading to the result CN . The following is an identity in number theory:

∑
{nk} s.t.
C
∑

k=1
nk = N

N!
n1! . . . nC!

= CN .

The sum is over all sets of occupation numbers satisfying Equation (5), as before (so the number
of terms in the summand is given by Equation (6)), but each term (for each distinct Planck distribution)
is weighted by the factor N!/n1! . . . nC!, corres/Nponding to the number of distinct ways (‘Boltzmann
distributions’) of dividing N particles so that n1 are in the first cell, . . . , and nC in the last. The particles
are, thus, being treated as distinguishable, in our technical sense. If Boltzmann distributions have
equal phase space volume, or probability, then Planck distributions do not, and vice versa, save in the
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limit in which all the occupation numbers are 0 s and 1 s. In the latter limit C � N, and Equation (6)
goes over to the corrected volume measure CN/N!.

This much speaks in favour of the equiprobability of Boltzmann distributions (and, hence,
distinguishability): only then is the assignment of each of the N particles, made sequentially, one
after the other, among the C cells, statistically independent of each other. If Planck distributions are
equiprobable instead, still taking the assignment sequentially, the probability that the kth particle is
assigned to a given cell increases with the number already assigned to it. Indistinguishable quantum
particles are not statistically independent in this sense. (On the other hand, the whole idea of building
up to a microstate sequentially, assigning the particles one by one, may be mistaken. The N particles
may be better thought of as assigned all together, with the microstate supervening globally).

If statistical independence in this sense is a mark of the classical, so too is the equiprobabilty of
Boltzmann distributions, hence, distinguishability: that lent support to the view that division by N!
can only be explained by the quantum. The idea (we take it) is that there are no classical gases or
substances, but that since real gases are quantum mechanical systems, treatable, to a greater or lesser
accuracy, by semi-classical methods, that go over, in the dilute limit, to the classical expression for the
entropy, differing only by the needed correction, the division by N! is explained.

The extensivity puzzle (ii) is thereby solved. It may well be true that the dependence of the
entropy on particle number can only actually be measured if the particle number is allowed to change,
but opening a channel to a particle reservoir is not what introduces the needed N! factor; that factor
is already there (the puzzle, as such, does not arise). Additionally, unlike in the distinguishability
approach, there is no constraint on total particle number.

The discontinuity puzzle (i) also appears solved (but here appearances are deceptive): quantum
theory not only implies a discretisation of the energies of bound states, at the level of atomic and
molecular structure, it also explains how there can be an exact identity of particles at all (with respect
to their state-independent properties)—because they are excitations of a single quantum field. The
(anti-)symmetrization is, moreover, truly built in; the only way of arriving at a particle representation of
a quantum field at all, is in terms of a state space (Fock space), built up from totally (anti-) symmetrised
states. Wiedeburg’s conclusion in 1894 in light of the Gibbs paradox was prophetic:

The paradoxical consequences [of the mixing-entropy formula] start to occur only when we
follow Gibbs in imagining gases that are infinitely little different from each other in every
respect and thus conceive the case of identical gases as the continuous limit of the general
case of different gases. On the contrary, we may well conclude that finite differences of the
properties belong to the essence of what we call matter. [19] (p. 697)

Realism at this level, however—essentially concerning the spectrum of the energy operator for
bound states and the simple harmonic oscillator—does not extend straightforwardly to a solution to
(iii), the microrealism puzzle. That puzzle, recall, is that at least in the classical case, on any realistic
perspective, there patently should be diffusion from the gas in A into B, and vice versa. Why not
an entropy of mixing, even when the gases are the same? For the quantum approach to repudiate
the entire question of microrealism turns it into another doctrine altogether (instrumentalism, say);
but then, from a microrealist perspective, how does a quantum gas diffuse? Schrödinger, famously,
suggested that for a quantum gas there is no real diffusion, but he only hinted at an argument as to
why [27] (p. 61):

It was a famous paradox pointed out for the first time by W. Gibbs, that the same increase of
entropy must not be taken into account, when the two molecules are of the same gas, although
(according to naive gas-theoretical views) diffusion takes place then too, but unnoticeably
to us, because all the particles are alike. The modern view [of quantum mechanics] solves
this paradox by declaring that in the second case there is no real diffusion, because exchange
between like particles is not a real event—if it were, we should have to take account of it
statistically. It has always been believed that Gibbs’ paradox embodied profound thought.
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That it was intimately linked up with something so important and entirely new [as quantum
mechanics] could hardly be foreseen.

Is it true that in quantum mechanics ‘exchange between like particles is not a real event’?—and
what does this have to do with diffusion? However, on questions like these, and on micro-realism
more generally, there is no consensus in quantum theory, and is reason, if possible, to pursue the
puzzle in classical terms.

3. Reconsidering Indistinguishability

The approaches just sketched do not have to stand opposed. The distinguishability approach
may plausibly apply to the statistical mechanics of macroscopic objects, like stars in stellar nebula, and
sufficiently complex microscopic systems, like colloid particles in suspensions, where the interchange
of particles surely does make for a physical difference; and there the pragmatic stance of van Kampen
and Dieks seems unproblematic. As a matter of course, on the quantum approach, whenever the
dependence of the equilibrium entropy function of a system on particle number is actually to be
measured, there had better be an open channel allowing a change in particle number, or equivalent.

However, agree on this much and you confront the obvious question: how does a difference
in scale (stars), or in complexity (stars, colloid particles) break permutation symmetry, exactly? If the
distinguishability approach fails in the case of ordinary gases of simple molecules, what replaces it?

The quantum approach is more right than the distinguishability approach, but it needs to handle
these exceptions, and explain how intrinsic distinctions can arise at all—and embrace parity of
treatment of identical particles in classical, as in quantum, statistical mechanics. To that end, we need a
better understanding of what indistinguishability really means, quantum and classical.

3.1. Indistinguishabilty and Sequence-Position

The standard objection to particle indistinguishability in classical statistical mechanics is that
‘classical particles can always be distinguished by their trajectories’ (e.g., [5] (p. 373)), and even ‘classical
indistinguishable particles have no trajectories’ (they can only have probability distributions) [4] (p. 7).
Evidently this means distinguishability with respect to their state-dependent properties, whereas
indistinguishability as we are using it is about state-independent properties.

Trajectories per se are irrelevant to indistinguishability. The point is most simply made in
quantum mechanics: quantum particles can, sometimes, be distinguished by their trajectories, without
ceasing to be indistinguishable (in the state-independent sense) [28] (pp. 199–200), [29] (pp. 358–359).
If identical, the one-particle Hilbert space H for each particle is identical. Consider any set of N
pairwise-orthogonal one-particle states inH {|ϕa〉, |ϕb〉, . . . , |ϕc〉}. Let ΠN be the permutation group
acting on the N symbols a, b, . . . c, so that for π ∈ ΠN , π(a), π(b), . . . , π(c) is a sequence of the same
symbols, but in a difererent order. Define the state |Ψ〉 ∈ HN

S , whereHN
S is the symmetrised sub-space

ofHN = H⊗ . . .⊗H (N factors in all), as:

|Ψ〉 = 1√
N

∑
π∈ΠN

|ϕπ(a)〉 ⊗ |ϕπ(b)〉⊗ . . . ⊗ |ϕπ(c)〉. (7)

States of the form Equation (7) describe bosons. They spanHN
S , the quantum state-space for N

bosons. So long as there are no repetitions, they are in 1:1 correspondence with the unordered sets
{|ϕa〉, |ϕb〉, . . . , |ϕc〉}.

Suppose now that the particles are non-interacting and prepared in a state of the form Equation (7);
then they remain in a state of this form. If non-interacting, the Hamiltonian Ĥ is a sum of one-particle
Hamiltonians ĥ, all identical (since Ĥ is permutation invariant), generating the unitary evolution:

|Ψ〉 → eiĤt|Ψ〉 = 1√
N

∑
π∈∈ΠN

Ût|ϕa〉 ⊗ Ût|ϕπ(b)〉⊗ . . . ⊗ Ût|ϕc〉
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where Ût = eiĥt. Each of the N one-particle states |ϕa〉 ∈ H etc., initially orthogonal to all the rest,
remains orthogonal at each time, and traces out a definite orbit Ut|ϕa〉 inH.

The argument can easily be elaborated. Let each of |ϕa〉, |ϕb〉, . . . , |ϕc〉 (call them a, b, . . . , c
for short) be well-localised in phase space, well-separated from each other, and sufficiently massive
to ensure that they remain well-localised and well-separated over the timescale of interest. Given
an (external) time-dependent potential function, the trajectories thus defined can be as varied as
is desired, each distinguished from all of the others. In short, we obtain a good approximation
to N non-intersecting trajectories in one-particle phase space. Yet they are described by a totally
symmetrised state—and, therefore, as indistinguishable particles.

If the having or not-having of trajectories is irrelevant to indistinguishability (in the
state-independent sense), might it have something to do with entanglement, necessarily introduced by
symmetrisation? However, insofar as the state is entangled only for this reason that seems unlikely.
States of the form Equation (7) fail to satisfy any of the important desiderata for entanglement [30–32].
Genuine (or so-called ‘GMW‘) entanglement involves the superposition of states of this form.

Another response (in light of the selfsame example of quantum trajectories) is to conclude
that (anti-)symmetrisation of the state has nothing to do with the notion of distinguishability—or
not as relevant to the Gibbs paradox [13]. The latter, in this view, concerns state-dependent
properties. Yet (anti-)symmetrisation of the state is all-important to quantum departures from classical
statistics (to obtain Bose-Einstein or Fermi-Dirac statistics). Where particles cannot be distinguished
by their state-dependent properties, they yet obey Maxwell-Boltzmann statistics, unless they are
(anti-)symmetrised. Lack of statistical dependence clearly hinges on (anti-)symmetrisation, and just as
clearly bears on the Gibbs paradox (a point we shall come back to in Section 4.3)

We conclude rather that a, b, . . . , and c are distinguished as one-particle states, but what they are
states of, as specified by their state-independent properties, are exactly alike—given that the particles
are identical. Permutations of particles with respect to a, b, . . . (as to which particle is a, which particle
is b . . . .) do not yield distinct states of affairs; likewise for permutations with respect to the trajectories.

Why then introduce names for particles in the first place? This is because names come with
sequence position: the order in the N-particle Hilbert spaceHN = H⊗ . . .⊗H. Names cannot help
but have mathematical significance, so long as sequences are used, and outside of statistical mechanics,
sequence position usually has a clear physical significance, with each system, entering into the tensor
product, having its own distinctive degrees of freedom and coupling constants. The Hamiltonian,
correspondingly, is by no means permutation invariant in its action on such a product space. However,
in statistical mechanics, in dealing with 1020 + particles, they had better all have at least approximately
the same mass and coupling constants, if the equations are to be defined at all. The one-particle
state spaces are then the same, and the Hamiltonian will be blind to sequence position, and so be
permutation invariant. (Anti-)symmetrisation of the state and symmetrisation of dynamical variables
ensures that no use can be made of sequence position to label particles.

Use of sequence-positions as names for identical particles has been called ‘factorism’ (my thanks
to Jeremy Butterfield and Adam Caulton for this way of putting it); particle indistinguishability,
then, is anti-factorism. It can be applied equally to classical mechanics, where the counterpart is
sequence position in the Cartesian product state-space ΓN = Γ× Γ× . . .× Γ (N-factors in all), and
sequence-position in ordered N-tuples 〈q = qa, qb, . . . , qc〉 ∈ ΓN . The ordering is eliminated, as in the
quantum case, but now for N pairwise distinct points (this the analogue of orthogonality, where we
suppose particles are impenetrable, so that the condition is preserved in time), by passing to unordered
sets of one-particle states [33] (pp. 176–177). As a differentiable manifold, the state space is the quotient
of ΓN under the permutation group ΠN with the action:

π : 〈qa, qb, . . . , qc〉 → 〈qπ(a), qπ(b), . . . , qπ(c)〉 ∈ ΓN . (8)
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The topology is the image of open sets in RN under the quotient. The resulting ‘reduced’ state
space is γN = ΓN/Π. It is the space of generic phases, in Gibbs’ terminology (whereas ΓN is the
space of specific phases [1] (pp. 187–188)). The quotient map defines a surjection from the smooth
kinematically possible motions σ ⊂ ΓN to smooth motions in reduced state space, denote σg ⊂ γN .
(Since γ1 and Γ = Γ1 are isomorphic, we denote the one-particle phase-space γ when speaking of
motions of indistinguishable particles.)

Evidently for any permutation π ∈ ΠN and any q ∈ ΓN , the reduced point qg = π(q)g ∈ γN

represents an unordered set of points in γ. For the action of permutations on particle trajectories,
consider first the unreduced case. A smooth curve σ ⊂ ΓN parametrised by λ ∈ R is a continuous map
: λ→ σ(λ) ∈ ΓN , representing an ordered N-tuple of one-particle trajectories in Γ, as defined by the
smoothly varying (and never intersecting) N-tuple of points at each instant of time. However, then,
for any permutation π, the curve π(σ) : λ→ π(σ(λ)) ∈ ΓN also represents an N-tuple of one-particle
trajectories in Γ, indeed, the very same trajectories, differing only in their factor-position (or in their
names—names as factor-positions). In the reduced state-space this is eliminated: there is just the one
curve σg = π(σ)g ⊂ γN , representing N trajectories in γ, with no factor-positions.

There is this key difference between classical and quantum. In the quantum mechanics of N
particles, in the general case, a state of N particles does not define any one set of N one-particle states.
In the face of genuine (GMW-) entanglement (and real physical particles interact, and interactions
lead to GMW-entanglement), this resource is not available. However, classically, there is always this
resource; it is always possible to speak of one-particle states (points) qa, qb, . . . , qc in γ, and indeed
to identify particles by their position and momentum at a time (so speak of a, b, . . . and c at a
given time). Doing so is already to pass to the quotient space, under permutations. Were it not for
GMW-entanglement, it would be the same in quantum mechanics, and we could talk of one-particle
states directly, with no need to talk of particles in (anti-)symmetrised states

There is another important difference between the classical and quantum statistical mechanics of
identical particles that makes their similarity much harder to see. Use of the reduced state space is all
but compulsory in the quantum case, but it is hardly ever used classically. Why? The answer is that,
classically, there is an easy correspondence between integrals of permutation-invariant functions on
the reduced phase space and on the unreduced space, as pointed out by Gibbs [1] (p. 188).

To illustrate the correspondence in the simplest case, consider a multiple integral over the domain
a ≤ x1 ≤ . . . ≤ xN ≤ b ⊆ RN , so that there can be no repetition of arguments assigned these variables.
Let f : RN → R be permutation invariant. Then:∫ b

a

∫ xN−1
a . . .

∫ x1
a f (x, x1 . . . , xN−1)dxdx1 . . . dxN−1

= 1
N!

∫ b
a

∫ b
a . . .

∫ b
a f (x1, . . . , xN)dx1dx2 . . . dxN

(9)

The left-hand side, extended now to 6N–dimensions, is the integral of f over γN
[a,b], the right-hand

side the integral of f over ΓN
[a,b], divided by N!. The only difference is the needed correction—and that

can be traced to quantum mechanics instead, as we have seen. Integrals as on the right of Equation (9)
are, needless to say, much easier to perform than those on the left. There is no gain, and considerable
pain, in doing analysis on the reduced state space; better do it on ΓN instead, with judicious insertions
of factors in N! as needed. Particle indistinguishability, in classical statistical mechanics, becomes all but
invisible. The reason it becomes visible in equilibrium quantum theory is because of the lower bound to
the size of cells (by Planck’s constant) and the concomitant replacement of the continuous measure on
γN by the count of Planck distributions for elementary cells (or, in terms of measures on Hilbert-space,
the dimensionality of the symmetrised Hilbert space). That makes for a straightforwardly measurable
difference in the statistics away from the dilute limit. (Indistinguishability is needed: the quantum
statistical mechanics of distinguishable particles obeys Maxwell-Boltzmann statistics. For further
discussion, see [28,29].)
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Outside of the classical limit, there is no general correspondence of the form Equation (9) for
expectation values calculated with respect to the unreduced and reduced Hilbert space (although
there is for certain equilibrium states). Thus, any gain is limited. However, there is no pain in
working with the reduced space: (functional) analysis on the reduced space is just as easy as on
the unreduced space. The root of the asymmetry lies in the topology (of the spaces as topological
spaces). ΓN is homeomorphic to RN , but not so γN (roughly speaking, sets bounded by lines and
planes xi = xj, xi = xj = xk, etc., invariant under permutations are open sets in γN , but not in RN).
In contrast, the reduced Hilbert spaceHN

S has exactly the same topology as the unreduced space: it is
a closed subspace ofHN , in the norm topology, a complex Hilbert space isomorphic to any other of the
same dimension.

3.2. Permutations as Active Transformations

Particle permutations on ΓN as defined by Equation (8) act as identities in the reduced phase space
γN . If the latter is to be taken seriously as the space of microstates, in a fully realist way, permutations
in this sense cannot represent real physical changes. However, permutations surely can be real physical
processes. As Pais has graphically put it [34] (p. 63):

Suppose I show someone two identical balls lying on a table and then ask this person to
close his eyes and a few moments later to open them again. I then ask whether or not I
have meanwhile switched the two balls around. He cannot tell, since the balls are identical.
Yet I know the answer. If I have switched the balls, then I have been able to follow the
continuous motion which brought the balls from the initial to the final configuration. This
simple example illustrates Boltzmann’s first axiom of classical mechanics, which says, in
essence, that identical particles which cannot come infinitely close to each other can be
distinguished by their initial conditions and by the continuity of their motion.

‘Switching the balls’ means a physical change—a continuous curve in the state space
parameterised by the time. Consider, to begin with, the unreduced phase space Γ2 of the two balls,
representing two trajectories in the one-particle phase space Γ—from a state at one time t1 to a state
at t2 arrived at by particle exchange, with space-time diagrams as shown in Figure 2. In (a) the same
state is returned, whereas in (b) it is physically switched. A physical switch is a real physical process,
not a mere relabelling of points or trajectories.

Entropy 2018, 20, x FOR PEER REVIEW  12 of 23 

‘Switching the balls’ means a physical change—a continuous curve in the state space 
parameterised by the time. Consider, to begin with, the unreduced phase space Γଶ of the two balls, 
representing two trajectories in the one-particle phase space Γ—from a state at one time ݐଵ to a state 
at ݐଶ arrived at by particle exchange, with space-time diagrams as shown in Figure 2. In (a) the same 
state is returned, whereas in (b) it is physically switched. A physical switch is a real physical process, 
not a mere relabelling of points or trajectories. 

 
Figure 2. Space-time diagrams of two identical particles with the same initial and final positions and 
momenta. In (a) each particle has the same position and momentum at ݐଶ  as at ݐଵ; In (b) they are 
physically switched: each particle at ݐଶ has the position and momentum of the other at ݐଵ. 
For the generalisation to N particles, for any ݍ ∈ Γே let ߪగ: ݐ → Γே be a smooth curve connecting ݍଵ to ݍଶ = (ଵݐ)గߪ :(ଵݍ)ߨ = (ଶݐ)గߪ  ଵݍ =   .(ଵݍ)ߨ

It represents N trajectories in Γ, beginning in one microstate, and ending in a microstate exactly 
the same save that it is arrived at by the interchange of initial and final positions and momenta of two 
or more particles. The N trajectories represent a physical switch (of course, physical switches, in 
practise, could never be made exact, for motions on smooth manifolds, but they are kinematically 
possible.) 

Now to the point: physical switches in the reduced state space return the same state. The open 
curve ߪగ in Γே reduces to a closed curve ߪగ௚	in ߛே, for we have the sequence of identities: ߪగ(ݐଶ)௚ = ௚(ଵݍ)ߨ = ଵ௚ݍ =   .௚(ଵݐ)గߪ

Notwithstanding the fact that the permuted particles are individually changed, the initial and 
final states are the same. (The suggestion, once again, is that the microstate is defined by the state of 
all N particles taken collectively, rather than built up from each considered in isolation, as noted 
earlier.)  

There is no difficulty in embracing this conclusion so long as it is hedged: if the states in question 
are coarse-grained, if the initial and final states are not really the same (but that for all practical 
purposes they can be treated as the same)—in which case, there is no particular reason why the 
particles should really be identical, either (a point we shall come back to). However, suppose the 
particles are identical and there is no more exact level of description and we are taking the theory 
literally: can microstates, the points in state-space at which a physical switch begins and ends, be 
exactly the same? 

Here is the sort of principle that would rule against it: ‘if the state of each of two things is 
changed, the state of both things together is changed’ (I am grateful to a conversation with Thomas 
Davidson for making a case of this kind). However, that principle is not a logical truth, and again, in 

xx

t t

(a) (b)

t2

t1

t2

t1

Figure 2. Space-time diagrams of two identical particles with the same initial and final positions and
momenta. In (a) each particle has the same position and momentum at t2 as at t1; In (b) they are
physically switched: each particle at t2 has the position and momentum of the other at t1.
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For the generalisation to N particles, for any q ∈ ΓN let σπ : t→ ΓN be a smooth curve connecting
q1 to q2 = π(q1):

σπ(t1) = q1

σπ(t2) = π(q1).

It represents N trajectories in Γ, beginning in one microstate, and ending in a microstate exactly
the same save that it is arrived at by the interchange of initial and final positions and momenta of
two or more particles. The N trajectories represent a physical switch (of course, physical switches,
in practise, could never be made exact, for motions on smooth manifolds, but they are kinematically
possible).

Now to the point: physical switches in the reduced state space return the same state. The open
curve σπ in ΓN reduces to a closed curve σ

g
π in γN , for we have the sequence of identities:

σπ(t2)
g = π(q1)

g = qg
1 = σπ(t1)

g.

Notwithstanding the fact that the permuted particles are individually changed, the initial and
final states are the same. (The suggestion, once again, is that the microstate is defined by the state of all
N particles taken collectively, rather than built up from each considered in isolation, as noted earlier.)

There is no difficulty in embracing this conclusion so long as it is hedged: if the states in question
are coarse-grained, if the initial and final states are not really the same (but that for all practical purposes
they can be treated as the same)—in which case, there is no particular reason why the particles should
really be identical, either (a point we shall come back to). However, suppose the particles are identical
and there is no more exact level of description and we are taking the theory literally: can microstates,
the points in state-space at which a physical switch begins and ends, be exactly the same?

Here is the sort of principle that would rule against it: ‘if the state of each of two things is changed,
the state of both things together is changed’ (I am grateful to a conversation with Thomas Davidson
for making a case of this kind). However, that principle is not a logical truth, and again, in quantum
mechanics, it is easy to construct a counter-example. Thus, consider, as before, an initial (‘trivially
entangled’) symmetrised state of the form Equation (7) for N = 2, the case of two bosons:

|Ψ〉 = 1√
2
(|ϕa〉 ⊗ |ϕb〉+ |ϕb〉 ⊗ |ϕa〉). (10)

Let the particles be non-interacting, as before, but now let the Hamiltonian generate the continuous
unitary evolution from t1 to t2, satisfying:

Û|ϕa〉 = |ϕb〉; Û|ϕb〉 = |ϕa〉.

Then:
|Ψ(t2)〉 = Û ⊗ Û|Ψ(t1)〉 = |Ψ(t1)〉 =|Ψ〉

and the orbit of the state is a closed curve in H2
S: particle a turns into particle b, and b into a, in the

same microstate Equation (10) in which they collectively began. Let |ϕa〉 and |ϕb〉 have definite shapes,
rather than positions and momenta, say one is square and one is round at t1: then something square
changes into something round, whilst something round turns into something square, ending at t2 in
exactly the same state in which they began. Each has changed so that nothing has changed—it is not
difficult to find this paradoxical. No wonder Gibbs’ idea of generic phase, taken realistically, and not
just reflecting our epistemic limitations, has been found puzzling. It is perfectly consistent all the same.

Returning to Figure 2, are not the histories of the two states different at t2?—of course; but that is a
function of assuming possible trajectories, or possible dynamics. Fixing on (b), then, and the dynamics
as shown in the figure: is not the history of the state at t2 different from that of the state at t1? That
depends. Suppose the Hamiltonian is time-dependent, so the curve does not repeat. Then prior to
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t1, to be sure, the history can be anything you please; as after t2 as well. However, these are clearly
not dictated by a difference in the states at the two times, but by differences in the dynamics at earlier
and later times. For a time-independent Hamiltonian the pattern repeats; in which case not only is the
history of the two-particle state the same at t2 and t1, so is the history of each one-particle state. There
is no physical evidence, no logical inconsistency, no a priori argument, to speak against it. Indeed,
on reflection, there had better not be such an argument, or it would tell against the standard treatment of
indistinguishability in terms of Feynman path integrals (that identifies states, but now in configuration
space, that differ by particle interchange, so the sum over paths includes both kinds of trajectories,
with and without particle interchange). Similarly, for quantization on reduced configuration space [35].

At this point the connection with the Gibbs paradox, and specifically (iii), the micro-realism
puzzle, is fairly direct. Roughly speaking, after the partition is removed (in Figure 1b), it seems that
particles from A can be found in B, and vice versa, and these are possibilities that were not present
before. That is to say: additional states, over and above those available before the partition is removed,
appear to be available at later times. However, those additional states differ from the ones accessible
before the partition was removed only by a physical switch, a closed loop in γN . There are new
trajectories, among them new closed loops, that become kinematically possible, but no new points,
differing only by a physical switch. Figure 2 is the Gibbs paradox for two particles. If it is a bullet, bite.

We shall return to this argument in Section 4. Before that, a final piece of stage-setting is needed.

3.3. Demarcating Properties

There is nothing in principle to prevent us treating every physical property as a state-dependent
property, so that all particles whatsoever have the same state-independent properties (namely none at
all) (a speculation in physics, whether trivial [36], or by grand-unification). The same could be said of
properties of macroscopic bodies, indeed, of ordinary bodies (arriving, at the end, at ‘bare particulars’,
a speculation in philosophy). At the other extreme is the idea that all bodies, including microscopic
particle, have uniquely distinct state-independent properties (‘tropes’, perhaps, or ‘haecceities’, further
speculations in philosophy), by virtue of which they are distinguishable.

The truth, we suppose, lies somewhere in between. However, where is there any middle
ground—how do any bodies, or particles, start to become distinguishable?—and we are back to (i), the
discontinuity puzzle. However, it is now more clearly posed as a puzzle about how state-independent
properties arise, and are used in a state-space description. The answer, from a dynamical point of
view, is that they arise in a given regime, stable in time, yet salient to the dynamics. Certain degrees of
freedom are effectively frozen, but variation in others remain, defining an effective state-space.

Call such properties demarcating properties [33]. The paradigm case is a disassociated gas, particles
of which combine to form stable molecules in equilibrium at definite concentrations (the model studied
by Ehrenfest and Trkal [20]). For an example with the changing particle number (that cannot be
handled by the distinguishability approach), consider a plasma of neutrons at high temperatures and
pressures, cooling to plasmas of protons, helium, lithium, and beryllium nuclei, and their isotopes,
electrons, and antineutrinos, and then to gases and metallic vapours. At each stage the dynamics
simplifies, as first stable particles and nucleons are formed, and then neutral atoms and molecules.
This process of differentiation into kinds occurs when particles are confined to certain regions of state
space, governed by an effective Hamiltonian, where particles (or bound states of particles) of a given
kind remain indistinguishable. The idea of a distinguishable particle, as uniquely specified in this way,
is not impossible—individual atoms can be manipulated in the laboratory—but from the point of view
of statistical mechanics it is a limiting case.

For a toy model consider N indistinguishable classical coins in a box, and suppose the coins
interact elastically and are subject to gravity. At sufficiently low energies their motions are confined to
horizontal and vibratory motions—the coins are never or rarely flipped, but freely move from left to
right sides of the box. Each is confined to one of two regions of the single-coin phase space, γH and γT
(where H corresponds to coins landed heads-up, and T for tails). Let there be NH heads-up coins and
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NT tails-up; then, ex hypothesis, as long as the kinetic energies remain small (the box is not violently
shaken), the motions will be confined to the region γNH

H × γNT
T ⊂ γN

H∪T . The coins behave as distinct
collectives, one (the heads-up) differentiated from the other (the tails-up), in a dynamically salient way
(the side face-down makes a difference to the friction, say); but each a collection of indistinguishable
coins. The embedding of γNH

H × γNT
T in γN

H∪T for NH = NT = 1 is shown in Figure 3.
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Thus, as long as demarcating properties matter to the dynamics, the Hamiltonian, as a function
on the product space, will not be permutation invariant. Additionally, insofar as these properties are
dynamical in origin, there is every reason to think the dynamics simplifies (certain degrees of freedom
are frozen out). Demarcating properties, where they exist, are part and parcel of an effective dynamics
and an effective structure to state-space. Evidently similar remarks apply to quantum mechanics:
thus neutrons evolve in time to states that explore a subspace of the total Hilbert space isomorphic
to the (unsymmetrised) tensor product of the space of (symmetrized) states of hydrogen atomsHNA

S
with the space of (symmetrized) states of helium atoms HNB

S , of the form HNA
S ⊗HNB

S , or broken
down further into isotopes (and likewise for lithium and beryllium). The story for the rest of the
chemical elements is more complicated, involving the life-cycles of stars, but is similarly embedded
in nuclear physics, whilst the fixing of chemical properties generally is in the completely different
regime of atomic and molecular physics. All of this is entirely familiar, unproblematic, and deep. It is
the remarkable story of the dynamical emergence of complex stable molecules not as distinguishable
particles, but as natural kinds.

Returning to the Gibbs paradox, it is clearer that (i), the discontinuity puzzle, never was a puzzle
about how to pass from identical particles to distinguishable particles. It was a puzzle about the
differentiation of gases (each a gas of indistinguishable particles), and how such a differentiation can
arise in a continuous way. The answer is that differentiation is emergent, arising with demarcating
properties, better or worse defined, more or less robust under perturbations, changing in these respects
in a continuous way. Thus, in the case of the coins initially elastically scattering at high enough
energies, H and T are not demarcating properties, and there is only one kind of particle; but slowly
reduce the total energy, and H and T become demarcating properties, and there are two kinds of coins.
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The transition is by degrees. If work is to be extracted on mixing, it will be more or less efficient in
consequence, the emergent structure more or less robust and well-defined.

Additionally, clearer is that the indistinguishability approach can, perfectly well, be applied to
particles that are not really identical, with respect to their state-independent properties, at all—as
witness the coins! As macroscopic bodies they, the coins in your pocket, differ in countless ways, stable
in time, surely even in their state-independent properties (supposing the state-dependent properties
concern only their bulk degrees of freedom). The question is only whether those differences matter
to the effective dynamics. If not, they might as well be treated as indistinguishable. It is the same
for the mixing of suspensions of colloid particles, suitably grouped by mass and moments of inertia.
(This case deserves special consideration, and may well be a test-case for the approach favoured here.
For relevant background, see [37]. Another test case is the kind of continuously-variable demarcating
properties of the sort considered by von Neumann [38] and Landé [39])). It is likewise for stars in the
collision of galaxies, grouped by mass and angular momentum—or people in statistical economics
models, grouped by incomes. These were the cases that were supposed to favour the distinguishability
approach: they do nothing of the kind.

However, for two collections of such ‘particles’, all within the same group, on mixing,
will there not really be an increase in entropy? No doubt; but as van Kampen remarked, an
experimentalist who ignores it ‘will not be led to any wrong results’ [3] (p. 306) (by treating them as
indisdstinguishable)—unless, of course, she ups her game, and finds a more accurate model and a
more subtle method of mixing the two collections sensitive to a finer-grained set of state-independent
properties (and indistinguishables now defined by the latter). In relation to this, in the original
mixing process there is indeed an entropy of mixing. Continuing all the way so that only a single
colloid particle or star remains for each set of state-independent properties, will yield a model of
distinguishable particles, and a Hamiltonian with no permutation symmetries: but it will hardly be
a model in statistical mechanics at all. It is rather the full N-body problem, for N different masses
and coupling constants, in all its intractable complexity. Whether there is entropy change on mixing
involves a comparison with possible physical processes whereby the gases are reversibly separated:
but they had better be thermodynamic processes (see also the ‘demon’ argument of Section 4.1).

The example of the coins illustrates the Gibbs paradox in another way. For suppose their markings
fade with wear, and eventually disappear altogether. Will it not remain true that the effective state
space is the unshaded region of Figure 3a?—there will always have been just one coin, heads up, and
just one coin, heads down, no matter that the markings have faded away entirely. The analogue, in the
Gibbs paradox, is the place of origin.

4. The Micro-Realism Puzzle

The discontinuity puzzle (i) does not arise; (ii), the extensivity puzzle, is arguably solved. We are
engaged with (iii), the micro-realism puzzle. For an early statement by Wiedeburg [19] (p. 693):

However, if we admit the mental or even practical possibility to reversibly mix or unmix
similar [gas] masses in such a way that every individually determined smallest particle is
found in the same ‘state,’ in particular in the same position, after a complete cycle, it cannot
be denied that in such a mixing process work can be won even though it does not involve
any outward change.

For one much more recent: [12] (pp. 1304–1305):

If the two gases are chemically speaking the same, the mixing will not be detectable by
looking at the usual thermodynamical quantities. This is so because in thermodynamics we
restrict ourselves to the consideration of coarse-grained macroscopic quantities, and this
entitles us to describe the mixing of two volumes of gases of the same kind, with equal P
and T, as reversible with no increase in entropy. However, if we think of what happens in
terms of the motions of individual atoms or molecules, the two processes (irreversible and
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reversible mixing) are completely similar. In other words, the qualification of the mixing
process as irreversible or reversible, and the verdict that the entropy does or does not change,
possesses a pragmatic dimension. It depends on what we accept as legitimate methods
of discrimination; chemical differences lead to acknowledged thermodynamical entropy
differences in a process of mixing, whereas mere differences in where particles come from
do not.

They identify the main question: what is a ‘legitimate’ method of discrimination, in terms of the
individual particle motions? Is a ‘mental possibility’ sufficient?

4.1. Place of Origin as a Demarcating Property

Can atoms and molecules be sorted as to their place of origin (from A or from B)? Equivalently:
do the atoms from region A and region B differ in some dynamically salient property, which can
be manipulated by the experimenter? In terms of Section 3.3: can place of origin function as a
demarcating property?

In general the answer is negative. After equilibriation, the place of origin in A or B is not, in general,
a useful way to arrange a coupling in the Hamiltonian, or to locate a degree of freedom obeying any
simple equation, or to identify any emergent phase-space structure. In special cases—given sufficiently
small numbers of particles, with the right kind of initial state and dynamics—it surely may; but if we
are speaking of ordinary gases at ordinary temperatures and pressures, on the basis of everything we
currently know, there is no effective dynamics for particles that came from A, different from that for
particles that came from B, if the particles have the same state-independent properties, by means of
which they could be resorted. Particles that really do have the same state-independent properties,
no matter how precise the dynamics (in the regimes where they exist at all), produce no entropy in
mixing. A pragmatic approach to the definition of the entropy makes sense at the level of complex
systems (but favours rather the indistinguishability approach, rather than that of van Kampen et al.,
as illustrated by the coins); realism takes over when it comes to simple microscopic particles, whose
state-independent properties really are identically the same, and halts the regress in comparison with
ever more refined methods of mixing.

Against this is Wiedeburg’s casual eliding of ‘mental’ and ‘practical’ possibilities. It has recently
been revived in the form of a ‘demon’ argument [5] (p. 372):

Figuratively speaking, think of submicroscopic computers built into the membrane that
perform an ultra-rapid calculation each time a particle hits them, to see where it came from;
or the proverbial demon with super-human calculational powers who stops or lets pass
particles depending on their origin. In general, of course, allowing expedients of this kind
may upset thermodynamical principles, in particular the second law of thermodynamics.
However, in the thought experiment we propose here we make a restricted use of these
unusual membranes. The idea is merely to employ them for the purpose of demonstrating
that if gases are mixed and unmixed by selection on the basis of past particle trajectories and
origins, as should be possible according to classical mechanics, this leads to the emergence of
an entropy of mixing.

Whether or not there is an entropy of mixing of gases depends on possible dynamical processes
whereby they can be separated—granted. Is there not the mere possibility of a membrane thus imagined
sufficient to conclude there is always an entropy of mixing, even for identical gases?

However, it is noteworthy that neither Maxwell, nor Thomson, appealed to demons with these
capabilities. Indeed they would not be Maxwell demons at all—creatures that Maxwell and Thomson
took pains to insist were just like simple mechanisms (just very tiny) [40] (pp. 3–6). They are rather
demons in the sense of Laplace, possessed of computational powers sufficient to trace the real-time
motions of 1020-plus interacting particles through the entire process of equilibriation and beyond. These
are powers not super-human, but supernatural. (Notice that there is no difficulty in accommodating
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sorting actions of Maxwell demons which can be modelled as simple mechanical systems, in terms of
our framework of demarcating properties. Values of certain degrees of freedom of the demon may well
be used as demarcating properties, simplifying the statistical mechanical description of the process
of sorting).

Since, in reality, so far as we know, there are only quantum microscopic particles, and because,
in general states they will be GMW-entangled, so that there will be no particle trajectories (putting
to one side hidden-variable theories), it could be argued that, in reality, not even an array of Laplace
demons could restore the original situation. That is surely true, if confined to local operations, but
if the demons act in concert why not suppose, since we are granting them unlimited computational
powers, that they can reverse the global quantum state, and restore the particles to each side of the
partition in that way? Or, better still, give up on this line of argument altogether.

The better conclusion to be drawn is that if two samples of a gas are to be reliably separated
from one another, as a matter of the local physics, then they had better in fact differ in some occurent
demarcating property, or in some occurent stable dynamical property that can become salient and,
hence, that can function as a demarcating property, one that an effective, local Hamiltonian can actually
see. Chemical properties, shapes, and composition of molecules are prime examples of properties that
are of this kind; place of origin, once the partition is removed and equilibriation has occurred, is a
prime example of a property not of this kind.

4.2. Equilibration

Why is this, exactly?—why do details of the past not matter to the ‘effective’ dynamics?
The question can be posed, even, considering the gas contained in A in isolation (when there is
no gas in region B).

The answer is specific to equilibrium statistical mechanics. Place of origin does not matter because
we suppose that the entire region of state space consistent with the equilibrium macrostate is available,
no matter that the actual history of the gas implies that only a tiny fraction of the macrostate will be
explored. At the fine-grained level, when equilibrating with increase in entropy, a gas evolves,
under the Hamiltonian flow, into an enormously fibrillated structure spreading throughout the
newly-available phase-space volume. But, on pain of violating Liouville’s theorem, it occupies exactly
the same volume as before. The ‘newly-available volume’, in contrast, is much larger, corresponding
to the new equilibrium macrostate with a correspondingly greater entropy.

Crucially, so long as we move forward in time, we do not go wrong in choosing a random microstate
in this new equilibrium region for future predictions (and use a uniform probability density or volume
measure over the macrostate accordingly). Any such choice is as likely to produce entropy-increasing
behaviour into the future as is the actual microstate of the gas. The reason is that the dynamics is
forward-compatible, to use Wallace’s terminology [41]: forward evolve from t0, coarse-grain—take the
average over coarse-grained regions of phase space—forward evolve, coarse-grain, repeat, ending
at some final time tn: the result is the same as evolving from t0 to tn and coarse-graining only once
at the end. (This is a claim that needs to be—and has—been proved case by case.) The fact that any
such choice is just as likely to produce entropy-increasing behaviour into the past, unlike the actual
microstate, need not disturb us at all.

The arguments for this approach to reconciling thermodynamic irreversibility with an underlying
classical reversible dynamics (essentially solving Loschmidt’s Paradox), including the need for a
low-entropy initial state to the universe (the ‘past hypothesis’), have been widely debated, and have
recently reached some consensus, at least in the philosophy of physics literature [42]). They go through
more or less unchanged in quantum mechanics [43], ([44], pp. 324–360) (although this point is more
contentious). We take all this as given.

We use it to conclude, in the specific case of diffusion of NA particles initially confined to A into
the volume V, that the effective state space (whether on reversible or irreversible expansion into V)
may be taken as the full phase space volume corresponding to the spatial volume V, yielding an
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increase in the equilibrium entropy, and that this is the same whether we use the reduced or unreduced
phase space. The fact that, in actuality, it is impossible that every phase space point in the equilibrium
macrostate ΓN

V (or γN
V ) could be explored by the gas under the actual dynamics, given that all the

particles were originally confined to region A, will not matter in the slightest. However, if now we
suppose that there are initially NB particles in B as well, identical to those in A, to take the product of
the volumes of the equilibrium states (with the partition removed) of each considered separately will
lead to overcounting: of points not contained in the Hamiltonian flow from A (but contained in the
flow from B), and vice versa. In this sense the equilibriation of the gas from A, and the gas from B,
are not independent processes. This point repays further attention.

4.3. Independence

As we have seen, when the count of cells in phase space has a physical meaning, and away from
the dilute, high-temperature limit, identical particles are not independently distributed. However, in
the classical case, where the dilute limit C � N can always be taken, the occupation numbers are 0 s
and 1 s, and statistical independence is restored. In what sense, then, is the diffusion of like gases in
classical theory into a common volume not independent?

Consider first the case of non-interacting but distinct gases. The initial state space for the Gibbs
set-up is then γ

NA
VA
× γNB

VB
, with the Hamiltonian sensitive to factor-position in this pair of factors. When

the partition is removed, this factor structure remains, and the effective state space is enlarged to γ
NA
V ×

γNB
V . The available volume has increased from:

CA
NA

NA!
CB

NB

NB!
(11)

to:
(CA + CB)

NA

NA!

(CA + CB)
NB

NB!
. (12)

The logarithm of the ratio of Equations (11) and (12) is Equation (1), the entropy of mixing (recall
that CA/CB = VA/VB). The total entropy is the sum of the entropies of the two gases, A and B. Each
has diffused throughout V as if the other were not there (because non-interacting), and each increases
its entropy.

Let the gases now be identical and, as before, let them be non-interacting (so the gas is ideal).
As long as the partition is in place, ‘region A’ and ‘region B’ continue to function as demarcating
properties; the physical exchange of particles from A with particles from B is kinematically impossible,
and the Hamiltonian is different for the A particles than for the B particles (the forces directed by the
partition on the A particles are different from those directed on the B particles). The available phase
space structure is, therefore, initially the same as for unlike gases, γ

NA
VA
× γNB

VB
, and the volume of the

initial equilibrium macrostate is as before, Equation (11). When the partition is removed, however,
granted that ‘origin in A’ and ‘origin in B’ define no effective phase space structure, no effective
Hamiltonian, and do not function as demarcating properties, the available state space is γN

V , and not
γ

NA
V × γNB

V . In place of (12) the new phase-space volume is:

(CA + CB)
NA+NB

(NA + NB)!
. (13)

Evaluating the logarithms of Equations (11) and (13) in the Stirling approximation, the answers
are the same, and there is no entropy of mixing.

Observe that Equation (13), unlike Equation (12), cannot be written as the product of the volumes
of the two equilibrium macrostates for A and B considered separately; the entropy of the total system
is not the sum of the entropies of its two parts once the partition is removed, even when the parts—the
gases from A and B—are non-interacting. Each taken on its own, with the removal of the partition,
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would increase in entropy; if each diffused independently of the other, the entropy of each would
increase and, therefore, the sum of the two entropies would increase as well

To understand why independence fails, suppose C � N, so the occupation numbers consist only
of 0 s and 1 s. Microstates defined with respect to this fine-graining merely record which N of the C
cells are occupied by single particles. Consider any one of these microstates: there are N!/NA!NB!
ways of writing it as an ordered pair of microstates for NA and NB particles, corresponding to all the
ways of partitioning the N occupied cells into NA cells and NB cells—equivalently, corresponding to
all particle exchanges between A and B. However, these are not distinct microstates (not even when
reduced to points, as argued in Section 3.2; we shall come back to this in the next section).

Considering the NA particles from A and the NB particles from B as independently distributed
after the partition is removed, is to suppose the state-space has the structure γ

NA
V × γNB

V ,—but that
structure (or rather the structure γ

NA
VA
× γNB

VB
) disappeared with the removal of the partition. Appealing

to it all the same, the factor position is used to draw a distinction—of each occupied cell, whether
it is of the A-type or the B-type (whether it is associated with the first factor or the second factor).
However, when the particles are identical, the cells only come in one type, for that kind of particle;
and, otherwise, are just fine-grained values of position and momentum.

Microstates are not built up by first distributing NA particles among the C cells, and then NB,
independent of the first NA (counting all the ways this can be done, in this order), no more than they
are built up by assigning particles singly, each independent of the others (and counting all the ways
this can be done, in order). In the first case the overcount is N!/NA!NB!; in the second case it is N!.

4.4. Particle Trajectories

We concluded there was no pairing of each occupied cell, after the partition is removed, with
A-type or B-type; no specification of cell, by reference to place of origin of the particle that occupies
it. That may be true of cells in some fine-graining, but surely if we get down to actual points, there is
always a pairing—provided by the actual dynamics.

Thus, much must be granted (and marks a difference from quantum mechanics, in the absence of
particle trajectories). However, as we saw in Section 4.2, the equilibrium entropy is a measure of all
phase space points kinematically accessible, not just those in the Hamiltonian flow given the actual
dynamics and initial state. The crucial question is whether there are points kinematically accessible
after the shutter is released, that were not accessible before.

Consider Figure 4, depicting space-time diagrams for ‘typical’ kinematically possible particle
motions in the Gibbs set-up from t1, before the partition is removed, to t2, after, in the case NA = 3,
NB = 4. In (a), the partition remains in place throughout; in (b) it is removed at time t′. At t2 the
microstate (now a point in reduced phase space) of (a) and (b) is the same, considered as an unordered
set of positions and momenta, but it has been reached in (b) in a way impossible in (a). Indeed, there
are N!/NA!NB! distinct pairings possible (35 in the case of Figure 4). Does this mean that there are
35 distinct microstates at t2 all of them identical as unordered sets of positions and momenta? Not by
virtue of any state-independent property, if the particles are identical; nor, by supposition, with respect
to any state-dependent property.
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Figure 4. Space-time diagram of typical particle trajectories in the Gibbs set-up. In (a) the partition
remains in place; In (b) the partition is removed at t’. The particle positions and momenta, without
regard to pairings in A and B, are the same in (a,b); In (c) particles are physically switched between t2

and t3 by the curve σ
g
π , restoring the state at t3 to the pairing in (a) at t2.

Observe now that the two microstates at t2 in Figure 4a,b are the beginning and end points of
physical switches. In Figure 4c, the motions of (b) are extended by the curve σ

g
π (or σπ in the unreduced

space), where π is the permutation restoring the pairing between initial and final states as in (a).
However, as a curve in the reduced state space, physical switches, we know from Section 3.2, begin
and end at the same point. The microstate at t3 in Figure 4c is uncontroversially the same as at t2 in (a)
(because the pairings are the same), but are also the same as at t2 in (b) (because they are connected by
a physical switch); therefore, the microstates at t2 in (a) and (b) are the same.

If physical switchings of identical particles produce distinct microstates there is an entropy of
mixing for identical gases: if not there is none. The microrealism puzzle comes down to this.

For confirmation that this is indeed what drives the microphysical puzzle [14] (p. 742) (for
NA = NB = N, VA = VB = V):

Consider again two gas-filled chambers, each containing N identical particles. Before the
partition is removed the number of available states per particle is V. After the partition has
been removed, the number of available states is 2V. The reason is that after the partition’s
removal it has become possible for the particles to move to the other chamber. The doubling
of the number of available microstates thus expresses a physical freedom that was not present
before the partition was taken away. Trajectories in space-time have become possible from
the particles’ initial states to states in the other chamber. Particles from the left and right
sides can physically exchange their states.

It is true that new trajectories become possible, but the question is whether new microstates become
accessible. The same ambiguity is evident in the quotation from Pais. Our answer is that there are
none—or not because of exchanges of particles between A and B.

There is, however, another reason why new points in phase space become available, when the
barrier is removed—and why, as is evident from Figure 3a, there is an entropy of mixing even of
identical gases. There are points reachable by motions in Figure 4b, not reachable by any motion of the
form Figure 4a—namely, those that differ in how many particles at t2 are in region A, and how many
in B. At the level of the fine-graining into C cells, new occupation numbers are permitted, summing
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to new numbers N′A 6= NA, N′B 6= NB (but still, of course, summing to N). Accounting for all these,
the total number of possible distributions after the partition is removed is (summing over all possible
values of NA and NB consistent with the constraint):

∑
NA+NB=N

CA
NA

NA!
CB

NB

NB!
(14)

which is (exactly) equal to the volume given by Equation (13). The reason that Equation (14) also
agrees with Equation (11), in the Stirling approximation (when (11) is only one term in the summand of
Equation (14)), is because the overwhelming majority of states are those for which the number-densities
are the same (NA/CA = NB/CB). The situation in this regard is no different from the pressure, where
fluctuations in the equilibrium state are possible, but make a vanishingly small contribution to the
entropy. (Thus, in Figure 4b, the trajectories are ‘typical’ in that the same numbers NA and NB at t2 are
the same as at t1).

5. Conclusions

We may probe the quantum mechanical state space using the same technique of kinematically
possible trajectories, using special states and unitary equations of the form considered in Section 3,
in which case the entire argument of Section 4 goes unchanged. (However, it is hardly an adequate
microrealist account of diffusion in more general states, an account in which decoherence will figure
prominently.) To return to Schrödinger’s remark, the ‘exchange between like particles’ is a perfectly
possible real process (as is diffusion itself), but it is consistent with no entropy change, for it produces
no new kind of event.

We are surely pushing at an open door in the quantum case. What of the classical? If the initial and
final states of Figure 2b can be identified when the trajectories are those of quantum particles, there can
be no general prohibition against the identification of states related by switches when the trajectories
are those of classical particles. There is no difficulty with their mathematical identification, as shown
in Section 3.1; there is no logical impediment; a metaphysical argument can surely be constructed to
defeat the identification, but it is as likely to defeat itself (it is not a virtue of a speculative metaphysical
argument that it contradicts our best physics)—unless, much more excitingly, it is shown how to bring
it to experimental test (as Bell showed, in the case of local determinism).

Failing disconfirmation of this kind, we conclude that physical switches of identical particles
return the same state, as a consequence of passing to the quotient space of N-particle state spaces
under permutations, the same in classical mechanics as in the quantum case. With that there is no
longer a rationale for an entropy of mixing of identical gases on the basis of microrealism, even in
classical theory. No new points in phase space are explored, after the barrier is removed, other than
those involved in statistical fluctuations of number densities.

The microrealism puzzle is comprehensively solved. The extensivity puzzle does not arise.
The discontinuity puzzle is solved by the recognition that it is a puzzle about the differentiation of
substances in terms of demarcating properties. Gases of distinguishable particles, in the traditional
sense, are convenient fictions, useful by virtue of Equation (9). Where there are large numbers of
complex bodies (like colloid particles or stars), insofar as they can be treated by statistical mechanical
methods at all, it had better be possible to group them into kinds, each with similar state-independent
properties (as goes the effective dynamics), hence, as indistinguishable within each kind. The real
application of the concept of distinguishable particles is not in statistical mechanics at all: it is in the
N-body problem, classical or quantum.

Funding: The support of the Leverhulme Foundation is gratefully acknowledged.

Conflicts of Interest: The author declares no conflict of interest.



Entropy 2018, 20, 552 23 of 24

References

1. Gibbs, J. Elementary Principles in Statistical Mechanics; Yale University Press: New Haven, CT, USA, 1902.
2. Huang, K. Statistical Mechanics, 2nd ed.; Wiley: New York, NY, USA, 1987.
3. Van Kampen, N. The Gibbs paradox. In Essays in Theoretical Physics in Honour of Dirk ter Haar; Parry, W.E., Ed.;

Pergamon Press: Oxford, UK, 1984.
4. Bach, A. Indistinguishable Classical Particles; Springer: Berlin, Germany, 1997.
5. Dieks, D. Gibbs paradox revisited. In Explanation, Prediction, and Confirmation, the Philosophy of Science in a

European Perspective; Dieks, A., Gonzalez, W., Hartmann, S., Uebel, T., Weber, M., Eds.; Springer: Amsterdam,
The Netherlands, 2011; pp. 367–377.

6. Hestenes, D. Entropy and indistinguishability. Am. J. Phys. 1970, 38, 840–845. [CrossRef]
7. Fujita, S. On the indistinguishability of classical particles. Found. Phys. 1991, 21, 439–457. [CrossRef]
8. Denbigh, K.; Redhead, M. Gibbs’ paradox and non-uniform convergence. Synthese 1989, 81, 283–312.

[CrossRef]
9. Maxwell, J. Diffusion. In Encyclopaedia Britannica, 9th ed.; Baynes, T., Ed.; A. C. Black: London, UK, 1887;

Republished in The Scientific Papers of James Clerk Maxwell; Niven, W., Ed.; Cambridge University Press:
Cambridge, UK, 1890; Volume 2, pp. 625–646.

10. Gibbs, J. On the Equilibrium of Heterogeneous Substances; The Connecticut Academy of Arts and Sciences:
New Haven, CT, USA, 1878; Volume 3, pp. 343–524.

11. Jaynes, E. The Gibbs’ paradox. In Maximum-Entropy and Bayesian Methods; Erickson, G., Neudorfer, P.,
Smith, C., Eds.; Kluwer: Dordrecht, The Netherlands, 1992.

12. Dieks, D. The logic of identity. Distinguishability and indistinguishability in classical and quantum physics.
Found. Phys. 2014, 44, 1302–1316. [CrossRef]

13. Dieks, D.; Lubberdink, A. How classical particles emerge from the quantum world. Found. Phys. 2011, 41,
1051–1064. [CrossRef]

14. Dieks, D.; Versteegh, M. The Gibbs paradox and the distinguishability of identical particles. Am. J. Phys.
2011, 79, 741–746.

15. Maxwell, J. Introductory lectures on experimental physics. In The Scientific Papers of James Clerk Maxwell;
Niven, W., Ed.; Cambridge University Press: Cambridge, UK, 1890; Volume 1, pp. 241–255.

16. Neumann, C. Bemerkungen zur mechanischen Theorie der Wärme. König. Sachs. Gesell. D. Wiss. Z. Leipzig
Math-Phys. Klasse Verhand. 1891, 75–156.

17. Duhem, P. Sur la Dissociation Dans les Systèmes qui Renferment un Mélange de Gaz Parfaits; Travaux et Mémoires
des Facultés de Lille: Lille, France, 1892; Volume 2, mémoire 8.

18. Darrigol, O. The Gibbs paradox: Early history and solutions. Entropy 2018, 20, 443. [CrossRef]
19. Wiedeburg, O. Das Gibbs’sche Paradoxon. Ann. Phys. 1891, 53, 684–697. [CrossRef]
20. Ehrenfest, P.; Trkal, V. Deduction of the dissociation equilibrium from the theory of quanta and a calculation

of the chemical constant based on this. Proc. Amst. Acad. 1920, 23, 162–183, Reprinted in Paul Ehrenfest,
Collected Scientific Papers; Klein, M., Ed.; North-Holland: Amsterdam, The Netherlands, 1959.

21. Swendsen, R. Statistical mechanics of classical systems with distinguishable particles. J. Stat. Phys. 2002, 107,
1143–1166. [CrossRef]

22. Swendsen, R. Probability, entropy, and Gibbs’ paradox(es). Entropy 2018, 20, 450. [CrossRef]
23. Dieks, D. The Gibbs paradox and particle individuality. Entropy 2018, 20, 466. [CrossRef]
24. Ehrenfest, P.; Kammerlingh Onnes, H. Simplified deduction of the formula from the theory of combinations

which Planck uses as the basis of his radiation theory. Proc. Amst. Acad. 1914, 17, 870–872, Reprinted in Paul
Ehrenfest, Collected Scientific Papers; Klein, M., Ed.; North-Holland: Amsterdam, The Netherlands, 1959; pp.
353–356. [CrossRef]

25. Ehrenfest, P. Welche Züge der Lichtenquantenhypothese spielen in der Theorie der Wärmestrahlung eine
wesentliche Rolle. Ann. Phys. 1911, 36, 91–118, Reprinted in Paul Ehrenfest, Collected Scientific Papers; Klein,
M., Ed.; North-Holland: Amsterdam, The Netherlands, 1959; pp. 185–212. [CrossRef]

26. Natanson, L. On the statistical theory of radiation. Bull. Acad. Sci. Crac. 1911, 134–148.
27. Schrödinger, E. Statistical Thermodynamics; Cambridge University Press: Cambridge, UK, 1946.
28. Saunders, S. On the explanation of quantum statistics. Stud. Hist. Philos. Mod. Phys. 2006, 37, 192–211.

[CrossRef]

http://dx.doi.org/10.1119/1.1976480
http://dx.doi.org/10.1007/BF00733357
http://dx.doi.org/10.1007/BF00869318
http://dx.doi.org/10.1007/s10701-014-9814-0
http://dx.doi.org/10.1007/s10701-010-9515-2
http://dx.doi.org/10.3390/e20060443
http://dx.doi.org/10.1002/andp.18942891206
http://dx.doi.org/10.1023/A:1015161825292
http://dx.doi.org/10.3390/e20060450
http://dx.doi.org/10.3390/e20060466
http://dx.doi.org/10.1080/14786440208635308
http://dx.doi.org/10.1002/andp.19113411106
http://dx.doi.org/10.1016/j.shpsb.2005.11.002


Entropy 2018, 20, 552 24 of 24

29. Saunders, S. Indistinguishables. In The Oxford Handbook of Philosophy of Physics; Batterman, R., Ed.; Oxford
University Press: Oxford, UK, 2013; pp. 340–380.

30. Ghirardi, G.; Marinatto, L.; Weber, Y. Entanglement and properties of composite quantum systems:
A conceptual and mathematical analysis. J. Stat. Phys. 2002, 108, 112. [CrossRef]

31. Ghirardi, G.; Marinatto, L. General criterion for the entanglement of two indistinguishable states’. Phys. Rev. A
2004, 70, 012109. [CrossRef]

32. Caulton, A. Entanglement by (Anti-)Symmetrisation Does not Violate Bell’s Inequalities. Manuscript in
preparation.

33. Saunders, S. On the emergence of individuals in physics. In Individuals across the Sciences; Guay, A., Pradeu, T.,
Eds.; Oxford University Press: New York, NY, USA, 2016.

34. Pais, A. Subtle is the Lord: The Science and the Life of Albert Einstein; Oxford University Press: Oxford, UK, 1982.
35. Leinaas, J.; Myrheim, J. On the theory of identical particles. IL Nuovo Cimento 1977, 37B, 1–23. [CrossRef]
36. Goldstein, S.; Taylor, J.; Tumulka, R.; Zanghi, N. Are all particles identical? J. Phys. 2005, A38, 1567–1576.

[CrossRef]
37. Cates, M.; Manoharan, N. Celebrating Soft Matter’s 10th anniversary: Testing the foundations of classical

entropy: Colloid experiments. Soft Matter 2015, 11, 6538–6546. [CrossRef] [PubMed]
38. Von Neumann, J. Mathematical Foundations of Quantum Mechanics; Beyer, R., Translator; Princeton University

Press: Princeton, NJ, USA, 1955.
39. Landé, A. Solution of the Gibbs entropy paradox. Philos. Sci. 1965, 32, 192–193. [CrossRef]
40. Leff, H.; Rex, A. (Eds.) Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing; Institude

of Physics: Bristol, UK, 2003.
41. Wallace, D. The logic of the past hypothesis. In Time’s Arrows and the Probability Structure of the World;

Loewer, B., Weslake, B., Winsberg, E., Eds.; Harvard University Press: Cambridge, MA, USA, 2011. Available
online: http://philsci-archive.pitt.edu/id/eprint/8894 (accessed on 24 July 2018).

42. Loewer, B.; Weslake, B.; Winsberg, E. (Eds.) Time’s Arrows and the Probability Structure of the World; Harvard
University Press: Cambridge, MA, USA, forthcoming.

43. Zeh, D. The Physical Basis of the Direction of Time, 5th ed.; Springer: Berlin, Germany, 2007.
44. Wallace, D. The Emergent Multiverse: Quantum Theory According to the Everett Interpretation; Oxford University

Press: Oxford, UK, 2012.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1015439502289
http://dx.doi.org/10.1103/PhysRevA.70.012109
http://dx.doi.org/10.1007/BF02727953
http://dx.doi.org/10.1088/0305-4470/38/7/012
http://dx.doi.org/10.1039/C5SM01014D
http://www.ncbi.nlm.nih.gov/pubmed/26235667
http://dx.doi.org/10.1086/288041
http://philsci-archive.pitt.edu/id/eprint/8894
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Solutions 
	Thermodynamics and the Discontinuity Puzzle 
	Extensivity 
	The Quantum Approach 

	Reconsidering Indistinguishability 
	Indistinguishabilty and Sequence-Position 
	Permutations as Active Transformations 
	Demarcating Properties 

	The Micro-Realism Puzzle 
	Place of Origin as a Demarcating Property 
	Equilibration 
	Independence 
	Particle Trajectories 

	Conclusions 
	References

