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Abstract: Consider a network consisting of two independent single-antenna sources, a single-antenna
destination and a helping multiple-antenna relay. This network is called a dual-hop multiple access
relay network (MARN). In this network, sources transmit to the relay simultaneously in the first time
slot. The relay retransmits the received sum-signal to the destination using a linear beamforming
scheme in the second time slot. In this paper, we characterize the achievable rate region of MARN
under linear beamforming. The achievable rate region characterization problem is first transformed
to an equivalent “corner point” optimization problem with respect to linear beamforming matrix
at the relay. Then, we present an efficient algorithm to solve it via only semi-definite programming
(SDP). We further derive the mathematical close-forms of the maximum individual rates and the
sum-rate. Finally, numerical results demonstrate the performance of the proposed schemes.

Keywords: beamforming; multiple-access relay network (MARN); achievable rate region;
semi-definite relaxation; semi-definite programming

1. Introduction

Wireless networks today are facing with challenges of high demands of reliable transmission and
throughput while reducing signal interference. Relay-based cooperative networks are proposed
to overcome these challenges and the essence here is to design relay strategies among sources
and relay nodes. Compared with others like decode-forward (DF) and compress-forward (CF),
amplified-forward (AF) has advantages of simple implementation and low relaying cost and is thus
preferred in designing cooperative networks [1,2]. In fact, it has been shown optimal in some cases [3].

One popular variant of AF is linear beamforming. It achieves high transmission rate by generating
pencil beams to concentrate signals in a narrow direction towards intended receivers, and therefore
significantly reduces interference from omni-directional antenna transmissions. For this reason,
linear beamforming is widely applied in wireless relay networks as a promising relaying strategy [4,5].
The objective of linear beamforming design is to find the optimal beamforming vector that achieves
maximum end-to-end data rate under power constraints, either individually or by sum-power [6–8].
Depending on multiple antennas at relay, the objective becomes to find a beamforming matrix in
multiple-input-multiple-output (MIMO) systems [9–11]. In the latter case, it is actually to solve a
matrix-monotonic optimization problem.

Another approach to avoid collision in wireless half-duplex mode is analog network coding (ANC).
In [12], Katti et al. proposes an analog network coding (ANC) relaying scheme, which allows relay
nodes to receive the sum-signal from multiple sources in one time slot. When we have two separate
sources, we can utilize ANC to combine the process of multiple signals and beamforming to address
the capacity. Such a combination of ANC and AF [13] has been shown to improve the performance.
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In [14], the authors make the first attempt to investigate the error rate and the power allocation of
a MARN with ANC uninvolved with the system capacity. However, the capacity is more important in
many cases. There have been several attempts to achieve high information rate by finding optimal
beamforming in MARN. The pioneer work [15] fully characterizes the complete achievable rate
region of a dual-hop MARN where linear beamforming is employed under the sum power constraint.
To obtain the optimal linear beamforming vector, the authors propose weighted sum-rate maximization
approach. Unfortunately, when power is constrained individually rather than in a sum, such approach
is hard to solve [16] for its prohibitive computational complexity. A new and effective method is
proposed in [17] to find the optimal linear beamforming vector for the same MARN under an individual
power constraint. Note that existing work assumes that the relays have only one antenna. To the best
of our knowledge, the achievable rate region for a multi-antenna relay is still unknown.

In this paper, we investigate communications on MARN with two independent source nodes,
one destination node and one multi-antenna relay. This network model captures various wireless
systems like wireless monitoring system (WMS), in which multiple monitoring terminals transmit
messages to a monitoring center through a multi-antenna relay station for remote monitoring under
the sum-power constraint. Both ANC and beamforming are applied at the relay node.

Our main contribution of this paper is to propose an efficient scheme to characterize the achievable
rate region and its corresponding linear beamforming matrix. Specifically, we give a families of corner
point (CP) optimization formulations to determine the achievable rate region by solving a series of CP
non-convex optimization problems. We then show how to transform them to semi-positive definite
(SDP) convex problems. To lower the computational burden of solving SDP, we propose an optimal
structure of linear beamforming matrix such that the number of independent variables in linear
beamforming matrix is reduced to a small constant. Finally, we derive the mathematical close-forms of
the maximum individual rates and the sum-rate. Our scheme has the following advantages:

• High transmission rate: Beamforming can suppress the inference from antennas in relay for its
targeted nature. ANC can fully utilize the inference from different users rather than avoid it to
improve the transmission signal-to-noise ratio (SNR). Based on the simulation results, we find
that our scheme can obtain a higher transmission rate at the same cost.

• Low computational complexity: we propose an optimal structure of an AF matrix employing
singular-value decomposition, and reduce the number of design variables in the relay
beamforming matrix from K2 to r2, r ∈ (1, 2, 3). Then, the number of variable parameters
in SDP will decrease significantly.

The rest of this paper is organized as follows. The network model and problem statement are
presented in Section 2. The method to design the ANC beamforming matrix is presented in Section 3.
The mathematical closed-forms of the maximum individual rates and the sum rate are derived in
Section 4. Then, the simulations are given in Section 5, and all of the detailed proofs are arranged
in appendixes.

Notation: Scalars are denoted by lower-case letters, e.g., x, and bold-face lower-case letters
are used for column vectors, e.g., x, and bold-face upper-case letters for matrices, e.g., X
and let X = [x1, x2, · · · , xn]. In addition, tr(·), det(·), (·)∗, (·)T , (·)† and (·)−1 denote the
trace, determinant, conjugate, transpose, Hermitian transpose and inverse matrix, respectively.
blkdiag(X1, · · · , Xn) denotes a block-diagonal square matrix with X1, · · · , Xn as the diagonal elements,
and vec(X) = [xT

1 , xT
2 , · · · , xT

n ]
T . ⊗ denotes the Kronecker product. || · || denotes the Euclidean norm.

In is the n identity matrix. E [·] is the expectation operation. log(·) denotes the logarithm in the base 2.

2. Network Model

Consider a wireless monitoring system in Figure 1. In this paper, the direct links between the
two wireless cameras and monitoring center are ignored since the monitor is far away the cameras.
In addition, the destination receives the signals in maximal ratio combining (MRC). The system SNR is
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the sum of SNRs in all links. Apparently, the SNRs in these direct links are independent of the linear
beamforming matrix. It does not affect the design of beamforming. This actual transmission model
can be transformed mathematically as a MARN shown in Figure 2.

Wireless camera

Wireless  Camera

Relay Station

Monitoring Centre

 

Figure 1. Wireless monitoring system.
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Figure 2. Network model.

The MARN consists of two single antenna sources, S1 and S2, a helping K antennas relay R,
and a single antenna destination D. All of the channels are assumed flat-fading over a common
narrow-band. The relay works in half-duplex mode and there is no direct link from S1 and S2 to D.
For a Gaussian multiple access channel, time division multiple access (TDMA), frequency division
multiple access (FDMA), and code division multiple access (CDMA) are the general multiple access
modes. In TDMA mode, the sources use non-overlapping time periods to complete the transmission.
Thus, the receiver can separate signals according to different time periods. In FDMA mode, the sources
transmit signals simultaneously in the mutually disjoint frequency bands. Then, the receiver can
separate signals according to different frequency bands. In the CDMA mode, the sources transmit the
signals using different codes simultaneously. Thus, the receiver decodes one by one to separate the
signals. According to [18], the multiple access channel can achieve a larger rate region in CDMA mode.

In this paper, the two sources will complete the communication in CDMA. Assume that the
sources S1 and S2 independently generates the 2nr1 and 2nr2 codewords in the rates r1 and r2 with the
block-length n. Note, in this paper, r1 and r2 represent the information rates rather than the data rates
or frame rates. The code symbols x1 ∼ CN (0, P1) and x2 ∼ CN (0, P2). P1 and P2 denote the transmit
powers of S1 and S2. In practice, S1 and S2 transmit the codewords x1 and x2 with the block-length n to
the relay simultaneously. The destination performs decoding after receiving yD with the block-length
n. The method of separating these two signals at the destination through decoding will be described
later. In this case, the frame rates of the two sources are the same. Therefore, we can perform ANC at
the relay without affecting decoding. Since the lengths of the two codewords from S1 and S2 are the
same, we can consider this mode through discussing the single symbol transmission. During the first
time slot, both S1 and S2 transmit simultaneously to R, which uses a linear beamforming scheme to
retransmit the received sum signal with noise to D during the second time slot. It is also assumed that
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perfect synchronization are established among S1 and S2 prior to data transmission. The baseband
signal received at R in the first time slot is expressed as

yR = f1x1 + f2x2 + zR, (1)

where yR ∈ CK×1 is the signal vector received at R; f1 ∈ CK×1 and f2 ∈ CK×1 represent the channel
vectors from S1 to R and from S2 to R, respectively, which are assumed constant during the transmission.
zR ∈ CK×1 is noise vector at the relay, and without loss of generality (w.l.o.g.), zR ∼ CN (0, IK).
For ANC is exploited in the antennas of relay, the signals from S1 and S2 are summed in the antennas.
Upon the K sum-signals, the relay processes them employing a linear beamforming matrix A, and then
retransmits it to D during the second time slot. Mathematically, the signals vector retransmitted at R
can be concisely represented as

xR = AyR, (2)

where xR ∈ CK×1 is the signal vector retransmitted at R, and A ∈ CK×K is the beamforming matrix.
The relay has a power budget PR,max. Thus, the signal vector retransmitted at R should satisfy the

following constraint:

E[|xR|2] = ||Af1||2P1 + ||Af2||2P2 + tr(AA†) ≤ PR,max. (3)

We use Ω = {A|A satisfies Equation(3)} to denote the set of all beamforming matrices satisfying
the relay power constraint. As a result, given a beamforming matrix A, the signal received at D can be
expressed as

yD = fT
3 Af1x1 + fT

3 Af2x2 + fT
3 AzR + zD, (4)

where zD ∼ CN (0, 1) is the noise at destination, and f3 ∈ CK×1 denotes the channel vector from R to D.
We assume that perfect channel state information (CSI) has been collected at R prior to transmission.

From Equation (4), the dual-hop MARN with linear beamforming can be considered as a
conventional Gaussian multiple-access channel (MAC) on matrix A as follows:

yD(A) = xeq,1(A) + xeq,2(A) + zeq(A), (5)

where xeq,1(A) = fT
3 Af1x1 and xeq,2(A) = fT

3 Af2x2 are the information symbols of the two
equivalent sources and zeq(A) = fT

3 AzR + zD is the equivalent Gaussian noise drawn according
to CN (0, ||fT

3 A||2 + 1). To distinguish them, we denote the former one as MAC(A). The capacity region
of a Gaussian MAC y = x1 + x2 + z can be found in ([18], Section 14.3). According to the capacity region
of the Gaussian MAC, the achievable rate region of MAC(A) is denoted by R(A) given as follows

R(A) =



(r1(A), r2(A)) : r1(A) ≤ 1
2

log(1 +
|fT

3 Af1|2P1

||fT
3 A||2 + 1

)

r2(A) ≤ 1
2

log(1 +
|fT

3 Af2|2P2

||fT
3 A||2 + 1

)

r1(A) + r2(A) ≤ 1
2

log(1 +
|fT

3 Af1|2P1 + |fT
3 Af2|2P2

||fT
3 A||2 + 1

)


. (6)

For notation brevity, we denote C1(A) = 1
2 log(1 +

|fT
3 Af1|2P1
||fT

3 A||2+1
), C2(A) = 1

2 log(1 +
|fT

3 Af2|2P2
||fT

3 A||2+1
),

Csum(A) = 1
2 log(1 +

|fT
3 Af1|2P1+|fT

3 Af2|2P2
||fT

3 A||2+1
) and the union of the achievable rate sets R(A)’s by

R = ∪A∈Ω R(A). By the time-sharing technique, the achievable rate region of an MARN is given by
cvx(R), where cvx(·) represents the convex hull of a set.

In information theory, the hypothesis that the decoder at the destination knows the codebooks
of the source S1 and the S2 is practical. First, the decoder amplifies the all 2nr1 codewords x1 with
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fT
3 Af1 to obtain 2nr1 sequences x̂1 with the length n not changing their corresponding messages.

Similarly, the decoder can obtain 2nr2 new sequences x̂2 employing fT
3 Af2. Second, the decoder selects

the sequence combination (x̂1, x̂2) with the smallest Euclidean distance from y among all sequence
combinations. Then, the decoder can determine the codeword combination (x1, x2) transmitted by the
sources S1 and S2 corresponding the sequence combination (x̂1, x̂2). In this paper, we do not discuss
the specific decoding scheme in practice. We only cite the conclusion of Gaussian multiple access
channel capacity region in information theory.

It should be pointed out that this achievable rate region is obtained in CDMA mode with the
synchronization condition. Unfortunately, synchronization is very difficult to achieve even in the
small distance. In addition, the paper [19] pointed out that lack of synchronization can not reduce the
capacity region for multiple access channel when the block lengths of the codes are long compared
to the delay. Thus, in this paper, if the synchronization condition cannot be satisfied, as long as the
packet length of the codes is long compared to the delay, the achievable rate region of the MARN
remains unchanged.

From Equation (6), we can determine the outer bound of the achievable rate region R(A) by
maximizing C1(A), C2(A) and Csum(A) under the condition A ∈ Ω, respectively. We will obtain
the maximum values max

A∈Ω
C1(A), max

A∈Ω
C2(A) and max

A∈Ω
Csum(A) and the corresponding optimal

beamforming matrices Aopt,1, Aopt,2 and Aopt,sum. Note that they are not unique. Usually, there
exists the situation as follows:

C1(Aopt,2) < C1(Aopt,1), C1(Aopt,sum) < C1(Aopt,1),

C2(Aopt,1) < C2(Aopt,2), C2(Aopt,sum) < C2(Aopt,2),

Csum(Aopt,1) < C1(Aopt,sum), Csum(Aopt,2) < Csum(Aopt,sum).

(7)

We will provide the relationship of the achievable rate regions in Figure 3. R(Aopt,1) is in the blue
area, R(Aopt,2) is in the red area, and R(Aopt,sum) is in the violet area.

 

  

  

         

     

    

    

             

    

    

    

     

    

     

   

   

Figure 3. Relationship of the Achievable Rate Regions.

From Figure 3, it is easy to obtain the outer bound of the rate region consisting of the
polyline a → c → f → h, employing these three values C1(Aopt,1), C2(Aopt,2), Csum(Aopt,sum).
However, according to the relationship of R(Aopt,1), R(Aopt,2), R(Aopt,sum), we can not determine the
beamforming matrices corresponding to the dotted line subregions b → c → d and e → f → g in
Figure 3. Therefore, it is unknownwhether these two subregions are achievable. Additionally, using
time-sharing, we can obtain the straight line b → d of the “upper corner” of regions R(Aopt,2) and
R(Aopt,sum) and e→ g of the “low corner” of regions R(Aopt,1) and R(Aopt,sum). Obviously, the inner
bound of the rate region with polyline a → b → d → e → g → h is achievable. Thus, these two
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subregions 4bcd and 4e f g between the inner bound and outer bound are unknown in Figure 3.
We will propose another new method to determine the achievable rate region and the corresponding
beamforming matrices in Section 3, and discuss whether this outer bound is tight in Section 4.

3. Design of ANC Encoding Matrix

In this section, we show that the problem of characterizing R(A) can be formulated as an
equivalent non-convex CP optimization problem. With several transformation tricks developed
in this study, we show that the CP optimization problem can be efficiently solved via a semi-definite
programming (SDP)-based approach. In Sections 3 and 4, the paper deals with many equivalent
transformations of optimization problems, which are tedious. We use the following Figure 4 to illustrate
the relationships of these series of optimization problems so that readers can understand easily. 
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Figure 4. Relationship of the problems.

3.1. Corner-Point Optimization Problem

We consider two special achievable rate pairs in R(A). Using the successive cancelation decoding
scheme with different decoding orders, the following rate pairs can be achieved:


Rup

1 (A) =
1
2

log(1 +
|fT

3 Af1|2P1

|fT
3 Af2|2P2 + ||fT

3 A||2 + 1
),

Rup
2 (A) =

1
2

log(1 +
|fT

3 Af2|2P2

||fT
3 A||2 + 1

),

(8)


Rlow

1 (A) =
1
2

log(1 +
|fT

3 Af1|2P1

||fT
3 A||2 + 1

),

Rlow
2 (A) =

1
2

log(1 +
|fT

3 Af2|2P2

|fT
3 Af1|2P1 + ||fT

3 A||2 + 1
).

(9)
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It is easy to verify that Rup
1 (A) + Rup

2 (A) = Csum(A), Rlow
1 (A) + Rlow

2 (A) = Csum(A). It is
observed that Rup

2 (A) = C2(A), Rlow
1 (A) = C1(A). We call these two points (Rup

1 (A), Rup
2 (A)) and

(Rlow
1 (A), Rlow

2 (A)) as the “upper-diagonal” and “lower-diagonal” corner points of R(A), respectively.
Without loss of generality, we only consider the “upper-diagonal” corner point (8), similar

to the “lower-diagonal” corner point. According to (8), we set up a problem of maximizing the
transmission rate Rup

2 (A) under the relay power constraints (3). It is necessary to add a constraint
that the transmission rate Rup

1 (A) is no less than a desired value r1 to ensure the transmission rate
of user 1 is r1 at least. Combining the fact that log(·) is an increasing function, the above-mentioned
maximization problem can be formulated as follows, which is referred to as CP optimization problems:

max
A

∣∣fT
3 Af2

∣∣2 P2

||fT
3 A||2 + 1

,

s.t.

∣∣fT
3 Af1

∣∣2 P1∣∣fT
3 Af2

∣∣2 P2 + ||fT
3 A||2 + 1

≥ γ1 (10)

||Af1||2P1 + ||Af2||2P2 + tr(AA†) ≤ PR,max,

where γ1 = 22r1 − 1 is the equivalent SNR constraint. We denote the optimal solution of the
problem (10) as Ao(r1). For notation brevity, we denote R(Ao(r1)) by R(r1). Furthermore, the
maximum possible value of r1 can be determined via solving the following problem:

max
A

∣∣fT
3 Af1

∣∣2 P1∣∣fT
3 Af2

∣∣2 P2 + ||fT
3 A||2 + 1

,

s.t. ||Af1||2P1 + ||Af2||2P2 + tr(AA†) ≤ PR,max. (11)

The maximum objective value is denoted by γ1,max, which can be easily obtained using the
approach proposed in [6]. Then, we have r1,max = 1

2 log(1 + γ1,max).

Theorem 1. For a rate pair (r1, r2) ∈ R, then, (r1, r2) ∈ R(r1).

Proof. See in Appendix A.

From Theorem 1, we can obtain a straightforward corollary shown below.

Corollary 1. The achievable rate region of a MARN cvx(R) is equal to cvx(∪r1∈[0,r1,max]
R(r1)).

According to Theorem 1 and Corollary 1, we can characterize the achievable rate region of the
MARN by the following method:

1. Solve problem (11) to obtain γ1,max.
2. Divide the interval [0, γ1,max] into some sufficiently small intervals, such that the length of the

small interval equals ε.
3. Solve problem (10) according to the dividing point γ1 and update γ1 = γ1 + ε.
4. Record the optimal value and corresponding solution of the problem (10), and repeat step 3 until

γ1 = γ1,max.

Before solving the CP optimization problem, to reduce the computational complexity, we first
investigate the structure of the optimal solution of it. Let the singular-value decomposition of matrix
[f1, f2, f3] be presented by

[f1, f2, f3] = UΣV†, (12)
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where U ∈ CK×K, Σ ∈ CK×K and V ∈ C3×K. U is an unitary matrix. Σ = diag(σ1, σ2, ...σr), σi > 0,
i = 1, 2, ...r are the positive singular values of [f1, f2, f3], and r is the rank of [f1, f2, f3]. Then, r ∈ {1, 2, 3}.
W.l.o.g., we assume σ1 ≥ σ2 ≥ ... ≥ σr. Let U = [U1, U2], where U1 is the matrix consisting of the first r
columns of U. It is clear that U1 ⊥ U2 i.e., U†

1U2 = 0. Proposition 1 is derived as follows.

Proposition 1. The optimal solutions of the CP problems (10) and problem (11) have the following stucture:

A = U∗1BU†
1. (13)

Proof. See in Appendix B.

It is known that the retransmitted signals vector can be expressed as

xR = Af1x1 + Af2x2 + AzR. (14)

According to the proof in Appendix B and the SVD of [f1, f2, f3], we find

Afi = U∗1BU†
1fi + U∗2DU†

1fi, (15)

and then

xR = U∗1BU†
1(x1f1 + x2f2) + U∗2DU†

1(x1f1 + x2f2) + (U∗1BU†
1 + U∗1CU†

2 + U∗2DU†
1 + U∗2EU†

2)zR. (16)

We find that the components U∗1BU†
1(x1f1 + x2f2) and U∗2DU†

1(x1f1 + x2f2) are orthogonal.
Additionally, the component U∗2DU†

1(x1f1 + x2f2) and f3 are orthogonal. From a physical point of
view, beamforming assigns the relay power as much as possible to the signal components that are
non-orthogonal to the transmission direction. This means that D = 0. For the noise components,
U∗2DU†

1zR, U∗2EU†
2zR and U∗1CU†

2zR should be eliminated employing beamforming, i.e., C = 0, E = 0.
This result is the same as our discussion in Appendix B in mathematical optimization.

The optimal structure reduces the number of complex-valued design variables in the relay
beamforming matrix from K2 to r2. Then, Equation (10) can be recast as follows:

max
B

∣∣gT
3 Bg2

∣∣2 P2

||gT
3 B||2 + 1

,

s.t.

∣∣gT
3 Bg1

∣∣2 P1∣∣gT
3 Bg2

∣∣2 P2 + ||gT
3 B||2 + 1

≥ γ1, (17)

||Bg1||
2P1 + ||Bg2||

2P2 + tr(BB†) ≤ PR,max,

where gi = U†
1fi, i = 1, 2. For the convenience of analysis, we modify the above problem as follows:

max
b

∣∣hT
2 b
∣∣2 P2

||H3b||2 + 1
,

s.t.

∣∣hT
1 b
∣∣2 P1∣∣hT

2 b
∣∣2 P2 + ||H3b||2 + 1

≥ γ1, (18)

b†Φb ≤ PR,max,

where b = vec(BT), hi = vec(gigT
3 ), i = 1, 2, H3 = gT

3 ⊗ I3, Θ = g1g†
1P1 + g2g†

2P2 + I3,
and Φ = blkdiag(ΘT, ..., ΘT︸ ︷︷ ︸

r

). Obviously, there exists a matrix Ψ = Ψ† such that Φ = Ψ2.
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3.2. Semi-Definite Programming-Based Approach

In this subsection, it is necessary to determine the range of γ1, since an inappropriate γ1 will lead to
the feasible region of (10) being null. The maximum of γ1 can be determined by the program as follows:

max
b

b†h∗1hT
1 bP1

b†h∗2hT
2 bP2 + b†H†

3H3b+ 1
,

s.t. b†Φb ≤ PR,max. (19)

It is clear that the optimum of Equation (19) is attained when b†Φb = PR,max because the signals
are transmitted in maximum relay power. Substituting this condition to the object function of (19),
we have

max
b

b†h∗1hT
1 bP1

b†h∗2hT
2 bP2 + b†H†

3H3b+ b†Φ/PR,maxb
. (20)

Before solving this program, we will introduce a lemma as follows.

Lemma 1. Given vectors a, h ∈ Cn×1 and a positive definite matrix P ∈ Cn×n, and a function

f (a) =
a†hh†a

a†Pa
, (21)

the maximum h†P−1h is attained when a = cP−1h, where c is an arbitrary complex constant.

Proof. See in Appendix C.

Based on Lemma 1, γ1,max = hT
1 [h
∗
2hT

2 P2 +H†
3H3 + Φ/PR,max]

−1h∗1P1 is attained at

b = c[h∗2hT
2 P2 +H†

3H3 + Φ/PR,max]
−1h∗1, (22)

where c = ejθ√PR,max||Φ
1
2 [h∗2hT

2 P2 +H†
3H3 + Φ/PR,max]

−1h∗1||−1 for the power condition.
Next, we will develop several transformation tricks to reformulate the CP problem as an equivalent

convex SDP problem, which can be efficiently solved. The problem (18) is first reformulated as

max
b,u

∣∣hT
2 b
∣∣2 P2

u2 ,

s.t. ||H3b||2 + 1 = u2, (23)

γ1(
∣∣∣hT

2 b
∣∣∣2 P2 + ||H3b||2 + 1)−

∣∣∣hT
1 b
∣∣∣2 P1 ≤ 0,

b†Φb ≤ PR,max.

Using the transformation tricks v = 1/u and β = b/u, we have the following equivalent problem:

max
β,v

∣∣∣hT
2 β
∣∣∣2 P2,

s.t. v2 = 1− ||H3β||2, (24)

γ1(
∣∣∣hT

2 β
∣∣∣2 P2 + ||H3β||2 + v2)−

∣∣∣hT
1 β
∣∣∣2 P1 ≤ 0,

β†Φβ− PR,maxv2 ≤ 0.

Substituting the first constraint into the rest ones, we have
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max
β

∣∣∣hT
2 β
∣∣∣2 P2,

s.t. γ1(
∣∣∣hT

2 β
∣∣∣2 P2 + 1)−

∣∣∣hT
1 β
∣∣∣2 P1 ≤ 0, (25)

β†Φβ + ||H3β||2PR,max− PR,max ≤ 0.

Finally, using the transformation trick X = ββ†, (25) can be recast as

max
X

tr
(

h∗2hT
2 X
)

P2,

s.t. tr
[
(γ1P2h∗2hT

2 − P1h∗1hT
1 )X

]
+ γ1 ≤ 0, (26)

tr
[
(Φ +H†

3H3PR,max)X
]
− PR,max ≤ 0,

X � 0, rank(X) = 1.

It is clear that the last rank-one constraint is non-convex. By applying the idea of the semi-definite
relaxation (SDR) technique [20], the above problem can be relaxed to

max
X

tr
(

h∗2hT
2 X
)

P2,

s.t. tr
[
(γ1P2h∗2hT

2 − P1h∗1hT
1 )X

]
+ γ1 ≤ 0, (27)

tr
[
(Φ +H†

3H3PR,max)X
]
− PR,max ≤ 0,

X � 0,

which is incorporated into a convex SDP problem [21] and thus can be efficiently solved via standard
interior-point methods within polynomial time. Generally speaking, the resulting optimal solution may
not lead to an optimal solution of (26) due to dropping the constraint rank(X) = 1. Interestingly enough,
it has been shown in [22] that, for the number of constraints less than three, the relaxed SDP problem
always has a rank one solution, which is denoted by Xopt. In other words, (26) and (27) are indeed
equivalent. Consequently, we can obtain the optimal solution of (18), i.e., bopt = βopt/vopt, where

Xopt = βoptβ
†
opt and vopt =

√
1− ||H3βopt||2. It should be pointed out that the optimum and the

optimal solution of (18) are with respect to γ1. We need to take all γ1 ∈ [0, γ1,max] to attain the hull of
the achievable rate region.

4. Performance Analysis

To further investigate the performance of the proposed linear beamforming schemes, we study the
maximum achievable individual and sum rates of cvx(R). We first analytically obtain the maximum
individual rates of cvx(R) and the corresponding linear beamforming scheme. Then, we derive the
maximum sum rate of cvx(R) in closed form and the corresponding linear beamforming scheme can
be determined by solving a system of linear equations.

We consider first the maximum individual rates. Mathematically, the problem can be formulated
as follows:

max
A

∣∣fT
3 Afi

∣∣2 Pi

||fT
3 A||2 + 1

,

s.t. ||Af1||2P1 + ||Af2||2P2 + tr(AA†) ≤ PR,max. (28)

According to Proposition 1 and the same argument above, it can be recast as
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max
b

∣∣hT
i b
∣∣2 Pi

||H3b||2 + 1
,

s.t. b†Φb ≤ PR,max. (29)

It is clear that the constraint holds with equality at the optimum, otherwise the optimal solution
can always be scaled up yielding a larger objective value. Thus, substituting b†Φb/PR,max = 1 in the
objective function, it can be formulated as follows:

max
b

b†h∗i hT
i bPi

b†(H†
3H3 + Φ/PR,max)b

. (30)

Using Lemma 1, we determine the maximum individual signal-to-noise ratios SNRi,max =

hT
i (H

†
3H3 + Φ/PR,max)

−1h∗i Pi, i = 1, 2, which is attained at

bi,opt = ci(H†
3H3 + Φ/PR,max)

−1h∗i , (31)

where ci = ejθ√PR,max||Φ
1
2 (H†

3H3 +Φ/PR,max)
−1h∗i ||−1, which is chosen such that the constraint holds

with equality. The maximum individual rates are easy to be determined ri,max = 1
2 log(1 + SNRi,max).

Next, we consider the maximum sum rate. Mathematically, the problem can be formulated
as follows:

max
A

∣∣fT
3 Af1

∣∣2 P1 +
∣∣fT

3 Af2
∣∣2 P2

||fT
3 A||2 + 1

,

s.t. ||Af1||2P1 + ||Af2||2P2 + tr(AA†) ≤ PR,max. (32)

Similarly, it can be recast as

max
b

∣∣hT
1 b
∣∣2 P1 +

∣∣hT
2 b
∣∣2 P2

||H3b||2 + 1
,

s.t. b†Φb ≤ PR,max. (33)

For the same reason as in the previous case, the constraint holds with equality at the optimum.
Thus, substituting b†Φb/PR,max = 1 in the objective function, it can be formulated as follows:

max
b

bh∗1hT
1 bP1 + bh∗2hT

2 bP2

b†(H†
3H3 + Φ/Pmax)b

= max
b

b†
[
h∗1 h∗2

] [P1 0
0 P2

] [
hT

1
hT

2

]
b

b†(H†
3H3 + Φ/Pmax)b

. (34)

Using Lemma 1, we will determine the maximum sum rate by the following Theorem 2.

Theorem 2. The maximum sum signal-to-noise ratio is denoted SNRsum
max, then

SNRsum
max =

λ1 + λ2 +
√
(λ1 + λ2)2 − 4λ1λ2

2
, (35)

where λ1λ2 = P1P2
[
||d1||2||d2||2 − |dT

1 d∗2 |2
]
, λ1 + λ2 = ||d1||2P1 + ||d2||2P2 and [d1, d2]

T =

[h1, h2]
T (H†

3H3 + Φ/PR,max)
− 1

2 .

Proof. See in Appendix D.
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The corresponding maximum sum rate is easily given by rsum,max = 1
2 log(1 + SNRsum

max).
The maximum is attained at bsum,opt, which can be determined by solving the following system
of linear equations:

Mbsum,opt = 0, (36)

where

M =(H†
3H3 + Φ/PR,max)

−1 [h∗1 , h∗2 ]diag(P1, P2) [h1; h2]
T − λmaxI, (37)

with an additional constraint that b†
sum,optΦbsum,opt = PR,max. Through the mathematical analysis

above, we obtain the two maximum individual rates r1,max, r2,max and the maximum sum rate rsum,max.
These three values will determine the bound of the theoretical rate region easily, but we can not
determine the beamforming matrices corresponding to all of the points on the bound of the rate region.

Next, we will discuss whether the outer bound determined by these three maximum rates
C1(Aopt,1) = r1,max, C2(Aopt,2) = r2,max and Csum(Aopt,1) = rsum,max is tight. We know if this outer
bound is tight, for the “upper corner” of the rare region R(A), there exists a beamforming matrix
Â ∈ Ω, such that

Rup
1 (Â) = max

A∈Ω

1
2

log(1 +
|fT

3 Af1|2P1

|fT
3 Af2|2P2 + ||fT

3 A||2 + 1
) =

1
2

log(1 + γ1,max), (38)

Rup
2 (Â) = max

A∈Ω

1
2

log(1 +
|fT

3 Af2|2P2

||fT
3 A||2 + 1

) = r2,max, (39)

all hold. According to the previous analysis, the condition achieving γ1,max is

b = c[h∗2hT
2 P2 + H†

3H3 + Φ/PR,max]
−1h∗1 , (40)

where c = ejθ√PR,max||Φ
1
2 [h∗2hT

2 P2 + H†
3H3 + Φ/PR,max]

−1h∗1 ||−1 . The condition achieving r2,max is

b = ĉ(H†
3H3 + Φ/PR,max)

−1h∗2 , (41)

where ĉ = ejθ√PR,max||Φ
1
2 (H†

3H3 + Φ/PR,max)
−1h∗2 ||−1 . Obviously, (40) and (41) can not be

established simultaneously. Therefore, this outer bound is not tight.

5. Numerical Results

In this section, we show some numerical results to quantify the achievable rate regions of a
dual-hop MARN with linear beamforming, and analyze the transmission performance under different
antenna numbers and relay schemes. All simulations are performed in MATLAB r2010a (MathWorks,
Natick, MA, USA). We use CVX toolbox [23] to solve the SDP problems. We assume that the power
budgets of the two sources are P1 = P2 = 3 dBW, and the relay is equipped with K antennas having
a relay power budget PR. The channel coefficients are generated as independent complex Gaussian
random variables with the distribution CN (0, 1). We randomly generate a set of channel vectors f1, f2

and f3 as follows:

f1 = [0.091− 0.858i, 0.464− 0.933i,−0.826 + 0.658i,−0.326 + 0.008i,−0.186− 0.456i],

f2 = [0.570 + 1.046i, 0.164 + 0.805i,−0.700− 0.484i, 0.947− 0.914i, 0.205− 0.052i],

f3 = [−0.234− 0.600i,−0.597− 0.174i, 0.352 + 0.469i, 1.053− 0.604i,−0.386− 0.849i].

First, setting the channel vector f1, f2 and f3 above and the number of antennas K at relay.
We show the achievable rate regions versus different relay power budgets PR = 0, 3, 6 dBW in Figure 5.
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Meanwhile, according to the three rates r1,max, r2,max and rsum,max obtained employing the method in
Section 4, we determine an outer bound of the achievable rate regionR. The simulation results show
that the achievable rate regions obtained by using our scheme almost coincides with the corresponding
outer bounds except the corners. It validates the conclusion obtained through analysis in Section 4 that
this outer bound is not tight. It is observed that the achievable rate region with PR,max = 0 dBW is the
interior of the achievable rate region with PR,max = 3, 6 dBW. The achievable rate region expands as
the relay power budget PR,max increases. It is in conformity with the reality that increasing the power
budget of relay antennas always leads to better transmission performance.
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Figure 5. Achievable rate region and Outer bounds.

In Figure 6, we show the average sum-rates corresponding to the optimal beamforming matrices
versus different relay power budget PR = 0, 3, 6, ..., 30 dBW when K = 5, 10, 15 over 5000 channel
realization. Comparing these three curves, we find the average sum-rates increase with the increase of
K. It is in conformity with the reality that increasing the number of antennas K can increase diversity
gain to improve system transmission performance. In addition, the average sum-rates increase with
the increase of the relay power budget PR, which is consistent with the result in Figure 5.
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Figure 6. Average Sum-rate when K = 5, 10, 15 versus the PR.

To further illustrate the system performance exploiting the scheme proposed in this paper, we
show the average sum-rates versus different relay power budgets PR = 0, 3, 6, ..., 30 dBW comparing
with other several relay schemes that are usually applied in practice.
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1. Direct relaying, where the relay beamforming matrix is in the form of A = αI and

α =

√
PR,max

||f1||2P1+||f2||2P2+K . It is a scheme to uniformly amplify all the signals of antennas at relay.

In essence, it is not a beamforming scheme but a simple AF scheme.
2. Alternative relaying, which is a TDMA scheme. It requires four time slots to complete the

communication between the two sources S1, S2 and the destination. We assume that the
communication between source S1 and destination is completed in the first and second time
slots, while communication between source S2 and destination is completed in the other two time
slots. The corresponding relay beamforming matrices are given in [6].

3. Optimal diagonal beamforming, which is a beamforming scheme that the signals of the different
antennas can not be superimposed. The corresponding relay beamforming matrices are diagonal
matrices, which is an optimal form of the direct relaying scheme.

It is observed in Figure 7 that the optimal linear beamforming scheme significantly outperforms
the other three relay schems.
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Figure 7. Average Sum-rates of different relaying schemes.

6. Conclusions

In this paper, we investigate a dual-hop MARN consisting of two single-antenna sources,
a single-antenna destination and a helping multi-antenna relay. The relay assists the communication
between the sources and destination using an ANC-based linear beamforming scheme. We characterize
the achievable rate region and acquire the corresponding beamforming schemes. In addition,
we analyze the optimal linear beamforming schemes for the individual rates and sum-rate, and derive
the mathematical closed forms of maximum individual rate and sum-rate. However, in order to
implement the linear beamforming scheme, the CSI of the sources and destination should be acquired
at relay. The SCI acquiring technique and feedback mechanism are used to provide the relay with
all of CSIs, yielding higher overhead and complexity, which is the main challenge for designing a
beamforming scheme. Our future work will be related to the imperfect stochastic or deterministic
CSI model.
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Appendix A. Proof of Theorem 1

Proof. Since (r1, r2) ∈ R, we assume that (r1, r2) ∈ R(A), r2 = C2(A) and r1 + r2 ≤ Csum(A) for
some A ∈ Ω. Ao(r1) is the optimal solution of problem (10) satisfying Ao(r1) ∈ Ω and the condition
as follows:

|fT
3 Ao(r1)f1|2P1

|fT
3 Ao(r1)f2|2P2 + ||fT

3 Ao(r1)||2 + 1
≥ γ1. (A1)

According to (8),

Rup
1 (Ao(r1)) =

1
2

log(1 +
|fT

3 Ao(r1)f1|2P1

|fT
3 Ao(r1)f2|2P2 + ||fT

3 Ao(r1)||2 + 1
) ≥ 1

2
log(1 + γ1) = r1. (A2)

For Rup
1 (Ao(r1)) ≤ Rlow

1 (Ao(r1)), then, r1 ≤ Rlow
1 (Ao(r1)) = C1(Ao(r1)). Considering the “up

corner” in R(A), we have

Rup
1 (A) = Csum(A)− Rup

2 (A) = Csum(A)− C2(A) ≥ r1 + r2 − C2(A) = r1. (A3)

Then, the condition |fT
3 Af1|2P1

|fT
3 Af2|2P2+||fT

3 A||2+1
≥ γ1 holds. From problem (10), we have

C2(Ao(r1)) = Rup
2 (Ao(r1)) =

1
2

log(1 +
|fT

3 Ao(r1)f2|2P2

||fT
3 Ao(r1)||2 + 1

)

≥ 1
2

log(1 +
|fT

3 Af2|2P2

||fT
3 A||2 + 1

) = C2(A) = r2, (A4)

r1 + r2 ≤ Rup
1 (Ao(r1)) + Rup

2 (Ao(r1)) = Csum(Ao(r1)). (A5)

As a result, from (6), we can conclude that (r1, r2) ∈ R(Ao(r1)).

Appendix B. Proof of Proposition 1

Proof. Since singular value decomposition [f1, f2, f3] = UΣV†, we know that U = [U1, U2],
where U1 ∈ CK×r is the first r columns of U. Since U is a unitary matrix, it is clear that U†

1U2 = 0,
U†

1U1 = Ir, and U†
2U2 = IK−r. W.l.o.g., the AF beamforming matrix A can be written as follows:

A = U∗
[

B C
D E

]
U† = [U∗1 , U∗2 ]

[
B C
D E

] [
U†

1
U†

2

]
= U∗1BU†

1 + U∗1CU†
2 + U∗2DU†

1 + U∗2EU†
2, (A6)

where B ∈ Cr×r, C ∈ Cr×(K−r), D ∈ C(K−r)×r and E ∈ C(K−r)×(K−r) are arbitrarily matrices. Additionally,

U†[f1, f2, f3] = U†UΣV† = IK

[
Σ̂

0

]
V† =

[
Σ̂V†

0

]
, (A7)

where Σ̂ ∈ Cr×K is the first r rows of Σ. Furthermore, we find,

U†[f1, f2, f3] =

[
U†

1
U†

2

]
[f1, f2, f3] =

[
U†

1f1 U†
1f2 U†

1f3

U†
2f1 U†

2f2 U†
2f3

]
. (A8)

Comparing (A7) with (A8), we find U†
2fi = 0, i = 1, 2, 3. Then,

|fT
3 Afi|2 = |fT

3 U∗1BU†
1fi + fT

3 U∗1CU†
2fi + fT

3 U∗2DU†
1fi + fT

3 U∗2EU†
2fi|2 = |fT

3 U∗1BU†
1fi|2, (A9)
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which is independent of C, D, and E,

||fT
3 A||2 = ||fT

3 U∗1BU†
1 + fT

3 U∗1CU†
2 + fT

3 U∗2DU†
1 + fT

3 U∗2EU†
2||2 = ||fT

3 U∗1BU†
1 + fT

3 U∗1CU†
2||2, (A10)

||Afi||2 = ||U∗1BU†
1fi +U∗1CU†

2fi +U∗2DU†
1fi +U∗2EU†

2fi||2 = ||U∗1BU†
1fi +U∗2DU†

1fi||2. (A11)

Since U†
1U2 = 0, U†

1U1 = Ir and U†
2U2 = IK−r, it is easy to check that

||fT
3 A||2 = ||fT

3 U∗1B||2 + ||fT
3 U∗1C||2, (A12)

||Afi||2 = ||BU†
1fi||2 + ||DU†

1fi||2, (A13)

and
tr(AA†) = tr(BB†) + tr(CC†) + tr(DD†) + tr(EE†). (A14)

Substituting the corresponding equations above into the CP program (10), the program can be
rewritten as follows:

max
B,C

|fT
3 U∗1BU†

1f2|2P2

||fT
3 U∗1B||2 + ||fT

3 U∗1C||2 + 1
,

s.t
|fT

3 U∗1BU†
1f1|2P1

|fT
3 U∗1BU†

1f2|2P2 + ||fT
3 U∗1B||2 + ||fT

3 U∗1C||2 + 1
≥ γ1,

||BU∗1f1||2P1 + ||BU∗1f2||2P2 + tr(BB†) + tr(CC†) (A15)

≤ PR,max− ||DU∗1f1||2P1− ||DU∗1f2||2P2

− tr(DD†)− tr(EE†).

Obviously, the object function is independent of D, E. The feasible region will be expanded when
D = 0 and E = 0. Then, the maximum of (A15) is attained when C = 0. Thus, it can be concluded that
the matrices C, D and E are all set to zero at the optimal.

Appendix C. Proof of Lemma 1

Proof. For P is a positive definite matrix, there exists an invertible matrix T satisfying P = T†T.
Setting d = Ta, and then substituting a = T−1d in function (21), we have

d†(T−1)†hh†T−1d
d†d

, (A16)

which is a standard Rayleight–Ritz quotient form [24], and the maximum is the maximal eigenvalue
of the matrix (T−1)†hh†T−1. Obviously, rank((T−1)†hh†T−1) = 1 and there exists only one non-zero
eigenvalue λ, which is equal to

λ = h†T−1(T†)−1h = h†(T†T)−1h = h†P−1h > 0. (A17)

Apparently, (A16) equals λ when d is the eigenvector of the matrix (T−1)†hh†T−1. We know that
d can be expressed as

d = c(T†)−1h, (A18)

where c is an arbitrary complex constant, and then it is deduced that

a = cT−1(T†)−1h = c(T†T)−1h = cP−1h. (A19)
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Appendix D. Proof of Theorem 2

Proof. Obviously, H†
3H3 + Φ/PR,max is a positive definite matrix, for notation simplicity, we denote

Λ = (H†
3H3 + Φ/PR,max)

− 1
2 . (A20)

Then, Λ = Λ†, setting

[
dT

1
dT

2

]
=

[
hT

1
hT

2

]
Λ and x = Λb. The objective function can be reformulated as

max
x

x†[d∗1, d∗2]

[
P1 0
0 P2

][
dT

1
dT

2

]
x

x†x
= max

x

x† [d∗1, d∗2
]

diag(P1, P2) [d1; d2]
T x

x†x
. (A21)

Since the maximum value of the above function is independent of ||x||, the constraint can always
be satisfied and thus be omitted. Note that the maximum value of the Rayleigh–Ritz quotient [24] is
equal to the proper generalized eigenvalue. Therefore, for the above function, the maximum value
is equal to the proper eigenvalue of matrix

[
d∗1, d∗2

]
diag(P1, P2) [d1; d2]

T. By Sylvester’s Theorem,
the matrix

Ψ = [d1; d2]
T [d∗1, d∗2]diag(P1, P2) =

[
||d1||2P1 dT

1 d∗2P2

dT
2 d∗1P1 ||d2||2P2

]
(A22)

has exactly the same non-zero eigenvalues as
[
d∗1, d∗2

]
diag(P1, P2) [d1; d2]

T. Denote λ1 and λ2 the
eigenvalues of the above matrix. Then, we have the following relationships:

λ1λ2 = det(Ψ) = P1P2

[
||d1||2, ||d2||2− |dT

1 d∗2|2
]

, (A23)

λ1 + λ2 = tr(Ψ) = ||d1||2P1 + ||d2||2P2. (A24)

Consequently, the maximum eigenvalue λmax of Ψ is given as follows:

λmax =
λ1 + λ2 +

√
(λ1 + λ2)2− 4λ1λ2

2
. (A25)
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