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Abstract: The residual multiparticle entropy (RMPE) of a fluid is defined as the difference, ∆s,
between the excess entropy per particle (relative to an ideal gas with the same temperature and
density), sex, and the pair-correlation contribution, s2. Thus, the RMPE represents the net contribution
to sex due to spatial correlations involving three, four, or more particles. A heuristic “ordering”
criterion identifies the vanishing of the RMPE as an underlying signature of an impending structural
or thermodynamic transition of the system from a less ordered to a more spatially organized condition
(freezing is a typical example). Regardless of this, the knowledge of the RMPE is important to assess
the impact of non-pair multiparticle correlations on the entropy of the fluid. Recently, an accurate and
simple proposal for the thermodynamic and structural properties of a hard-sphere fluid in fractional
dimension 1 < d < 3 has been proposed (Santos, A.; López de Haro, M. Phys. Rev. E 2016, 93, 062126).
The aim of this work is to use this approach to evaluate the RMPE as a function of both d and the
packing fraction φ. It is observed that, for any given dimensionality d, the RMPE takes negative values
for small densities, reaches a negative minimum ∆smin at a packing fraction φmin, and then rapidly
increases, becoming positive beyond a certain packing fraction φ0. Interestingly, while both φmin and
φ0 monotonically decrease as dimensionality increases, the value of ∆smin exhibits a nonmonotonic
behavior, reaching an absolute minimum at a fractional dimensionality d ' 2.38. A plot of the scaled
RMPE ∆s/|∆smin| shows a quasiuniversal behavior in the region −0.14 . φ− φ0 . 0.02.

Keywords: residual multiparticle entropy; hard spheres; fractal dimension

1. Introduction

The properties of liquids are of great interest in many science and engineering areas. Aside from
ordinary three-dimensional systems, many interesting phenomena do also occur in restricted one- or
two-dimensional geometries, under the effect of spatial confinement. Actually, there are also cases
where the configuration space exhibits, at suitable length scales, non-integer dimensions. Indeed,
many aggregation and growth processes can be described quite well by resorting to the concepts of
fractal geometry. This is the case, for example, of liquids confined in porous media or of assemblies of
small particles forming low-density clusters and networks [1–4].

Heinen et al. [5] generalized this issue by introducing fractal particles in a fractal configuration
space. In their framework, the particles composing the liquid are fractal as is the configuration space
in which such objects move. Santos and López de Haro [6] have further developed reliable heuristic
interpolations for the equation of state and radial distribution function of hard-core fluids in fractal
dimensions between one and three dimensions. Taking advantage of their work, we intend to study
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in this paper some thermostatistical properties of such fractal systems in the theoretical framework
provided by the multiparticle correlation expansion of the entropy.

According to the first and second principles of thermodynamics, the entropy per particle s(ρ, β)

(in units of the Boltzmann constant kB) is defined by the differential relation ds(ρ, β) = βdu(ρ, β) +

βp(ρ, β)dρ−1, where ρ is the number density, β = 1/kBT is the inverse temperature, u(ρ, β) is the
internal energy per particle, and p(ρ, β) is the pressure. The excess entropy per particle is

sex(ρ, β) = s(ρ, β)− sid(ρ, β), (1)

where

sid(ρ, β) =
d + 2

2
− ln

[
ρ

(
h2β

2πm

)d/2]
(2)

is the ideal-gas entropy. In Equation (2), d is the spatial dimensionality of the system, h is Planck’s
constant, and m is the mass of a particle. (To keep the presentation as general as possible, along this
section and also in Section 2.1, β is included as an argument of the physical quantities. However,
starting from Section 2.2, the most general, temperature-dependent case is laid out, and we focus on
the particular system studied in the paper, which is athermal.)

As is well known, the excess entropy can be expressed as an infinite sum of contributions
associated with spatially integrated density correlations of increasing order [7,8]. In the absence
of external fields, the leading and quantitatively dominant term of the series is the so-called
“pair entropy”,

s2(ρ, β) = −ρ

2

∫
dr [g(r; ρ, β) ln g(r; ρ, β)− g(r; ρ, β) + 1] , (3)

whose calculation solely requires the knowledge of the radial distribution function of the fluid, g(r; ρ, β),
which is defined by the identity n2(r1, r2; ρ, β) = ρ2g(|r1 − r2|; ρ, β), where n2(r1, r2; ρ, β) is the pair
correlation function. An integrated measure of the importance of more-than-two-particle density
correlations in the overall entropy balance is given by the so-called “residual multiparticle entropy”
(RMPE) [9]:

∆s(ρ, β) = sex(ρ, β)− s2(ρ, β). (4)

It is important to note that, at variance with sex and s2, which are both negative definite quantities,
∆s may be either negative or positive. As originally shown by Giaquinta and Giunta for hard spheres
in three dimensions [9], the sign of this latter quantity does actually depend on the thermodynamic
state of the fluid. In fact, the RMPE of a hard-sphere fluid is negative at low densities, thus contributing
to a global reduction of the phase space available to the system as compared to the corresponding
ideal gas. However, the RMPE undergoes a sharp crossover from negative to positive values at a value
of the packing fraction which substantially overlaps with the thermodynamic freezing threshold of the
hard-sphere fluid. Such a behavior suggests that at high enough densities multiparticle correlations
play an opposite role with respect to that exhibited in a low packing regime in that they temper the
decrease of the excess entropy that is largely driven by the pair entropy. The change of sign presented
by the RMPE is a background indication, intrinsic to the fluid phase, that particles, forced by more and
more demanding packing constraints, start exploring, on a local scale, a different structural condition.
This process is made possible by an increasing degree of cooperativity that is signaled by the positive
values attained by ∆s, which gradually leads to a more efficacious spatial organization and ultimately
triggers the crystalline ordering of the system on a global scale.

A similar indication is also present in the RMPE of hard rods in one dimension [10]. In this
model system, notwithstanding the absence of a fluid-to-solid transition, one can actually observe the
emergence of a solid-like arrangement at high enough densities: tightly-packed particles spontaneously
confine themselves within equipartitioned intervals whose average length is equal to the the total
length per particle, even if the onset of a proper entropy-driven phase transition is frustrated by
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topological reasons. Again, even in this “pathological” case, the vanishing of the RMPE shows up as
an underlying signature of a structural change which eventually leads to a more ordered arrangement.

The relation between the zero-RMPE threshold and the freezing transition of hard spheres
apparently weakens in four and five dimensions [11], where lower bounds of the entropy threshold
significantly overshoot the currently available computer estimates of the freezing density [11,12].
In fact, Krekelberg et al. [11,12] suggested the possibility that high-dimensional hard-sphere fluids
may even encounter the glass transition upon densification before reaching the zero-RMPE point.

On the other side, a close correspondence between the sign crossover of the RMPE and structural
or thermodynamical transition thresholds has been highlighted in both two and three dimensions on
a variety of model systems for different macroscopic ordering phenomena other than freezing [13],
including fluid demixing [14], the emergence of mesophases in liquid crystals [15], the formation of
a hydrogen-bonded network in water [16], or, more recently, the onset of glassy dynamics [17].

If hard-core systems in fractal geometries exhibit a sort of disorder-to-order transition, it seems
plausible that such a transition is signaled by a change of sign of ∆s. Taking all of this into account,
it is desirable to study the RMPE of hard-core fractal fluids, and this is the main goal of this paper. It is
organized as follows. The theoretical approach of Ref. [6] is described and applied to the evaluation
of the RMPE in Section 2. The results are presented and discussed in Section 3. Finally, the main
conclusions of the work are recapped in Section 4.

2. Methods

2.1. General Relations

In principle, the knowledge of the radial distribution function, g(r; ρ, β), allows one to determine
the pair entropy from Equation (3). This is equivalent to

s2(ρ, β) =
1
2
[χT(ρ, β)− 1] + s̃2(ρ, β), (5)

where
χT(ρ, β) = 1 + ρ

∫
dr [g(r; ρ, β)− 1] (6)

is the isothermal susceptibility and we have called

s̃2(ρ, β) = −ρ

2

∫
dr g(r; ρ, β) ln g(r; ρ, β). (7)

Thus, Equation (4) can be rewritten as

∆s(ρ, β) = sex(ρ, β)− 1
2
[χT(ρ, β)− 1]− s̃2(ρ, β). (8)

Equations (5)–(8) hold regardless of whether the total potential energy U(r1, r2, r3, . . .) is pairwise
additive or not. On the other hand, if U is pairwise additive, the knowledge of g(r; ρ, β) yields,
apart from s2(ρ, β), the thermodynamic quantities of the system via the so-called thermodynamic
routes [18]. In particular, the virial route is

Z(ρ, β) ≡ βp(ρ, β)

ρ
=1− ρβ

2d

∫
dr r

dϕ(r)
dr

g(r; ρ, β)

=1 +
ρ

2d

∫
dr r

de−βϕ(r)

dr
y(r; ρ, β), (9)

where Z is the compressibility factor, ϕ(r) is the pair interaction potential, and y(r; ρ, β) ≡ eβϕ(r)g(r; ρ, β)

is the so-called cavity function. Next, the excess Helmholtz free energy per particle, aex, and the excess
entropy per particle, sex, can be obtained by standard thermodynamic relations as
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βaex(ρ, β) =
∫ 1

0
dt

Z(ρt, β)− 1
t

, sex(ρ, β) = β
∂βaex(ρ, β)

∂β
− βaex(ρ, β). (10)

Combining Equations (9) and (10), we obtain

sex(ρ, β) =
ρ

2d

(
β

∂

∂β
− 1
) ∫

dr r
de−βϕ(r)

dr

∫ 1

0
dt y(r; ρt, β). (11)

To sum up, assuming the radial distribution function g(r; ρ, β) for a d-dimensional fluid of particles
interacting via an interaction potential ϕ(r) is known, it is possible to determine the excess entropy
(see Equation (1)), the pair entropy (see Equation (3)), and hence the RMPE ∆s. Note that, while s2

only requires g(r) at the state point (ρ, β) of interest, sex requires the knowledge of g(r) at all densities
smaller than ρ and at inverse temperatures in the neighborhood of β.

A remark is now in order. The isothermal susceptibility χT(ρ, β) can be obtained directly from
g(r; ρ, β) via Equation (6) or indirectly via Equation (9) and the thermodynamic relation

χ−1
T (ρ, β) =

∂ρZ(ρ, β)

∂ρ
. (12)

If the correlation function g(r; ρ, β) is determined from an approximate theory, the compressibility
route in Equation (6) and the virial route given by Equations (9) and (12) yield, in general, different results.

2.2. Fractal Hard Spheres

Now, we particularize to hard-sphere fluids in d dimensions. The interaction potential is simply
given by

ϕ(r) =

{
∞, r < σ,

0, r > σ,
(13)

where σ is the diameter of a sphere. In this case, the radial distribution function g(r; φ) is independent
of temperature and the density can be characterized by the packing fraction

φ ≡ (π/4)d/2

Γ(1 + d/2)
ρσd. (14)

Taking into account that d
dr e−βϕ(r) = δ(r− σ), Equations (9) and (11) become

Z(φ) = 1 + 2d−1φgc(φ), (15)

sex(φ) = −βaex(φ) = 2d−1φ
∫ 1

0
dt gc(φt), (16)

where gc(φ) = g(σ+; φ) = y(σ; φ) is the contact value of the radial distribution function. In addition,
Equation (7) can be written as

s̃2(φ) = −d2d−1φ
∫ ∞

0
dr rd−1g(r; φ) ln g(r; φ). (17)

In Equations (14)–(17), it is implicitly assumed that d is an integer dimensionality. However,
in a pioneering work, Heinen et al. [5] introduced the concept of classical liquids in fractal dimension
and performed Monte Carlo (MC) simulations of fractal “spheres” in a fractal configuration space,
both with the same noninteger dimension. Such a generic model of fractal liquids can describe,
for instance, microphase separated binary liquids in porous media and highly branched liquid droplets
confined to a fractal polymer backbone in a gel. For a discussion on the use of two-point correlation
functions in fractal spaces, see Ref. [19].
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It seems worthwhile extending Equations (14)–(17) to a non-integer dimension d and studying
the behavior of the RMPE ∆s as a function of both φ and d. To this end, an approximate theory
providing the radial distribution function g(r; φ) for non-integer d is needed. In Ref. [5], Heinen et al.
solved numerically the Ornstein–Zernike relation [20] by means of the Percus–Yevick (PY) closure [21].
However, since one needs to carry out an integration in Equation (17) over all distances, an analytic
approximation for g(r; φ) seems highly desirable.

In Ref. [6], a simple analytic approach was proposed for the thermodynamic and structural
properties of the fractal hard-sphere fluid. Comparison with MC simulation results for d = 1.67659
showed results comparable to or even better than those obtained from the numerical solution of
the PY integral equation. In this approach the contact value of the radial distribution function is
approximated by

gc(φ) =
1− kdφ

(1− φ)2 , (18)

with

kd =
(5− d)(2− d)

4
+ (3− d)(d− 1)k2, k2 =

2
√

3
π
− 2

3
' 0.436. (19)

When particularized to d = 1, 2 and 3, Equation (18) gives the exact [18], the Henderson [22], and
the PY [23,24] results, respectively. Insertion into Equation (15) gives the compressibility factor Z(φ)
and, by application of Equation (12), the isothermal susceptibility as

χT(φ) =

[
1 + 2d−1φ

2− kdφ(3− φ)

(1− φ)3

]−1

. (20)

Note that 2− kdφ(3− φ) ≥ 0 for all d ≥ 1 and 0 ≤ φ ≤ 1, so that χT(φ) is mathematically well
defined. Analogously, Equation (16) yields

sex(φ) = −2d−1
[
(1− kd)φ

1− φ
− kd ln(1− φ)

]
. (21)

Thus, to complete the determination of ∆s from Equation (8), only s̃2 remains. It requires the
knowledge of the full radial distribution function (see Equation (17)). In the approximation of Ref. [6],
g(r; φ) is given by the simple interpolation formula

g(r; φ) = α(φ)g1D

(
r; φeff

1D(φ)
)
+ [1− α(φ)]g3D

(
r; φeff

3D(φ)
)

, (22)

where g1D(r; φ) and g3D(r; φ) are the exact and PY functions for d = 1 and 3, respectively,

φeff
1D(φ) =

gc(φ)− 1
gc(φ)

, φeff
3D(φ) =

1 + 4gc(φ)−
√

1 + 24gc(φ)

4gc(φ)
(23)

are effective packing fractions, and

α(φ) =
H(φ)− H3D

(
φeff

3D(φ)
)

H1D
(
φeff

1D(φ)
)
− H3D

(
φeff

3D(φ)
) (24)

is the mixing parameter. In Equation (24),

H(φ) =
1
2 − Adφ + Cdφ2

1 + (d− 1)φ [1 + (3− d)(1− 2k2)(3− φ)φ]
, (25)

with

Ad =
(2− d)(63− 23d)

60
+

3(d− 1)(3− d)
4

k2, Cd =
(2− d)(8− 3d)

20
+

(d− 1)(3− d)
4

k2. (26)
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Of course, H1D(φ) and H3D(φ) are obtained from Equation (25) by setting d = 1 and
d = 3, respectively.

Summing up, the proposal of Ref. [6] for noninteger d is defined by Equations (22)–(24), with gc(φ)

and H(φ) being given by Equations (18) and (25), respectively. By construction, this approximation
reduces to the exact and PY results in the limits d → 1 and d → 3, respectively. Moreover, it is
consistent (via both the virial and compressibility routes) with Henderson’s equation of state [22] in
the limit d → 2. The corresponding isothermal susceptibility and excess free energy are given by
Equations (20) and (21). Finally, ∆s(φ) can be obtained from Equation (8) by evaluating s̃2(φ) from
Equation (17) numerically. To that end, and to avoid finite-size effects, it is convenient to split the
integration range 0 < r < ∞ into 0 < r < R and R < r < ∞, with R = 10σ. In the first integral, the
analytically known function g(r; φ) is used, while, in the second integral, g(r; φ) is replaced by its
asymptotic form [6].

3. Results and Discussion

Figure 1a shows sex(φ) and s2(φ) as functions of the packing fraction for a few dimensions
1 ≤ d ≤ 3. In all cases, both functions become more negative as the packing fraction increases.
Moreover, at a common packing fraction φ, both sex(φ) and s2(φ) decrease as the dimensionality
increases. This is an expected property in the conventional case of integer d since, at a common φ, all the
thermodynamic quantities depart more from their ideal-gas values with increasing d. Not surprisingly,
this property is maintained in the case of non-integer d.

0.0 0.2 0.4 0.6 0.8
-5

-4

-3

-2

-1

0

d=3

d=2.5

d=2

d=1.5 s
ex

 s
2

s ex
, s

2 d=1

(a)

0.0 0.2 0.4 0.6 0.8
-0.4

-0.2

0.0

0.2

0.4
(b)

min

d=3
d=2.5

d=2

d=1.5

d=1

s 0

s
min

Figure 1. (a) Plot of sex(φ) (solid lines) and s2(φ) (dashed lines) for dimensions d = 1, 1.5, 2, 2.5 and
3. The circles indicate the points where sex(φ) and s2(φ) cross; (b) Plot of ∆s(φ) = sex(φ)− s2(φ) for
d = 1, 1.5, 2, 2.5 and 3. The triangles indicate the location of the minima and the circles indicate the
packing fractions φ0 where ∆s = 0.

Figure 1a also shows that the pair entropy s2(φ) overestimates the excess entropy sex(φ) for
packing fractions smaller than a certain value φ0. This means that, if φ < φ0, the cumulated
effect of correlations involving three, four, five, etc. particles produces a decrease of the entropy.
The opposite situation occurs, however, if φ > φ0. At the threshold point φ = φ0, the cumulated effect
of multiparticle correlations cancels and then only the pair correlations contribute to sex.

The density dependence of the RMPE ∆s = sex − s2 is shown in Figure 1b for the same values
of d as in Figure 1a. The qualitative shape of ∆s(φ) is analogous for all d: ∆s starts with a zero value
at φ = 0, then decreases as a convex function, changes its curvature at a given inflection point [9],
and reaches a minimum value ∆smin at a certain packing fraction φmin, after which it grows very
rapidly, crossing the zero value at the packing fraction φ0.

The dimensionality dependence of the minimum value of the RMPE, ∆smin, is displayed in
Figure 2a. Interestingly, as can also be observed in Figure 1a, ∆smin presents a nonmonotonic variation
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with d, having an absolute minimum ∆smin ' −0.385 at d ' 2.38. At this non-integer dimensionality,
the pair entropy s2 represents the largest overestimate of the excess entropy sex. In contrast to ∆smin,
both φ0 and φmin decay monotonically with increasing d. This is clearly observed in Figure 2b, where
also the fluid-hexatic and the fluid-crystal transition points for disks and spheres, respectively, are
shown. The proximity of those two points to the curve φ0 provide support to the zero-RMPE criterion,
especially considering the approximate character of our simple theoretical approach. Thus, if a
disorder-to-order transition phase is possible for fractal hard-core liquids, we expect that it is located
near (possibly slightly above) the packing fraction φ0.

1.0 1.5 2.0 2.5 3.0
-0.40

-0.35

-0.30

-0.25

s m
in

d
2.38

(a)

1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8 (b)

min

0, 
m

in

d

0

0
-

min

Figure 2. (a) Plot of ∆smin as a function of d. The circle and the arrow indicate the location of the
minimum at d ' 2.38; (b) Plot of φ0 (solid line), φmin (dashed line), and the difference φ0 − φmin

(dotted line) as functions of d. The horizontal solid line signals the value φ0 − φmin = 0.109. The circles
represent the values φ = 0.68 at d = 2 and φ = 0.49 at d = 3 corresponding to the fluid-hexatic [25,26]
and fluid-crystal [27–29] transitions, respectively.

An interesting feature of Figure 2b is that the difference φ0 − φmin ' 0.109 is hardly dependent
on d. This suggests the possibility of a quasi-universal behavior of the scaled RMPE ∆s/|∆smin| in the
neighborhood of φ = φ0. To check this possibility, Figure 3a shows ∆s/|∆smin| as a function of φ− φ0

for the same dimensionalities as in Figure 1. We can observe a relatively good collapse of the curves
in the region −0.14 . φ− φ0 . 0.02. A magnification of that region is shown in Figure 3b. A simple
fit can be obtained as follows. Let us define X ≡ (φ− φ0)/0.109 and Y(X) ≡ ∆s(φ)/|∆smin|. Then,
a cubic function Y(X) consistent with the conditions Y(0) = 0, Y(−1) = −1, Y′(−1) = 0, Y′′(−1) > 0
is Y(X) = X

[
2 + X + c(1 + X)2] with c < 1. A good agreement is found with 0.8 < c < 1 and we

choose c = 0.9. In summary, our proposed universal form is

∆s(φ)
|∆smin|

' X
[
2 + X + c(1 + X)2

]
, X ≡ φ− φ0

0.109
, c = 0.9. (27)

It is also plotted in Figure 3b, where we can see that it captures well the behavior for dimensions
1 ≤ d ≤ 3.

Before closing this section, it is convenient to add a comment. As said at the end of Section 2,
the values of ∆s have been obtained from Equation (8) by evaluating s̃2 from Equation (17) numerically.
Since in Equation (20) we have followed the virial route, here we refer to this method to obtain
the function ∆s as the virial route and denote the resulting quantity as ∆svir. On the other hand,
this method is not exactly equivalent to that obtained from Equation (1) with s2 evaluated numerically
from Equation (3) by following the same procedure as described above for s̃2. This alternative method
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is referred to as the compressibility route (∆scomp), since it is equivalent to evaluating the isothermal
compressibility from Equation (6). Therefore, according to Equation (8),

∆svir − ∆scomp = −1
2

(
χvir

T − χ
comp
T

)
. (28)

We have checked that both methods (virial and compressibility) yield practically indistinguishable
results. For instance, if d = 3, φ0 = 0.4552 in the virial route, while φ0 = 0.4547 in the compressibility
route. At d = 1 and d = 2, both methods yield, consistently, φ0 = 0.8246 and φ0 = 0.6573,
respectively. Note that the compressibility route to measure ∆s still has a virial “relic” in the
contribution coming from the excess free energy (Equation (21)). A pure compressibility route would
require the numerical evaluation of χT from Equation (6) and then a double numerical integration, as
evident from Equations (10) and (12). This procedure would complicate enormously the evaluation of
sex without any significant gain in accuracy.

-0.8 -0.6 -0.4 -0.2 0.0

-1.0

-0.5

0.0

0.5

1.0

d=3
d=1

s/
|

s m
in
|

-
0

(a)

-0.12 -0.08 -0.04 0.00

-1.0

-0.5

0.0

0.5
(b)  d=1

 d=1.5
 d=2
 d=2.5
 d=3
 Eq. (27)

s/
|

s m
in
|

-
0

Figure 3. (a) Plot of the scaled RMPE ∆s/|∆smin| as a function of the difference φ− φ0 for dimensions
d = 1, 1.5, 2, 2.5 and 3; (b) Magnification of the framed region of (a). The light thick line represents the
formula given by Equation (27).

4. Conclusions

In this article, we have calculated the pair contribution and the cumulative contribution arising
from correlations involving more than two particles to the excess entropy of hard spheres in fractional
dimensions 1 < d < 3. To this end, we have resorted to the analytical approximations for the equation
of state and radial distribution function of the fluid previously set up by Santos and López de Haro [6].
Over the fractional dimensionality range explored, the so-called “residual multiparticle entropy”
(RMPE), obtained as the difference between the excess and pair entropies, shows a behavior utterly
similar to that exhibited for integer one, two and three dimensions. Hence, on a phenomenological
continuity basis, we surmise that hard spheres undergo an “ordering” transition even in a space
with fractional dimensions, which may well anticipate a proper thermodynamic fluid-to-solid phase
transition. This can serve as a motivation for future research.

We found that the packing fraction loci of minimum and vanishing RMPE show a monotonic
decreasing behavior as a function of the dimensionality; this result is coherent with the magnification
of excluded-volume effects produced by increasing spatial dimensionalities and, correspondingly,
with a gradual shift of the ordering transition threshold to lower and lower packing fractions.
However, it also turns out that the minimum value of the RMPE exhibits a non-monotonic behavior,
attaining a minimum at the fractional dimensionality d = 2.38. For this value of d, the relative
entropic weight of more-than-two-particle correlations reaches, in the “gas-like” regime, its maximum
absolute value.
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A quasi-universal scaling of the RMPE over its minimum value in the neighborhood of the
sign-crossover point was observed, thus suggesting that the properties of the local ordering phenomenon
should not sensitively depend on the spatial dimensionality.

Finally, it must be stressed that the so-called “spreading dimension” dl is limited to values less
than or equal to 2 [30,31]. In Ref. [5], the spreading dimension was identified as the relevant dimension
of a fractal hard-sphere fluid on the incipient percolation cluster in a two-dimensional embedding
space (D = 2), in which case dl = 1.67659 . . .. If the (integer) value of D is increased beyond 2, then the
value of dl increases as well, but for D ≥ 6 the limiting value is dl = 2 [30]. To reach non-integer
dimensions d > 2, a completely new realization of the fractal hard-sphere fluid, which cannot be
based on the percolation cluster as a configuration space [5], should be found. Therefore, the physical
relevance of our results for non-integer dimensions larger than d = 2 is presently unknown.

Author Contributions: A.S. proposed the idea and performed the calculations. F.S. and P.V.G. participated in the
analysis and discussion of the results. All three authors worked on the revision and writing of the final manuscript.

Funding: This research was funded by the Spanish Agencia Estatal de Investigación through Grant No. FIS2016-76359-P
and the Junta de Extremadura (Spain) through Grant No. GR18079, both partially financed by Fondo Europeo de
Desarrollo Regional funds.

Acknowledgments: A.S. is grateful to Roberto Trasarti-Battistoni for helpful discussions and for bringing Ref. [19]
to our attention.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

RMPE Residual Multiparticle Entropy
MC Monte Carlo
PY Percus–Yevick

References

1. Wong, P.Z.; Cao, Q.Z. Correlation function and structure factor for a mass fractal bounded by a surface
fractal. Phys. Rev. B 1992, 45, 7627–7632. [CrossRef]

2. Kurzidim, J.; Coslovich, D.; Kahl, G. Single-Particle and Collective Slow Dynamics of Colloids in Porous
Confinement. Phys. Rev. Lett. 2009, 103, 138303. [CrossRef] [PubMed]

3. Kim, K.; Miyazaki, K.; Saito, S. Slow dynamics, dynamic heterogeneities, and fragility of supercooled liquids
confined in random media. J. Phys. Condens. Matter 2011, 23, 234123. [CrossRef] [PubMed]

4. Skinner, T.O.E.; Schnyder, S.K.; Aarts, D.G.A.L.; Horbach, J.; Dullens, R.P.A. Localization Dynamics of Fluids
in Random Confinement. Phys. Rev. Lett. 2013, 111, 128301. [CrossRef] [PubMed]

5. Heinen, M.; Schnyder, S.K.; Brady, J.F.; Löwen, H. Classical Liquids in Fractal Dimension. Phys. Rev. Lett.
2015, 115, 097801. [CrossRef] [PubMed]

6. Santos, A.; López de Haro, M. Radial distribution function for hard spheres in fractal dimensions: A heuristic
approximation. Phys. Rev. E 2016, 93, 062126. [CrossRef] [PubMed]

7. Nettleton, R.E.; Green, M.S. Expression in Terms of Molecular Distribution Functions for the Entropy Density
in an Infinite System. J. Chem. Phys. 1958, 29, 1365–1370. [CrossRef]

8. Baranyai, A.; Evans, D.J. Direct entropy calculation from computer simulation of liquids. Phys. Rev. A 1989,
40, 3817–3822. [CrossRef]

9. Giaquinta, P.V.; Giunta, G. About entropy and correlations in a fluid of hard spheres. Phys. A 1992, 187, 145–158.
[CrossRef]

10. Giaquinta, P.V. Entropy and Ordering of Hard Rods in One Dimension. Entropy 2008, 10, 248–260. [CrossRef]
11. Krekelberg, W.P.; Shen, V.K.; Errington, J.R.; Truskett, T.M. Residual multiparticle entropy does not generally

change sign near freezing. J. Chem. Phys. 2008, 128, 161101. [CrossRef] [PubMed]

http://dx.doi.org/10.1103/PhysRevB.45.7627
http://dx.doi.org/10.1103/PhysRevLett.103.138303
http://www.ncbi.nlm.nih.gov/pubmed/19905547
http://dx.doi.org/10.1088/0953-8984/23/23/234123
http://www.ncbi.nlm.nih.gov/pubmed/21613691
http://dx.doi.org/10.1103/PhysRevLett.111.128301
http://www.ncbi.nlm.nih.gov/pubmed/24093304
http://dx.doi.org/10.1103/PhysRevLett.115.097801
http://www.ncbi.nlm.nih.gov/pubmed/26371681
http://dx.doi.org/10.1103/PhysRevE.93.062126
http://www.ncbi.nlm.nih.gov/pubmed/27415227
http://dx.doi.org/10.1063/1.1744724
http://dx.doi.org/10.1103/PhysRevA.40.3817
http://dx.doi.org/10.1016/0378-4371(92)90415-M
http://dx.doi.org/10.3390/e10030248
http://dx.doi.org/10.1063/1.2916697
http://www.ncbi.nlm.nih.gov/pubmed/18447412


Entropy 2018, 20, 544 10 of 10

12. Krekelberg, W.P.; Shen, V.K.; Errington, J.R.; Truskett, T.M. Response to “Comment on ‘Residual multiparticle
entropy does not generally change sign near freezing’ ” [J. Chem. Phys. 130, 037101 (2009)]. J. Chem. Phys.
2009, 130, 037102. [CrossRef]

13. Giaquinta, P.V. Comment on “Residual multiparticle entropy does not generally change sign near freezing”
[J. Chem. Phys. 128, 161101 (2008)]. J. Chem. Phys. 2009, 130, 037101. [CrossRef] [PubMed]

14. Saija, F.; Pastore, G.; Giaquinta, P.V. Entropy and Fluid-Fluid Separation in Nonadditive Hard-Sphere
Mixtures. J. Phys. Chem. B 1998, 102, 10368–10371. [CrossRef]

15. Costa, D.; Micali, F.; Saija, F.; Giaquinta, P.V. Entropy and Correlations in a Fluid of Hard Spherocylinders:
The Onset of Nematic and Smectic Order. J. Phys. Chem. B 2002, 106, 12297–12306. [CrossRef]

16. Saija, F.; Saitta, A.M.; Giaquinta, P.V. Statistical entropy and density maximum anomaly in liquid water.
J. Chem. Phys. 2003, 119, 3587–3589. [CrossRef]

17. Banerjee, A.; Nandi, M.K.; Sastry, S.; Bhattacharyya, S.M. Determination of onset temperature from the
entropy for fragile to strong liquids. J. Chem. Phys. 2017, 147, 024504. [CrossRef] [PubMed]

18. Santos, A. A Concise Course on the Theory of Classical Liquids. Basics and Selected Topics. In Lecture Notes
in Physics; Springer: New York, NY, USA, 2016; Volume 923.

19. Lemson, G.; Sanders, R.H. On the use of the conditional density as a description of galaxy clustering.
Mon. Not. R. Astron. Soc. 1991, 252, 319–328. [CrossRef]

20. Barker, J.A.; Henderson, D. What is “liquid”? Understanding the states of matter. Rev. Mod. Phys. 1976,
48, 587–671. [CrossRef]

21. Percus, J.K.; Yevick, G.J. Analysis of Classical Statistical Mechanics by Means of Collective Coordinates.
Phys. Rev. 1958, 110, 1–13. [CrossRef]

22. Henderson, D. A simple equation of state for hard discs. Mol. Phys. 1975, 30, 971–972. [CrossRef]
23. Wertheim, M.S. Exact solution of the Percus-Yevick integral equation for hard spheres. Phys. Rev. Lett. 1963,

10, 321–323. [CrossRef]
24. Thiele, E. Equation of state for hard spheres. J. Chem. Phys. 1963, 39, 474–479. [CrossRef]
25. Alder, B.J.; Wainwright, T.E. Phase Transition in Elastic Disks. Phys. Rev. 1962, 127, 359–361. [CrossRef]
26. Thorneywork, A.L.; Abbott, J.L.; Aarts, D.G.A.L.; Dullens, R.P.A. Two-Dimensional Melting of Colloidal

Hard Spheres. Phys. Rev. Lett. 2017, 118, 158001. [CrossRef] [PubMed]
27. Alder, B.J.; Wainwright, T.E. Phase Transition for a Hard Sphere System. J. Chem. Phys. 1957, 27, 1208–1209.

[CrossRef]
28. Fernández, L.A.; Martín-Mayor, V.; Seoane, B.; Verrocchio, P. Equilibrium Fluid-Solid Coexistence of Hard

Spheres. Phys. Rev. Lett. 2012, 108, 165701. [CrossRef] [PubMed]
29. Robles, M.; López de Haro, M.; Santos, A. Note: Equation of state and the freezing point in the hard-sphere

model. J. Chem. Phys. 2014, 140, 136101. [CrossRef] [PubMed]
30. Vannimenus, J.; Nadal, J.P.; Martin, H. On the spreading dimension of percolation and directed percolation

clusters. J. Phys. A: Math. Gen. 1984, 17, L351–L356. [CrossRef]
31. ben-Avraham, D.; Havlin, S. Diffusion and Reactions in Fractal and Disordered Systems; Cambridge University

Press: Cambridge, UK, 2016.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.3058798
http://dx.doi.org/10.1063/1.3058794
http://www.ncbi.nlm.nih.gov/pubmed/19173543
http://dx.doi.org/10.1021/jp982202b
http://dx.doi.org/10.1021/jp0259317
http://dx.doi.org/10.1063/1.1598431
http://dx.doi.org/10.1063/1.4991848
http://www.ncbi.nlm.nih.gov/pubmed/28711039
http://dx.doi.org/10.1093/mnras/252.3.319
http://dx.doi.org/10.1103/RevModPhys.48.587
http://dx.doi.org/10.1103/PhysRev.110.1
http://dx.doi.org/10.1080/00268977500102511
http://dx.doi.org/10.1103/PhysRevLett.10.321
http://dx.doi.org/10.1063/1.1734272
http://dx.doi.org/10.1103/PhysRev.127.359
http://dx.doi.org/10.1103/PhysRevLett.118.158001
http://www.ncbi.nlm.nih.gov/pubmed/28452525
http://dx.doi.org/10.1063/1.1743957
http://dx.doi.org/10.1103/PhysRevLett.108.165701
http://www.ncbi.nlm.nih.gov/pubmed/22680734
http://dx.doi.org/10.1063/1.4870524
http://www.ncbi.nlm.nih.gov/pubmed/24712819
http://dx.doi.org/10.1088/0305-4470/17/6/008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	General Relations
	Fractal Hard Spheres

	Results and Discussion
	Conclusions
	References

