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Abstract: Sets in the parameter space corresponding to complex exceptional points (EP) have
high codimension, and by this reason, they are difficult objects for numerical location. However,
complex EPs play an important role in the problems of the stability of dissipative systems, where they
are frequently considered as precursors to instability. We propose to locate the set of complex EPs
using the fact that the global minimum of the spectral abscissa of a polynomial is attained at the EP
of the highest possible order. Applying this approach to the problem of self-stabilization of a bicycle,
we find explicitly the EP sets that suggest scaling laws for the design of robust bikes that agree with
the design of the known experimental machines.

Keywords: exceptional points in classical systems; coupled systems; non-holonomic constraints;
nonconservative forces; stability optimization; spectral abscissa; swallowtail; bicycle self-stability

1. Introduction

Exceptional points in classical systems have recently attracted the attention of researchers in the
context of the parity-time (PT) symmetry found in mechanics [1,2] and electronics [3]. In the context
of the stability of classical systems, the PT-symmetry plays a part in systems of coupled mechanical
oscillators with the indefinite matrix of damping forces [4–8]. Stable PT-symmetric indefinitely-damped
mechanical systems have imaginary eigenvalues and thus form singularities on the boundary of the
domain of the asymptotic stability of general dissipative systems [9,10]. Among these singularities are
exceptional points corresponding to double imaginary eigenvalues with the Jordan block. They belong
to sets of complex exceptional points with nonzero real parts that live both in the domain of instability
and in the domain of asymptotic stability of a dissipative system and pass through the imaginary
exceptional points on the stability boundary that bound the region of PT-symmetry [11,12]. These are
sets of high codimension, which are hard to find by numerical approaches. Nevertheless, in many
applications, it was realized that complex exceptional points hidden inside the domain of asymptotic
stability significantly influence the transition to instability [13,14]. How does one locate the set
of complex exceptional points? The general approach involving commutators of matrices of the
system [15,16] does not look easily interpretable. In this paper, we will use a recent observation [17]
that the set of complex exceptional points connects the imaginary exceptional points on the boundary
of asymptotic stability and the real exceptional points inside the domain of asymptotic stability that lie
on the boundary of the domain of heavy damping. We will show how the location of the exceptional
points with this approach helps to find explicit scaling laws in the classical problem of the self-stability
of bicycles.

2. Complex Exceptional Points and the Self-Stability of Bicycles

The bicycle is easy to ride, but surprisingly difficult to model [18]. Refinement of the mathematical
model of a bicycle has continued over the last 150 years with contributions from Rankine, Boussinesq,
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Whipple, Klein, Sommerfeld, Appel, Synge and many others [19–21]. The canonical, nowadays
commonly-accepted model goes back to the 1899 work by Whipple. The Whipple bike is a system
consisting of four rigid bodies with knife-edge wheels making it non-holonomic, i.e., requiring for its
description more configuration coordinates than the number of its admissible velocities [22,23]. Due to
the non-holonomic constraints, even the bicycle tire tracks have a non-trivial and beautiful geometry
that has deep and unexpected links to integrable systems, particle traps and the Berry phase [24–26].

A fundamental empirical property of real bicycles is their self-stability without any control
at a sufficiently high speed [27]. This property has a number of important practical implications.
For instance, recent experiments confirm the long-standing assumption that the bicycle designs that do
not present the self-stability are difficult for a person to ride; in other words, more stable bikes handle
better [18,28,29]. Hence, deeper understanding of the passive stabilization can provide new principles
for the design of more safe and rideable bicycles, including compact and foldable models. Furthermore,
it is expected to play a crucial part in formulating principles of the design of energy-efficient wheeled
and bipedal robots [30].

However, the theoretical explanation of the self-stability has been highly debated throughout the
history of bicycle dynamics [22] to such an extent that a recent news feature article in Nature described
this as “the bicycle problem that nearly broke mathematics” [18]. An excellent scientific and historical
review of thoughts on the bicycle self-stability can be found in [21].

The reason as to why “simple questions about self-stabilization of bicycles do not have
straightforward answers” [20] lies in the symbolical complexity of the Whipple model that contains
seven degrees of freedom and depends on 25 physical and design parameters [19]. In recent numerical
simulations [19,20,22], self-stabilization has been observed for some benchmark designs of the Whipple
bike. These results suggested further simplification of the model yielding a reduced model of a bicycle
with vanishing radii of the wheels (which are replaced by skates; see, e.g., [31]), known as the
two-mass-skate (TMS) bicycle [27,29]. Despite the self-stable TMS bike having been successfully
realized in recent laboratory experiments [27], its self-stability still awaits a theoretical explanation.

In the following, we will show how the location of complex and real exceptional points allows
one to find hidden symmetries in the model, suggesting further reduction of the parameter space and,
finally, providing explicit relations between the parameters of stability-optimized TMS bikes.

2.1. The TMS Bicycle Model

The TMS model is sketched in Figure 1. It depends on nine dimensional parameters:

w, v, λs, mB, xB, zB, mH , xH , zH

that represent, respectively, the wheel base, velocity of the bicycle, steer axis tilt, rear frame assembly
(B) mass, horizontal and vertical coordinates of the rear frame assembly centre of mass, front fork and
handlebar assembly (H) mass and horizontal and vertical coordinates of the front fork and handlebar
assembly centre of mass [27]; see Table 1.

We wish to study the stability of the TMS bicycle that is moving along a straight horizontal
trajectory with a constant velocity and remaining in a straight vertical position. In order to simplify
the analysis, it is convenient to choose the wheelbase, w, as a unit of length and to introduce the

dimensionless time τ = t
√

g
w and seven dimensionless parameters:

Fr =
v
√

gw
, µ =

mH
mB

, χB =
xB
w

, χH =
xH
w

, ζB =
zB
w

, ζH =
zH
w

, λs,

where g is the gravity acceleration, Fr the Froude number and µ the mass ratio; see Table 1. Notice that
ζB ≤ 0 and ζH ≤ 0 due to the choice of the system of coordinates; see Figure 1.
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Figure 1. The two-mass-skate (TMS) bicycle model [27].

Table 1. Notation for the TMS bicycle model.

Dimensional Meaning Dimensionless Meaning

v Velocity of the bike
g Gravity acceleration Fr Froude number
w Wheel base
λs Steer axis tilt (rad) λs Steer axis tilt (rad)
mH Front fork and handlebar

assembly (FHA) mass µ Mass ratio (mH/mB)
mB Rear frame assembly (RFA) mass
xH (≥0) Horizontal coordinate of the χH (≥0) Horizontal coordinate of the

FHA centre of mass FHA centre of mass
zH (≤0) Vertical coordinate of the ζH (≤0) Vertical coordinate of the

FHA centre of mass FHA centre of mass
xB (≥0) Horizontal coordinate of the χB (≥0) Horizontal coordinate of the

RFA centre of mass RFA centre of mass
zB (≤0) Vertical coordinate of the ζB (≤0) Vertical coordinate of the

RFA centre of mass RFA centre of mass
t Time τ Time

It has been shown in [19,27] that small deviations from the straight vertical equilibrium of the
TMS bicycle are described by the leaning angle, φ, of the frame and the steering angle, δ, of the front
wheel/skate. These angles are governed by the two coupled linear differential equations:

Mq̈ + Vq̇ + Pq = 0, q = (φ, δ)T , (1)

where dot denotes differentiation with respect to dimensionless time, τ, and the matrices of mass, M,
velocity-dependent forces, V, and positional forces, P, are:

M =

(
µζ2

H + ζ2
B −µζHνH

−µζHνH µν2
H

)
, V =

(
0 −µχHζH − χBζB
0 µχHνH

)
Fr cos λs,

P =

(
µζH + ζB −Fr2 cos λs(µζH + ζB)− µνH
−µνH µ(Fr2 cos λs − sin λs)νH

)
, (2)

respectively, with νH = uH
w = (χH − 1) cos λs − ζH sin λs; see Figure 1.
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2.2. Preliminaries on Lyapunov Stability and the Asymptotic Stability of Equilibria

An equilibrium of a nonlinear dynamical system is said to be Lyapunov stable if all the solutions
starting in its vicinity remain in some neighbourhood of the equilibrium in the course of time [17,32,33].
For asymptotic stability, the solutions are required, additionally, to converge to the equilibrium as
time tends to infinity. The first (indirect) method of Lyapunov reduces the study of the asymptotic
stability of an autonomous (time-independent) system to the problem of location in the complex plane
of eigenvalues of the operator of its linearization [32]. In a finite-dimensional case, the eigenvalues are
roots of a polynomial characteristic equation. Localization of all the roots in the open left half of the
complex plane is a necessary and sufficient condition for the asymptotic stability of a linearization,
which usually implies the asymptotic stability of the original non-linear system [32]. The algebraic
Routh–Hurwitz criterion provides explicit conditions for asymptotic stability expressed in terms
of the coefficients of the characteristic polynomial [33]. The Lienard–Chipart criterion is an equivalent
version of the Routh–Hurwitz criterion, which sometimes gives simpler expressions for the stability
conditions [33].

The solution to the linear differential equation is a linear combination of exponential functions with
the argument equal to time multiplied by an eigenvalue. Consequently, in the domain of asymptotic
stability, solutions of the linearization exponentially decay in time and either have oscillations,
which corresponds to a complex eigenvalue with the negative real part, or do not have oscillations,
which corresponds to a negative real eigenvalue. If all the solutions exponentially decay without
oscillations, i.e., all eigenvalues are real and negative, the system is said to be heavily damped [33–35].
A perturbed heavily-damped system quickly and monotonously returns to its equilibrium, which is
perceived by an observer as a robust stability. For this reason, placement of the parameters of a system
in the domain of heavy damping is a desirable goal in many engineering applications [34,35]. Naturally,
heavy damping implies asymptotic stability, and therefore, the domain of heavy damping belongs to
the domain of asymptotic stability in the parameter space [17].

Similarly, in the domain of instability, a complex eigenvalue with the positive real part corresponds
to an oscillatory solution with the exponentially-growing amplitude. This unstable behaviour is
frequently called flutter, dynamic instability, oscillatory instability or Hopf bifurcation in different
engineering and physical contexts [33]. In the context of bicycle dynamics, the growing oscillations
are referred to as the weaving instability [19,20]. A positive real eigenvalue corresponds to the static
instability (or steady-state bifurcation) of an equilibrium described by a non-oscillatory solution with
an exponentially-growing amplitude. A bicycle is capsizing in this case [19,20].

With the change of parameters of the system, one can move from the domain of instability to the
domain of asymptotic stability in the parameter space. This transition is accompanied by the crossing
of the imaginary axis in the complex plane either by at least one pair of complex-conjugate simple
eigenvalues or by at least one real eigenvalue. Exactly on the stability boundary, the eigenvalues
become imaginary or zero, respectively. In multiple parameter systems, multiple imaginary or zero
eigenvalues with different algebraic and geometric multiplicities are generically possible on the
stability boundary. In physics, a point in the parameter space corresponding to a linear operator
(matrix, matrix polynomial) with the multiple eigenvalues that has less eigenvectors than its algebraic
multiplicity (i.e., an operator has a non-trivial Jordan normal form) is called an exceptional point.
Frequently, the very multiple eigenvalues with the Jordan block in the complex plane are referred to as
exceptional points. Exceptional points form geometric singularities both on the boundary of asymptotic
stability and on the boundary of the domain of heavy damping [17,33]. Moreover, exceptional points
corresponding to complex eigenvalues exist inside both the domain of asymptotic stability and the
domain of instability. Below, we uncover all the exceptional points in the TMS bicycle model and,
with their use, find optimal TMS bikes with respect to different stability criteria.
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2.3. Asymptotic Stability of the TMS Bike and the Critical Froude Number for the Weaving Motion

The TMS model (1), (2) is autonomous and nonconservative, containing dissipative, gyroscopic,
potential and non-potential positional (circulatory [33], curl [36]) forces. Assuming the exponential
solution ∼exp(sτ) of the linear system (1) and computing det(Ms2 + Vs + P), we write the
characteristic polynomial of the TMS bicycle model:

p(s) = a0s4 + a1s3 + a2s2 + a3s + a4, (3)

with the coefficients:

a0 = −(ζH tan λs − χH + 1)ζ2
B,

a1 = Fr(ζBχH − ζHχB)ζB,

a2 = Fr2(ζB − ζH)ζB − ζB(ζB + ζH) tan λs − (χH − 1)(µζH − ζB), (4)

a3 = −Fr(χB − χH)ζB,

a4 = −ζB tan λs − µ(χH − 1).

Applying the Lienard–Chipart version of the Routh–Hurwitz criterion [33,37] to the polynomial (3)
yields for λs > 0 the following necessary and sufficient conditions for the asymptotic stability of the
TMS bicycle:

χH > 1 + ζH tan λs,

χH < 1− ζB
µ

tan λs,

χH < χB, (5)

ζH > ζB,

Fr > Frc > 0,

where the critical Froude number at the stability boundary is given by the expression:

Fr2
c =

ζB − ζH
χB − χH

χBχH
ζBχH − ζHχB

tan λs +
χH − 1

χB − χH

χH
ζB

µ− χH − 1
ζBχH − ζHχB

χB. (6)

At 0 ≤ Fr < Frc, the bicycle is unstable, while at Fr > Frc, it is asymptotically stable.
The critical value Frc is on the boundary between the domains of the asymptotic stability and dynamic
instability (weaving motion, [19,20,27]). Notice that in the recent work [38], a comprehensive analysis
of the Lienard–Chipart conditions for the TMS bicycle reduced self-stable designs to just two classes
corresponding to either positive or negative angles λs and excluded backward stability for the TMS
model. Here, we limit our analysis to the (λs > 0)-class of the self-stable TMS bikes.

For instance, for the wheel base w = 1 m, the design proposed in [27] is determined by:

λs =
5π

180
rad, mH = 1 kg, mB = 10 kg, xB = 1.2 m, xH = 1.02 m, zB = −0.4 m, zH = −0.2 m. (7)

With (7), we find from (6) the critical Froude number and the corresponding critical velocity:

Frc = 0.9070641497, vc = 2.841008324 m/s (8)

that reproduce the original result obtained numerically in [27].



Entropy 2018, 20, 502 6 of 16

2.4. Minimizing the Spectral Abscissa of General TMS Bikes

The criterion (5) guarantees the asymptotic stability of the bicycle at Fr > Frc. However,
the character of the time dependence of the steering and leaning angles could be different at different
points within the domain of asymptotic stability. Indeed, complex eigenvalues with negative real parts
correspond to exponentially-decaying oscillatory motions, whereas negative real eigenvalues yield
the exponential decay of perturbations without oscillations. Recall that if all the eigenvalues of the
system are real and negative, the system is heavily damped [34,35]. If we wish that the deviations
from the straight vertical position of the heavily-damped TMS bike riding along a straight line also
quickly die out, we need to maximize the decay rates of the deviations in the following sense.

The abscissa of the polynomial p(s) is the maximal real part of its roots:

a(p) = max {Re s : p(s) = 0} .

Minimization of the spectral abscissa over the coefficients of the polynomial provides a polynomial
with the roots that have minimal possible real parts (maximal possible decay rates). In the case
of the system of coupled oscillators of the form (1), it is known that the global minimum of the spectral

abscissa is amin = ω0, where ω0 = − 4
√

det P
det M [39,40]. Knowing the coefficients of the characteristic

polynomial (4), it is easy to find that for the TMS bicycle:

ω0 = − 4

√
1

ζ2
B

ζB tan λs + µ(χH − 1)
ζH tan λs − (χH − 1)

. (9)

Remarkably, if s = ω0 is the minimum of the spectral abscissa, it is the four-fold root of the
fourth-order characteristic polynomial (3), which is the quadruple negative real eigenvalue with the
Jordan block of order four of the linear operator Ms2 + Vs + P [17,39]. In this case, the polynomial (3)
takes the form:

p(s) = (s−ω0)
4 = s4 − 4s3ω0 + 6s2ω2

0 − 4sω3
0 + ω4

0, ω4
0 =

a4

a0
=

det P
det M

. (10)

Comparing (3) and (10), we require that:

a1 = Fr(ζBχH − ζHχB)ζB = −4ω0a0,

a3 = −Fr(χB − χH)ζB = −4ω3
0a0.

Dividing the first equation by the second one, we get the relation:

ζBχH − ζHχB
χB − χH

=
−1
ω2

0

that we resolve with respect to χB to obtain the following design constraint (or scaling law):

χB =
ω2

0ζB − 1
ω2

0ζH − 1
χH . (11)

Another constraint follows from the requirement a2 = 6ω2
0a0:

Fr2(ζB − ζH) + (6ω2
0ζHζB − ζB − ζH) tan λs = ζ−1

B (χH − 1)(6ω2
0ζ2

B + µζH − ζB). (12)
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Let us optimize the stability of the benchmark (7). Set, for example, ω0 = −1. Then, taking from
the benchmark (7) the parameters ζB = −0.4, ζH = −0.2 and χH = 1.02, we find from Equation (11)
that χB = 1.19. With these values, the constraint (12) is:

− 0.432 tan λs − 0.0272 + 0.08Fr2 + 0.004µ = 0, (13)

the relation (9) yields:
0.368 tan λs − 0.02µ− 0.0032 = 0, (14)

and the characteristic polynomial evaluated at s = −1 results in the equation:

0.192 tan λs − 0.0048− 0.136Fr + 0.08Fr2 − 0.016µ = 0. (15)

The system (13)–(15) has a unique solution with the mass ratio µ > 0:

Fr = 2.337214017, µ = 20.84626701, λs = 0.8514403685.

This means that the optimized TMS bicycle attains the global minimum of the spectral abscissa
at FrEP = 2.337214017 where all four eigenvalues merge into a quadruple negative real eigenvalue
s = −1 with the Jordan block, Figure 2b. This eigenvalue we call a real exceptional point of order four
and denote as EP4. For comparison, we show in Figure 2a the growth rates of a generic benchmark
TMS bicycle (7).

5Fr

Re s

0

Asymptotic stability

Frc

5Fr

Re s

0

EP4

Asymptotic stability

FrEP

Frc

(a) (b)

Figure 2. (a) The growth rates for the benchmark TMS bicycle (7); (b) the growth rates of the
optimized TMS bicycle with ζB = −0.4, ζH = −0.2, χB = 1.19, χH = 1.02, µ = 20.84626701
and λs = 0.8514403685 showing that the spectral abscissa attains its minimal value amin = −1 at
FrEP = 2.337214017 at the real exceptional point of order four, EP4.

Why is the location of the real EP4 important? In [17], it was shown that this exceptional point
is a swallowtail singularity on the boundary of the domain of heavy damping inside the domain
of asymptotic stability of a system with two degrees of freedom. Furthermore, the global minimum
of the spectral abscissa occurs exactly at the swallowtail degeneracy. In [17], it was shown that
the EP4 ‘organizes’ the asymptotic stability, and its knowledge helps to locate other exceptional
points governing stability exchange between modes of a coupled system. Below, we demonstrate this
explicitly for the TMS bikes with χH = 1.
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2.5. Self-Stable and Heavily-Damped TMS Bikes with χH = 1

2.5.1. The Critical Froude Number and Its Minimum

Why does χH = 1? First, both the benchmarks reported in [27] and their experimental realizations
have χH ≈ 1. Second, this choice leads to a dramatic simplification without affecting the generality
of our consideration. Indeed, Expression (6) for the critical Froude number evaluated at χH = 1
reduces to:

Fr2
c =

ζB − ζH
ζB − χBζH

χB
χB − 1

tan λs. (16)

Choosing χH = 1 automatically makes Frc and the stability conditions (5) independent of the
mass ratio µ. Additionally, the criteria (5) imply χB > 1 and |ζB| > |ζH |.

Therefore, choosing χH = 1 reduces the dimension of the parameter space from seven to five.
The self-stability of the (χH = 1)–bike depends just on Fr, χB, ζH , ζB and λs.

Given ζH , ζB and λs, find the minimum of the critical Froude number (16) as a function of χB. It is
easy to see that the minimum is attained at:

χB =

√
ζB
ζH

(17)

and its value is equal to:

Frmin =

√√
|ζB|+

√
|ζH |√

|ζB| −
√
|ζH |

tan λs. (18)

These results suggest that all the critical parameters for the (χH = 1)-bike can be expressed in
a similar elegant manner by means of ζH , ζB and λs only. Let us check these expectations calculating
the location of the real exceptional point EP4 for the (χH = 1)-bike.

2.5.2. Exact Location of the Real Exceptional Point EP4

Indeed, with χH = 1, Expression (9) for the real negative quadruple eigenvalue at EP4 yields:

ω0 = − 4

√
1

ζBζH
. (19)

The design constraint (11) reduces to the scaling law:

χB =

√
ζB
ζH

(20)

which is nothing else but the minimizer (17) of the critical Froude number! Simultaneously solving
Equation (12) and the equation p(ω0) = 0, we find explicitly the second design constraint that
determines tan λs at EP4:

tan λs =
ω2

0(ζB − ζH)

16ζH

(ζB + ζH)ω
2
0 − 6

(ζB + ζH)ω
2
0 − 2

. (21)

Finally, from the same system of equations, we find that the Froude number at EP4, FrEP4 , is a
root of the quadratic equation:(

ω2
0ζB − 1

)
Fr2

EP4
+ 2ω3

0ζBFrEP4 − (ω2
0ζB + 1) tan λs = 0, (22)

where ω0 is given by Equation (19) and tan λs by Equation (21).



Entropy 2018, 20, 502 9 of 16

Let us take ζH = −0.2 and ζB = −0.4 as in the benchmark (7). Then, (20)–(22) locate the EP4 in
the space of the parameters, giving (Table 2):

χB =
√

2, tan λs =
15
4
− 75

32

√
2, FrEP4 =

3
√

110
√

2− 120
8

≈ 2.236317517.

Table 2. TMS bike designs with χH = 1.

Bike χH χB ζH ζB ω0 λs (rad) Frc FrEP

EP4 1
√

2 −0.2 −0.4 −
√

5
4√2

arctan
(

15
4 −

75
32

√
2
) √

30
√

2+120
8

3
√

110
√

2−120
8

2EP2 1
√

2 −0.2 −0.4 −
√

5
4√2

arctan
(

15
4 −

75
32

√
2
)
− 0.05 ≈1.482682090 ≈2.257421384

CEP2 1
√

2 −0.2 −0.4 −
√

5
4√2

arctan
(

15
4 −

75
32

√
2
)
+ 0.80 ≈3.934331969 ≈4.103508160

2.5.3. Discriminant Surface and the EP-Set

The located EP4 corresponds to a quadruple negative real eigenvalue s = ω0 = −
√

5
4√2

. It is known
that EP4 is the swallowtail singular point on the discriminant surface of the fourth-order characteristic
polynomial [17]. In Figure 3, the discriminant surface is plotted in the (Fr, χB, λs)-space for the TMS
bike with χH = 1, ζH = −0.2 and ζB = −0.4 showing the swallowtail singular point with the position
specified by the first line of Table 2. The discriminant surface has two cuspidal edges, as well as the line
of self-intersection branching from the EP4. These singularities belong to the boundary of a domain
with the shape of a trihedral spire. This is the domain of heavy damping. In its inner points, all the
eigenvalues are real and negative [17].

We see that the line of self-intersection lies in the plane χB =
√

ζB
ζH

. Restricted to this plane
(parameterized by Fr and λs), the discriminant of the characteristic polynomial (3) simplifies and
provides the following expression for the curve that contains the line of self-intersection of the
discriminant surface:

Fr =
ω2

0ζB − 1
ω2

0ζB + 1
2 tan λs√

ω4
0ζB + 4 tan λs

ω2
0ζB−1

ω2
0ζB+1

. (23)

In Figure 4a, the curve (23) is plotted for χH = 1, ζH = −0.2, ζB = −0.4 and χB =
√

2 in
the (Fr, λs)-plane. A point where this curve has a vertical tangent is the swallowtail singularity or
EP4. The part of the curve below the EP4 is a line of self-intersection of the discriminant surface
corresponding to a pair of different negative double real eigenvalues with the Jordan block, i.e., to a
couple of real exceptional points, which we denote as 2EP2.

The curve (23) continues, however, also above the EP4. This part, shown by a dashed line in
Figure 4a, is the set corresponding to conjugate pairs of complex double eigenvalues with the Jordan
block, or complex exceptional points that we denote as CEP2. Since the curve (23) is a location of three
types of exceptional points; we call it the EP-set. Notice that the codimension of the EP-set is two,
and for this reason, its location by numerical approaches is very non-trivial.
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EP4 Asymptotic

stability

Heavy   damping

Dynamic 

instability

(Weaving)

c

(a) (b)

EP3

EP3

c

Heavy damping

Asymptotic  stability

Dynamic 

instability

(Weaving)

Asymptotic  stability

2EP2

Heavy   damping

Dynamic 

instability

(Weaving)

c

(c) (d)

Figure 3. (a) The discriminant surface of the characteristic polynomial of the TMS bike with χH = 1,
ζH = −0.2 and ζB = −0.4 showing the swallowtail singularity at EP4. The cross-section of the

domain of asymptotic stability and the discriminant surface at (b) Fr = FrEP4 = 3
√

110
√

2−120
8 ,

(c) Fr = FrEP4 − 0.1 and (d) Fr = FrEP4 + 0.5.

Asymptotic stability

Heavy damping

Dynamic 

instability

(Weaving)

Static 

instability

(Capsizing)

EP4

Com
ple

x 
EP2

2EP2

Fr

EP2

EP4
c

Asymptotic stability

Dynamic 

instability

(Weaving)

EP2

EP2

Fr

(a) (b)

Figure 4. χH = 1, ζH = −0.2 and ζB = −0.4. (a) For χB =
√

2, the boundary between the domains
of weaving and asymptotic stability in the (Fr, λs)-plane shown together with the domain of heavy

damping that has a cuspidal point corresponding to a negative real eigenvalue ω0 = − 4
√

25
2 with the

Jordan block of order four (EP4). The EP4 belongs to a curve (23) that corresponds to (dashed part)
conjugate pairs of double complex eigenvalues with the Jordan block of order two (complex EP2) and
(solid part) to couples of double real negative eigenvalues with the Jordan block of order two (2EP2).

(b) The same in the (Fr, χB)-plane at λs = arctan
(

15
4 −

75
32

√
2
)

rad. The domain of heavy damping
degenerates into a singular point: the swallowtail singularity.
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2.5.4. Location of the EP-Set and Stability Optimization

What does the location of the EP-set mean for the stability of the TMS bike? Drawing the domain
of asymptotic stability together with the discriminant surface and the EP-set in the same plot, we see
that the EP-set lies entirely in the domain of asymptotic stability; see Figure 4. The 2EP2 part of the

EP-set bounds the domain of heavy damping in the plane χB =
√

ζB
ζH

=
√

2.
Look now at the cross-sections of the asymptotic stability domain and the discriminant surface in

the (χB, λs)-plane; see Figure 3. Remarkably, the value χB =
√

ζB
ζH

=
√

2 is a maximizer of the steer
axis tilt λs both at the onset of the weaving instability and at the boundary of the domain of heavy
damping. In the latter case, the maximum is always attained at a singular point in the EP-set: either
at EP4 when Fr = FrEP4 or at 2EP2 when Fr > FrEP4 . The global maximum of the steer axis tilt on the
boundary of the domain of heavy damping is attained exactly at EP4, which is also the point where the

spectral abscissa attains its global minimum. Taking into account that χB =
√

ζB
ζH

=
√

2 is a minimizer
of the critical Froude number that is necessary for asymptotic stability, we conclude that both of the
design constraints, (20) and (21), play a crucial part in the self-stability phenomenon:

The most efficient self-stable TMS bikes are those that have a better chance to operate in the heavy damping
domain and simultaneously have the minimal possible spectral abscissa. In the case when χH = 1, these bikes
should necessarily follow the scaling laws:

χB =

√
ζB
ζH

and 0 < tan λs ≤
ω2

0(ζB − ζH)

16ζH

(ζB + ζH)ω
2
0 − 6

(ζB + ζH)ω
2
0 − 2

, where ω0 = − 4

√
1

ζBζH
. (24)

Even in the case of an approximate scaling law χB ≈
√

ζB
ζH

, the domain of heavy damping is large
enough (see Figure 5), suggesting that the formulated principle produces a sufficiently robust design
of self-stable TMS bikes.

Asymptotic stability

Heavy damping

Dynamic 

instability

(Weaving)

EP3

EP3

22EP
c

Fr

(a) (b)

Figure 5. χH = 1, ζH = −0.2 and ζB = −0.4. (a) For χB =
√

2 − 0.1, the boundary between
the domains of weaving and asymptotic stability in the (Fr, λs)-plane shown together with the domain
of heavy damping that has a cusp corresponding to a negative real eigenvalue with the Jordan block
of order three (EP3). The EP3 belongs to the cuspidal edge of the swallowtail surface bounding the

domain of heavy damping. (b) The same in the (Fr, χB)-plane at λs = arctan
(

15
4 −

75
32

√
2
)
− 0.18 rad.

Notice the cuspidal EP3-points and the self intersection at the 2EP2 point on the boundary of the domain
of heavy damping.

2.5.5. Mechanism of Self-Stability and CEP2 as a Precursor to Bike Weaving

What happens with the stability of TMS bicycles that have a large steer axis tilt? To answer this
question, let us look at the movement of eigenvalues in the complex plane at different λs and χB as
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the Froude number increases from 0–5; see Figure 6. At Fr = 0, the bicycle is effectively an inverted
pendulum, which is statically unstable (capsizing instability [20]) with two real negative eigenvalues
and two real positive eigenvalues. As Fr increases, the positive eigenvalues move towards each other
along the real axis. The same happens (at a slower rate) with the negative eigenvalues. Eventually,
the positive real eigenvalues merge into a double real eigenvalue s = −ω0 > 0. The subsequent
evolution of eigenvalues depends on χB and λs.

EP4

Im s

Re s

2.322.252.18

Fr

Re s EP4

(a) (b)

Im s

Re s

EP2

EP2

EP2

EP2

2.322.252.18

Fr

Re s

Heavy damping

(c) (d)

EP2

EP2

Im s

Re s 50 Fr

Re s
Complex EP2

(e) (f)

Figure 6. χH = 1, ζH = −0.2, ζB = −0.4. Stabilization of the TMS bike as Fr is increasing

from 0–5 for (a,b) λs = arctan
(

15
4 −

75
32

√
2
)

rad, (c,d) λs = arctan
(

15
4 −

75
32

√
2
)
− 0.05 rad and

(e,f) λs = arctan
(

15
4 −

75
32

√
2
)
+ 0.8 rad. The eigenvalue curves are shown for (black) χB =

√
2,

(blue) χB =
√

2− 0.01 and (red) χB =
√

2+ 0.01 in the upper and middle rows and for (black) χB =
√

2,
(blue) χB =

√
2− 0.1 and (red) χB =

√
2 + 0.1 in the lower row. Notice the existence at χB =

√
2 of

(a,b) a real exceptional point EP4, (c,d) a couple of real exceptional points EP2 and (e,f) a couple of
complex exceptional points EP2 and repelling of eigenvalue curves near EPs when χB 6=

√
2.

If χB =
√

ζB
ζH

=
√

2, then with the further increase in Fr, the double eigenvalue s = −ω0 > 0
splits into a conjugate pair of complex eigenvalues with positive real parts, causing weaving instability.
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This pair evolves along a circle (Re s)2 + (Im s)2 = ω2
0 and crosses the imaginary axis exactly at

Fr = Frc given by Equation (16), which yields the asymptotic stability of the bicycle.
The further evolution of the eigenvalues depends on the steer axis tilt λs; see Figure 6. If λs

satisfies the constraint (21), then the complex eigenvalues with the negative real parts moving along the
circle approach the real axis and meet the two negative real eigenvalues exactly at Fr = FrEP4 , forming
a quadruple negative real eigenvalue s = ω0, i.e., the real exceptional point EP4. At this moment,
all four eigenvalues are shifted as far as possible to the left from the imaginary axis, which corresponds
to the global minimum of the spectral abscissa; see Figure 6a,b. A further increase of Fr leads to the
splitting of the multiple eigenvalue into a quadruplet of complex eigenvalues with negative real parts
(decaying oscillatory motion) and to the increase in the spectral abscissa.

If χB =
√

ζB
ζH

=
√

2 and λs is smaller than the value specified by (21), then the pair moving along
the circle reaches the real axis faster than the negative real eigenvalues meet each other; see Figure 6c,d.
Then, the complex eigenvalues merge into a double negative real eigenvalue s = ω0, which splits
into two negative real ones that move along the real axis in the opposite directions. At these values
of Fr, the system has four simple negative real eigenvalues, which correspond to heavy damping.
The time evolution of all perturbations is then the monotonic exponential decay, which is favourable
for the bike robustness. At Fr = FrEP, which is determined by Equation (23), two real negative double
eigenvalues originate simultaneously, marking the formation of the 2EP2 singularity on the boundary
of the domain of heavy damping. A further increase in Fr yields splitting of the multiple eigenvalues
into two pairs of complex eigenvalues with negative real parts (decaying oscillatory motion).

If χB =
√

ζB
ζH

=
√

2 and λs is larger than the value specified by (21), then the pair moving along
the circle does it so slowly that the real negative eigenvalues manage to merge into a double negative
real eigenvalue s = ω0 and then become a pair of two complex eigenvalues evolving along the same
circle towards the imaginary axis; see Figure 6e,f. The pairs of complex eigenvalues meet on the circle
at Fr = FrEP, which is determined by Equation (23), i.e., at a point of the EP-set corresponding to
a pair of complex exceptional points EP2. After the collision, the eigenvalues split into four complex
eigenvalues with the negative real parts.

From this analysis, we see that λs indeed determines the balance of the rate of stabilization of
unstable modes and the rate of destabilization of stable modes. The former is larger when λs is smaller
than the value specified by (21), and the latter is larger when λs exceeds the value specified by (21),
thus confirming the design principle (24). The perfect balance corresponds to the angle λs specified
by (21), which yields global minimization of the spectral abscissa.

When χB 6=
√

ζB
ζH

, then the eigenvalues evolve close to the circle (Re s)2 + (Im s)2 = ω2
0, but

this evolution again differs for different values of λs. If for λs smaller than the value specified
by (21) the eigenvalue evolution remains qualitatively the same, as is evident from Figure 6c,d,
for λs larger than the value specified by (21), the eigenvalues experience strong repulsion near
the location of CEP2, i.e., when the parameters evolve close to the EP-set of complex exceptional
points. Such behaviour of eigenvalues in dissipative systems permanently intrigues many researchers.
For instance, Jones [13] remarked in the context of the stability of the plane Poiseuille flow that
“unfortunately, it is quite common for an eigenvalue which is moving steadily towards a positive
growth rate to suffer a sudden change of direction and subsequently fail to become unstable; similarly,
it happens that modes which initially become more stable as [the Reynolds number] increases change
direction and subsequently achieve instability. It is believed that these changes of direction are due to the
nearby presence of multiple-eigenvalue points.” This “nearby presence” of complex exceptional points
is elusive unless we manage to locate the EP-set. For the TMS bike, we have obtained this set in the
explicit form given by Equations (19), (20) and (23). Dobson et al. [14] posed a question “is strong modal
resonance a precursor to [oscillatory instability]?” The strong modal resonance is exactly the interaction
of eigenvalues at CEP2 shown in Figure 6e,f. Knowing the exact location of the EP-set of complex
exceptional points, we can answer affirmatively the question of Dobson et al. Indeed, the complex
EP-set shown as a dashed curve in Figure 4a tends to the boundary of asymptotic stability as λs → π

2 .
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This means that the CEP2 in Figure 6e,f come closer to the imaginary axis at large λs, and even small
perturbations in χB can turn the motion of eigenvalues back to the right-hand side of the complex
plane and destabilize the system. Figure 6e,f also demonstrates the selective role of the scaling law

χB =
√

ζB
ζH

in determining which mode becomes unstable. The conditions χB >
√

ζB
ζH

and χB <
√

ζB
ζH

affect modes with higher or lower frequency, respectively. In fact, in the limit λs → π
2 , the dissipative

system comes close to a system with a Hamiltonian symmetry of the spectrum. This could be a
reversible, Hamiltonian or PT-symmetric system [9,10,12,33], which is very sensitive to perturbations
destroying the fundamental symmetry and therefore can easily be destabilized.

2.5.6. How the Scaling Laws Found Match the Experimental TMS Bike Realization

In Figure 7, we show a photograph of the experimental TMS bike from the works [18,27]. If we
measure the lengths of the bike from the photo, we can deduce that for this realization, the design
parameters are χB = 1.526, χH = 0.921, ζB = −1.158, ζH = −0.526. Hence,√

ζB
ζH

= 1.484 ≈ χB = 1.526,

which means that the scaling law (20) is matched pretty well. This leads us to the conclusion that
the trial-and-error engineering approach to the design of a self-stable TMS bike reported in [27] has
eventually produced the design that is close to the optimally-stable one with respect to at least three
different criteria: minimization of the spectral abscissa, minimization of Frc and maximization of
the domain of heavy damping. Indeed, our scaling laws (20) and (21) directly follow from the exact
optimal solutions to these problems.

Figure 7. Experimental realization of a self-stable TMS bicycle design found by trial and error in [18,27]
with χB = 1.526, χH = 0.921, ζB = −1.158 and ζH = −0.526 approximately fitting the scaling law (20).

Indeed,
√

ζB
ζH

= 1.484 is close to χB = 1.526.

3. Conclusions

We have found new scaling laws for the two-mass-skate (TMS) bicycle that lead to the design
of self-stable machines. These scaling laws optimize the stability of the bicycle by several different
criteria simultaneously. The matching of the theoretical scaling laws to the parameters of the TMS bike’s
realization demonstrates that the trial-and-error engineering of the bikes selects the most robustly
stable species and thus empirically optimizes the bike stability. We have found the optimal solutions
directly from the analysis of the sets of exceptional points of the TMS bike model with the help
of a general result on the global minimization of the spectral abscissa at an exceptional point of the
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highest possible order. We stress that all previous results on the self-stability of bicycles even in the
linear case have been obtained numerically.
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