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Abstract: In this paper, a novel data-driven single neuron predictive control strategy is proposed for
non-Gaussian networked control systems with metrology delays in the information theory framework.
Firstly, survival information potential (SIP), instead of minimum entropy, is used to formulate the
performance index to characterize the randomness of the considered systems, which is calculated
by oversampling method. Then the minimum values can be computed by optimizing the SIP-based
performance index. Finally, the proposed strategy, minimum entropy method and mean square error
(MSE) are applied to a networked motor control system, and results demonstrated the effectiveness
of the proposed strategy.

Keywords: networked control systems; data-driven predictive strategy; non-Gaussian random
delays; non-Gaussian disturbances; survival information potential

1. Introduction

In the last decade, network technology has dramatically been improved. More and more control
systems are combined with network technologies [1–3]. Networked control systems (NCSs) are
loop-locked control systems in which a closed loop is constituted by communication channels [4,5].
In fact, control system with communications is not a new concept in automation. From tele-operation
to distributed control, control theory over a communication network has already been developed for
more than 40 years. However, there are many factors that distinguish the current NCSs and previous
control systems with communications. Two of them are the most significant: (1) in the previous control
with communications, the network was specialized and dedicated for the stability of process operation
and timeliness of information exchange, while in the current NCSs the network is general-purpose and
public for various concurrent applications, and thus stable operation and real-time communication are
no longer ensured; (2) their functionality has been diversified tremendously, and a variety of control
and management or administrative functions have been developed, which is different from previous
single control [6]. As a new area of control systems, NCSs have advantages of resource sharing,
achieved remote monitored and adjusted, low cost, simple installation and high reliability [7,8], which
has been applied to many fields such as tele-surgery, tele-manufacturing, museum guidance, space
exploration, traffic control, health care and disaster rescue [9], but demands on complexity, diversity,
and real-time performance for networked operations have brought new technological challenges
to NCSs. Time delays exist inevitably in the communication net [10]. When sampling periods are
longer than these delays, the influence of the delays is need not to be considered in general control
systems. However, the network control system has high requirements on real-time, so delays induced
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via network communication are becoming more and more important to be analyzed and designed
in the NCSs [11,12]. What’s more, the occurrence of disturbances can also degrade their control
performance [13]. Therefore, the control of stochastic NCSs drew in large studies.

The random network delay only in the forward channel in NCSs was considered in [14]. However,
delays usually exist both in the forward and feedback channels, which make the control design and
stability analysis much more challenging. In order to solve this problem, [15] proposed a control
scheme for NCSs with random network delays in both channels, in which the model of random
network-induced delays is utilized by Markov chains. In addition, a model-based predictive control
algorithm was developed by Liu et al. [16,17] with the purpose of better control. However, these
methods were based on the model. Moreover, the shortcomings of the accurately model building were
overcome by data-driven predictive control method [18].

The above presented control methods only considered the random delays in NCSs, it is known
that external disturbances are also inevitable in NCS, which may lead to the deterioration of control
performance. One- and two-parameter control schemes were researched to track the performance of
continuous systems with white Gaussian disturbances in [19,20]. The result was further generalized
to other noisy channels of NCSs in [21], where achievable minimal tracking error is used to measure
optimal tracking performance. However, these methods are mostly based on the assumption that the
system variables follow a Gaussian distribution. Under such an assumption, all possible statistical
information of a variable can be extracted from its mean and variance. In fact, most network systems
are difficult to meet these pre-conditions because of the mixture of nonlinear factors or different
disturbances, which results in non-Gaussian randomness even if the disturbances are of Gaussian
types. Stochastic distribution control theory, developed by Wang [22], had been applied to the control of
stochastic systems with non-Gaussian disturbances [23,24]. Based on this theory, Zhang et al. applied
minimized zero mean entropy method to NCSs, and the corresponding controller was designed [25].
In [26], fault detection of networked control systems via minimum entropy observer was presented
and in [27], a minimum entropy Luenberger observer was designed for linear time-invariant (LTI)
system and Van der Pol Oscillator. However, system models in the studies mentioned above were all
linear. As we all know, in practical engineering, nonlinear systems generally exist, and most of them
meet the Lipschitz condition. Ren et al. [28] proposed an entropy-based control algorithm for nonlinear
NCSs with non-Gaussian random disturbances and delays. Actually, some drawbacks exist in entropy:
(1) it is shift-invariant (i.e., its value remains unchanged even if the location of distribution varies);
(2) the value may be negative; (3) When PDF is non-existent, the definition will be ill-suited. In order to
overcome these drawbacks, a single neuron control strategy for non-Gaussian stochastic systems based
on the survival information potential (SIP) criterion was proposed by Chen et al. [29], in which control
input was conservatively considered as a deterministic variable [28,30]. In fact, the randomness of
control input exists in practical conditions, so paper [31] proposed a single neuron stochastic predictive
PID control algorithm using SIP criterion, in which the performance index not only contains the SIP of
tracking error, but also includes the SIP of control input. And it is for nonlinear systems with exact
model. But it is usually difficult to obtain accurate model of NCSs. What’s more, the random delays are
inevitable in NCSs. Therefore, a data-driven single neuron predictive control structure is constructed
by SIP for NCSs with non-Gaussian disturbances and random delays in this paper.

This paper is organized as follows: in Section 2, the control problem of the NCSs with
non-Gaussian disturbances a time delays is formulated. Specifically, the performance index of SIP is
formulated. Based on the proposed performance index, the single neuron stochastic predictive control
method is mentioned in Section 3. The efficiency of the proposed control strategy is illustrated through
applying method to networked motor control system in Section 4. The last section is a summary of
this paper.
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2. Problem Formulation

NCSs are dynamic systems and each control loop is closed via a network communication channel,
which induces possible random delays. It is known that random disturbances are inevitable in NCSs.
Both factors may affect NCSs’ control performance and stability. What’s more, there are multiple
unknown parameters and uncertainties in the NCSs, the system has strong nonlinear characteristic,
and its model is difficult to be established. Using the equivalent model and ignoring a number
of uncertainties are common solutions, which would greatly reduce the accuracy of model and
seriously affect the control effect. Data-driven method just need the process data before the algorithm
started, rather than the modeling of the process. The data-driven control model for the NCSs can be
expressed as:

yk = f (uk, ωk, dk, τk) (1)

where yk and uk are system output and control input. ωk is a kind of random non-Gaussian disturbance.
The independent signals, dk and τk, are random and can be described by the beta distribution
respectively, their values are between 2 and 8.

Based on the process described of NCSs above, the tracking error is:

ek = f (rk, uk, ωk, dk, τk) (2)

where rk is the set point. ek can be viewed as a function of dk, τk and ωk.

Remark 1. f (·) and g(·) are unknown functions. The model is needless in the proposed method, Equations (1)
and (2) are utilized to depict the relations between and among error, disturbance and delays.

In NCSs, the plant, controller, sensor, actuator and reference command are connected through
a network [32]. The scheme of NCSs is shown in Figure 1. Bounded random delays τk and dk exist
in both channels from sensor to controller and controller to actuator respectively. The control input
ũk from single neuron predictive controller could be transferred to actuator after dk time. And then,
the executive action uk, uk = ũk+dk

, is utilized to control the process and then output yk can be obtained.
The purpose of this paper is to design a single neuron predictive controller to make the tracking error
ek, ek = rk − ỹk, approach to zero as closely as possible, where ỹk is the measured output, ỹk = yk+τk

.
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The single neuron controller is in use here. It is a nonlinear processing unit with multiple inputs
and single output, which can be shown as Equation (3):

uk = uk+1 + K
3

∑
l=1

ωlkxlk/‖Σk‖ (3)

where ∑k =
3
∑

l=1
ωlk, K > 0 is the proportional coefficient of the neuron. ωlk(l = 1, 2, 3) is the weight

corresponding to each input xlk(l = 1, 2, 3):
x1k = ek

x2k = ek − ek−1
x3k = ek − 2ek−1 + ek−2

(4)

In Figure 1, delays dk, τk and disturbance ωk follow non-Gaussian distributions. According to the
statement above, Gaussian randomness of system could be sufficiently characterized by mean and
variance (covariance), which are unavailable for systems with non-Gaussian randomness. Therefore,
a criterion should be used to deal with non-Gaussian randomness.

3. SIP-Based Performance Index

3.1. Overview of Entropy Criterion

In the previous works, MSE can control well under the assumption that system variables are
of Gaussian type, but it is not suitable for non-Gaussian randomness. Entropy is usually chosen for
the performance index to reject non-Gaussian randomness of systems. There are many kinds of the
entropy [33], but Shannon entropy certainly plays an important role. For a continuous random variable
X with PDF γX(x), the definition of Shannon entropy is described:

HS(X) =
∫ +∞

−∞
γX(x) log γX(x)dx (5)

Then, a well-known generalization of Shannon entropy is Renyi entropy defined by:

Hα(X) =
1

1− α
log

∫ +∞

−∞
γα

X(x)dx (6)

where α is the entropy order and α > 0, α 6= 1. It can be shown that Renyi entropy will reduce to
Shannon entropy when α→ 1 .

The argument of the log in the Renyi entropy (6) is called the information potential1 (IP):

Vα(X) =
∫ +∞

−∞
γα

X(x)dx (7)

Since Renyi’s entropy Hα(X) is a monotonic decreasing function of the IP Vα(X) when α > 1,
and Vα(X) is simpler for computing.

From Equation (7), it can be seen that some drawbacks exist in IP: (1) it is shift-invariant (i.e., its
value remains unchanged even if the location of distribution varies); (2) the value may be negative;
(3) When PDF is non-existent, the definition will be ill-suited.

3.2. SIP Criterion

In order to overcome drawbacks of entropy, a more general measure, survival information
potential (SIP) is chosen for the performance index. According to [29], SIP can be defined as follows:
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Definition 1. For a random variable X ∈ Rm, SIP of order α(α > 0) is defined by

Sα(X) =
∫
Rm
+

Fα
|X|(x)dx (8)

where F|X|(x) = P(|X| > x) = E[I(|X| > x)] is the survival function (or equivalently, the distribution
function) of the random variable |X|, and R+ = {x ∈ R : x ≥ 0}. I(·) is the indicator function.

There are some advantages that can be concluded from the definition of SIP: (1) it is not
shift-invariant (i.e., its value remains unchanged even if the distribution location varies); (2) it has
good robustness because of more regular distribution function; (3) it is easy to compute values from
the sample data to avoid computing the kernel and choosing the kernel width.

The control input is also non-Gaussian according to the single neuron controller Equations (3) and (4),
so it is improper to consider conservatively the control input as a deterministic variable. What’s more,
predictive control strategy is used to obtain the optimal control input here, which has achieved well
performance, as above. Both tracking error and control input are considered, the following predictive
performance index J is utilized to optimize the weights of single neuron:

J =
P

∑
i=1

Sα(ek+i−1) + λ
M

∑
j=1

Sα(uk+j−1) (9)

where ek+i is the i-step ahead prediction of the tracking error relating to disturbance and delays. uk+i
is the i-step ahead prediction of the control input. P and M are the prediction horizon and the control
horizon, respectively, and M ≤ P. It’s worth noting that the control input would not change after M
steps, i.e., uk+j−1 = uk+M−1(j > M).

It is not easy to describe the distribution of the error ek with integrated first-principle model in
actual industry. Therefore, the data-driven empirical SIP, instead of the theoretical SIP, is used here.
Suppose there are error samples (e1k, e2k, · · · , eNk) at instant k, and without the loss of generality, that
|e1k| ≤ |e2k| ≤ · · · ≤ |eNk|, the empirical SIP of error as follows [29]:

Ŝα(ek) =
N

∑
m=1

µm|emk| (10)

where µm =
(

N−m+1
N

)α
−
(

N−m
N

)α
.

According to Equation (10), the empirical SIP Ŝα(uk+m−1) of control input can similarly also be
formulated. The performance index Ĵ with empirical SIP can be expressed as:

Ĵ =
P

∑
i=1

N

∑
m=1

µm|emk+i−1|+ λ
M

∑
j=1

N

∑
m=1

µm

∣∣∣umk+j−1

∣∣∣ (11)

where µm =
(

N−m+1
N

)α
−
(

N−m
N

)α
.

The calculation of empirical SIP needs samples. Taking into account the realization of actual
operation, we handle samples with an oversampling method [34].

Assuming the over-sampling rate is N, it is a positive integer. Figure 2 displays the structure
diagram of NCSs with an over-sampling technique. Like in general closed-loop system, NCSs contain
process model Gp and controller of which the control period is T. A zero-order holder is behind
controller, which is used to generate piecewise control input. It is noting that the output sampling time
equals ∆ = T/N, and then the signal y∆(m)(m = k, k + ∆, k + 2∆, · · · , k + (N− 1)∆) can be generated,
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while a conventional output signal is sampled at a period of T. Specially, under the effect of zero-order
holding, the input signal u∆(m) is actually generated as:

u∆(m) = u(k), (m = k, k + ∆, k + 2∆, · · · , k + (N − 1)∆) (12)
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The over-sampling method is presented above for an NCS. Particularly, the value of T is one
second. In simple terms, the control input is sampled at a period of T and then will be held until next
sampling due to zero-order holding, but the output is sampled at a period of ∆ = T/N. Therefore,
N samples of output can be sampled after T time, and then, N samples of error between N samples
of output and corresponding reference trajectory can be obtained. Similarly, substituting N error
samples into Equations (3) and (4), N control input samples also can be obtained. After substituting N
samples of error and control input into Equation (11), the performance index can be calculated through
empirical SIP.

4. Optimal Control Algorithm

To achieve the optimal weights of the single neuron, considering the structure of the single neuron
adaptive controller from Equation (3), the performance index from Equation (9) will be:

w∗k = argminJ
wk∈R3M

(13)

where wk = [w1,k, w2,k, w3,k, w1,k+1, w2,k+1, w3,k+1, · · · , w1,k+M−1, w2,k+M−1, w3,k+M−1]
T ∈ R3M.

There are many optimal algorithms for solving the optimal value of Equation (13), among which
the gradient descent method is the earliest and most commonly used optimization method [35].
The gradient descent method is simple. When the objective function is convex, the gradient descent
method is the global solution. Its idea is that make the negative gradient direction of current position
as search direction, which is the fastest decline direction. Therefore, it also is known as “the steepest
descent method”. Based on the gradient descent method and Equation (11), the optimal weight can be
updated by:

wk+1 = wk − η
∂ Ĵk
∂wk

(14)

where η > 0 denotes adaptation gain.
The optimal input uk of NCSs can be computed according to Equation (3). The following steps

describe the process of proposed control algorithm in detail:
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Step 1: Giving initial value of weight vector w0 and operation time kmax. Setting parameters of
step-size η and α.

Step 2: Calculate the performance index at present instant from Equation (11).
Step 3: Obtain the update weight vector wk+1 through the gradient descent method by

Equation (14).
Step 4: Substitute the optimal weight vector into Equation (3), and then the next control input

is obtained.
Step 5: Process outputs could be collected according to corresponding control input, which could

be used to update the next performance index. Then implement repeatedly processes from Step 2 to
Step 5 for the next time step, k = k + 1, until k = kmax.

5. Simulation Results

A networked DC motor control test rig is utilized to demonstrate the performance of the proposed
method, which consists of two NetControllers and a DC motor with its driver, as shown in Figure 3.
Both the networked controller board (NCB) and networked implementation board (NIB) have the same
hardware structure. NIB is on the DC motor, which is located in the Huazhong University of Science
and Technology (Wuhan, China), while the NCB is located remotely at the North China Electric Power
University (Beijing, China). The two parts are connected by the internet which contains non-Gaussian
disturbaces and delays, and the communication protocol between them is the UDP. The test rig adopts
a 57BL (3)-10-30 DC servo motor, which is made by Zhuhai Motion Control Motor Co. Ltd. The model
parameters and mathematical model of the considered DC motor can be obtained from Ren et al. [28].

Entropy 2018, 20, x FOR PEER REVIEW  7 of 13 

 

Step 3: Obtain the update weight vector 1k+w  through the gradient descent method by 
Equation (14). 

Step 4: Substitute the optimal weight vector into Equation (3), and then the next control input is 
obtained. 

Step 5: Process outputs could be collected according to corresponding control input, which 
could be used to update the next performance index. Then implement repeatedly processes from 
Step 2 to Step 5 for the next time step, 1k k= + , until maxk k= . 

5. Simulation Results 

A networked DC motor control test rig is utilized to demonstrate the performance of the 
proposed method, which consists of two NetControllers and a DC motor with its driver, as shown in 
Figure 3. Both the networked controller board (NCB) and networked implementation board (NIB) 
have the same hardware structure. NIB is on the DC motor, which is located in the Huazhong 
University of Science and Technology (Wuhan, China), while the NCB is located remotely at the 
North China Electric Power University (Beijing, China). The two parts are connected by the internet 
which contains non-Gaussian disturbaces and delays, and the communication protocol between 
them is the UDP. The test rig adopts a 57BL (3)-10-30 DC servo motor, which is made by Zhuhai 
Motion Control Motor Co. Ltd. (city, country). The model parameters and mathematical model of 
the considered DC motor can be obtained from Ren et al. [28]. 

 
Figure 3. Networked DC motor control system. 

The goal of the control design is not only to reach the target value of rotational speed of the 
armature = 3000 rad / minr  but also to reduce the variation of the corresponding variable and 
random delays. Considering the convenience of analysis, the round trip time delay is measured. 
Figures 4 and 5 show samples and the distribution of the time delay, respectively. The output is 
affected by a non-Gaussian measurement disturbance ( )ω . The PDF of ω  is given by: 

110.01 ( 1, 1) (0.01 ) , (0,0.01)( )=
0,otherwise

x x xx
λ μ λ μ

ω
β λ μγ

−+ + + + − ∈ 


 (15) 

where 
1

0
( 1, 1)= (1 ) , 4, 3x x dxλ μβ λ μ λ μ+ + − = = . 

Three statistical information indexes, mean value, standard deviation and the SIP value of 
three control methods are listed in Table 1, which illustrates that the proposed SIP-based control 
algorithm is better than the entropy-based method. The control performances of the networked DC 
motor control systems are shown in Figures 6–12.  

The performances of the proposed optimal control algorithm based on SIP, MSE and the 
minimum entropy control (MEE) in controlling a networked DC motor control system are 
compared. The conventional MSE method could only control well based on the assumption that the 

Figure 3. Networked DC motor control system.

The goal of the control design is not only to reach the target value of rotational speed of the armature
r = 3000 rad/min but also to reduce the variation of the corresponding variable and random delays.
Considering the convenience of analysis, the round trip time delay is measured. Figures 4 and 5 show
samples and the distribution of the time delay, respectively. The output is affected by a non-Gaussian
measurement disturbance (ω). The PDF of ω is given by:

γω(x) =

{ [
0.01λ+µ+1β(λ + 1, µ + 1)

]−1xλ(0.01− x)µ, x ∈ (0, 0.01)
0, otherwise

(15)

where β(λ + 1, µ + 1) =
∫ 1

0 xλ(1− x)µdx, λ = 4, µ = 3.
Three statistical information indexes, mean value, standard deviation and the SIP value of three

control methods are listed in Table 1, which illustrates that the proposed SIP-based control algorithm is
better than the entropy-based method. The control performances of the networked DC motor control
systems are shown in Figures 6–12.
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The performances of the proposed optimal control algorithm based on SIP, MSE and the
minimum entropy control (MEE) in controlling a networked DC motor control system are compared.
The conventional MSE method could only control well based on the assumption that the system
variables follow a Gaussian distribution, but the disturbances and delays are of non-Gaussian types
in Figure 3. Therefore, the MEE strategy, instead of MSE, is utilized to deal with non-Gaussian
randomness. However, the MEE strategy has some shortcomings as mentioned above, so SIP was
proposed to overcome the entropy drawbacks. Figure 6 shows the response of the DC motor speed,
the solid line is the response of the DC motor speed using the proposed method. It’s obvious that
the SIP-based control method could control well and stabilize the speed around the set point, which
has rapid convergence, and its speed fluctuation is small. According to the SIP value from Table 1,
the randomness is reduced and approaches zero with the proposed method. Although the fluctuation
of speed with the entropy method and SIP value is also small, it converges to the target value at
a very slow speed. However, the MSE control strategy could not control well, which has high
standard deviation. It is clear that the DC motor speed control system with SIP criterion has superior
performance than that based on entropy and MSE controller. Figure 7 shows the weights of the single
neuron. Obviously, the required control force under the proposed control law is smaller than that with
entropy and MSE seen in Figure 8. Figure 9 demonstrates the SIP error value is decreasing overall
with the progress of time, which represents that the control performance is getting better. In order to
demonstrate the SIP value is close to zero during the stationary phase, the SIP performance indexes
after two moments are showed in the amplification region.

Table 1. Control performance indexes.

Disturbances Method The Mean Value The Standard Deviation The SIP Value

Non-Gaussian
MSE 49.9153 22.6583 3.0000

Entropy 49.6720 10.9471 0.4997
SIP 49.8978 8.1570 0.1054

Entropy 2018, 20, x FOR PEER REVIEW  8 of 13 

 

system variables follow a Gaussian distribution, but the disturbances and delays are of 
non-Gaussian types in Figure 3. Therefore, the MEE strategy, instead of MSE, is utilized to deal with 
non-Gaussian randomness. However, the MEE strategy has some shortcomings as mentioned 
above, so SIP was proposed to overcome the entropy drawbacks. Figure 6 shows the response of the 
DC motor speed, the solid line is the response of the DC motor speed using the proposed method. 
It’s obvious that the SIP-based control method could control well and stabilize the speed around the 
set point, which has rapid convergence, and its speed fluctuation is small. According to the SIP 
value from Table 1, the randomness is reduced and approaches zero with the proposed method. 
Although the fluctuation of speed with the entropy method and SIP value is also small, it converges 
to the target value at a very slow speed. However, the MSE control strategy could not control well, 
which has high standard deviation. It is clear that the DC motor speed control system with SIP 
criterion has superior performance than that based on entropy and MSE controller. Figure 7 shows 
the weights of the single neuron. Obviously, the required control force under the proposed control 
law is smaller than that with entropy and MSE seen in Figure 8. Figure 9 demonstrates the SIP error 
value is decreasing overall with the progress of time, which represents that the control performance 
is getting better. In order to demonstrate the SIP value is close to zero during the stationary phase, 
the SIP performance indexes after two moments are showed in the amplification region.  

Table 1. Control performance indexes. 

Disturbances Method The Mean Value The Standard Deviation The SIP Value 

Non-Gaussian 
MSE 49.9153 22.6583 3.0000 

Entropy 49.6720 10.9471 0.4997 
SIP 49.8978 8.1570 0.1054 

 
Figure 4. Data graph of time delays. 

0 50 100 150 200 250 300 350 400 450 500
10

20

30

40

50

60

70

80

Samples number

D
el

ay
(m

s)

Figure 4. Data graph of time delays.



Entropy 2018, 20, 494 9 of 13Entropy 2018, 20, x FOR PEER REVIEW  9 of 13 

 

 

Figure 5. The distribution of time delays. 

 
Figure 6. System responses. 

 

Figure 7. Weights of a single neuron. 

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

Delay(ms)

P
ro

ba
bi

lit
y

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-20

0

20

40

60

80

100

120

time(s)

S
pe

ed
(r/

s)

 

 
set point
MSE based control
Entropy based control
SIP based control

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5
x 10

4

time(s)

w
1k

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10
x 10

4

time(s)

w
2k

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10
x 10

4

time(s)

w
3k

Figure 5. The distribution of time delays.

Entropy 2018, 20, x FOR PEER REVIEW  9 of 13 

 

 

Figure 5. The distribution of time delays. 

 
Figure 6. System responses. 

 

Figure 7. Weights of a single neuron. 

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

Delay(ms)

P
ro

ba
bi

lit
y

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-20

0

20

40

60

80

100

120

time(s)

S
pe

ed
(r/

s)

 

 
set point
MSE based control
Entropy based control
SIP based control

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5
x 10

4

time(s)

w
1k

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10
x 10

4

time(s)

w
2k

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10
x 10

4

time(s)

w
3k

Figure 6. System responses.

Entropy 2018, 20, x FOR PEER REVIEW  9 of 13 

 

 

Figure 5. The distribution of time delays. 

 
Figure 6. System responses. 

 

Figure 7. Weights of a single neuron. 

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

Delay(ms)

P
ro

ba
bi

lit
y

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-20

0

20

40

60

80

100

120

time(s)

S
pe

ed
(r/

s)

 

 
set point
MSE based control
Entropy based control
SIP based control

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5
x 10

4

time(s)

w
1k

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10
x 10

4

time(s)

w
2k

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10
x 10

4

time(s)

w
3k

Figure 7. Weights of a single neuron.



Entropy 2018, 20, 494 10 of 13Entropy 2018, 20, x FOR PEER REVIEW  10 of 13 

 

 
Figure 8. Control inputs. 

 
Figure 9. Performance indexes of error with SIP criterion. 

 
Figure 10. 3D mesh PDF using the entropy based controller. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-30

-20

-10

0

10

20

30

40

50

time(s)

V
ol

ta
ge

(V
)

 

 
MSE based control
Entropy based control
SIP based control

-10
-5

0
5

10 0
100

200
300

400
5000.2

0.4

0.6

0.8

1

1.2

t

e

γ e

Figure 8. Control inputs.

Entropy 2018, 20, x FOR PEER REVIEW  10 of 13 

 

 
Figure 8. Control inputs. 

 
Figure 9. Performance indexes of error with SIP criterion. 

 
Figure 10. 3D mesh PDF using the entropy based controller. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-30

-20

-10

0

10

20

30

40

50

time(s)

V
ol

ta
ge

(V
)

 

 
MSE based control
Entropy based control
SIP based control

-10
-5

0
5

10 0
100

200
300

400
5000.2

0.4

0.6

0.8

1

1.2

t

e

γ e

Figure 9. Performance indexes of error with SIP criterion.

Entropy 2018, 20, x FOR PEER REVIEW  10 of 13 

 

 
Figure 8. Control inputs. 

 
Figure 9. Performance indexes of error with SIP criterion. 

 
Figure 10. 3D mesh PDF using the entropy based controller. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-30

-20

-10

0

10

20

30

40

50

time(s)

V
ol

ta
ge

(V
)

 

 
MSE based control
Entropy based control
SIP based control

-10
-5

0
5

10 0
100

200
300

400
5000.2

0.4

0.6

0.8

1

1.2

t

e

γ e

Figure 10. 3D mesh PDF using the entropy based controller.



Entropy 2018, 20, 494 11 of 13Entropy 2018, 20, x FOR PEER REVIEW  11 of 13 

 

 
Figure 11. 4D mesh PDF using the SIP based controller. 

 
Figure 12. Final PDFs of the tracking error. 

The 4-D mesh plots of the PDFs of tracking error are shown in Figures 10 and 11. Comparing 
Figures 10 with 11, the shape of the PDFs of tracking error in Figure 10 becomes narrower and 
sharper along with sampling time; it indicates that the proposed control system has a small 
uncertainty in its closed loop operation. The final PDF of three control laws are presented in Figure 
12, in which PDFs of proposed method is sharper than that under MSE law and entropy-based 
control law, which indicates that the proposed control strategy can obtain better performance.  

6. Conclusions 

In this work, a new single neuron control methodology for networked systems with 
non-Gaussian delay and disturbances is presented. Instead of the entropy criterion, a SIP-based 
performance function is adopted to design the controller, and the tracking control problem is 
converted into an optimization one. In order to calculate the tracking error SIP, the oversampling 
method is used here. For simplicity, the optimization problem is solved by using the well-known 
and effective gradient descent method. The proposed control strategy is applied in a networked DC 
motor control system. It is confirmed from the simulation results that the proposed SIP-based 
predictive strategy can achieve a better tracking performance than MSE and entropy. To sum up, the 
proposed optimal control algorithm has the following advantages: 

(1) This strategy is data-driven, which can avoid modeling error and complexity in building the 
model. 

-10
-5

0
5

10 0
100

200
300

400
5000.2

0.4

0.6

0.8

1

1.2

t

e

γ e

-10 -8 -6 -4 -2 0 2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2

e

γ e

 

 
final PDF(MSE)
final PDF(Entropy)
final PDF(SIP)

Figure 11. 4D mesh PDF using the SIP based controller.

Entropy 2018, 20, x FOR PEER REVIEW  11 of 13 

 

 
Figure 11. 4D mesh PDF using the SIP based controller. 

 
Figure 12. Final PDFs of the tracking error. 

The 4-D mesh plots of the PDFs of tracking error are shown in Figures 10 and 11. Comparing 
Figures 10 with 11, the shape of the PDFs of tracking error in Figure 10 becomes narrower and 
sharper along with sampling time; it indicates that the proposed control system has a small 
uncertainty in its closed loop operation. The final PDF of three control laws are presented in Figure 
12, in which PDFs of proposed method is sharper than that under MSE law and entropy-based 
control law, which indicates that the proposed control strategy can obtain better performance.  

6. Conclusions 

In this work, a new single neuron control methodology for networked systems with 
non-Gaussian delay and disturbances is presented. Instead of the entropy criterion, a SIP-based 
performance function is adopted to design the controller, and the tracking control problem is 
converted into an optimization one. In order to calculate the tracking error SIP, the oversampling 
method is used here. For simplicity, the optimization problem is solved by using the well-known 
and effective gradient descent method. The proposed control strategy is applied in a networked DC 
motor control system. It is confirmed from the simulation results that the proposed SIP-based 
predictive strategy can achieve a better tracking performance than MSE and entropy. To sum up, the 
proposed optimal control algorithm has the following advantages: 

(1) This strategy is data-driven, which can avoid modeling error and complexity in building the 
model. 

-10
-5

0
5

10 0
100

200
300

400
5000.2

0.4

0.6

0.8

1

1.2

t

e

γ e

-10 -8 -6 -4 -2 0 2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2

e

γ e

 

 
final PDF(MSE)
final PDF(Entropy)
final PDF(SIP)

Figure 12. Final PDFs of the tracking error.

The 4-D mesh plots of the PDFs of tracking error are shown in Figures 10 and 11. Comparing
Figure 10 with Figure 11, the shape of the PDFs of tracking error in Figure 10 becomes narrower and
sharper along with sampling time; it indicates that the proposed control system has a small uncertainty
in its closed loop operation. The final PDF of three control laws are presented in Figure 12, in which
PDFs of proposed method is sharper than that under MSE law and entropy-based control law, which
indicates that the proposed control strategy can obtain better performance.

6. Conclusions

In this work, a new single neuron control methodology for networked systems with non-Gaussian
delay and disturbances is presented. Instead of the entropy criterion, a SIP-based performance function
is adopted to design the controller, and the tracking control problem is converted into an optimization
one. In order to calculate the tracking error SIP, the oversampling method is used here. For simplicity,
the optimization problem is solved by using the well-known and effective gradient descent method.
The proposed control strategy is applied in a networked DC motor control system. It is confirmed from
the simulation results that the proposed SIP-based predictive strategy can achieve a better tracking
performance than MSE and entropy. To sum up, the proposed optimal control algorithm has the
following advantages:
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(1) This strategy is data-driven, which can avoid modeling error and complexity in building
the model.

(2) A general measure, SIP, is used to formulate the performance index to design the control
algorithm, which could overcome shortcomings of entropy.

(3) Oversampling method is used to calculate the SIP of tracking error, which is more practical for
online controller design problem.

Extending SIP to Multiple-Input-Multiple-Output (MIMO) NCS is a relevant research problem.
In the MIMO system, there is an interaction between the variables. Some preprocessing of output
variables should be done to eliminate multi-colinearity. Extending our approach to MIMO systems
will be included in our future research topics.
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