SUPPLEMENTARY INFORMATION

The effect of alloying with scandium in Al-containing High-Entropy Alloys

Sephira Riva¹, Shahin Mehraban¹, Nicholas P. Lavery¹, Stefan Schwarzmüller², Oliver Oeckler², Stephen G. R. Brown¹, and Kirill V. Yusenko^{1,3,*}

¹ College of Engineering, Swansea University, Swansea SA1 8EN, Wales, UK

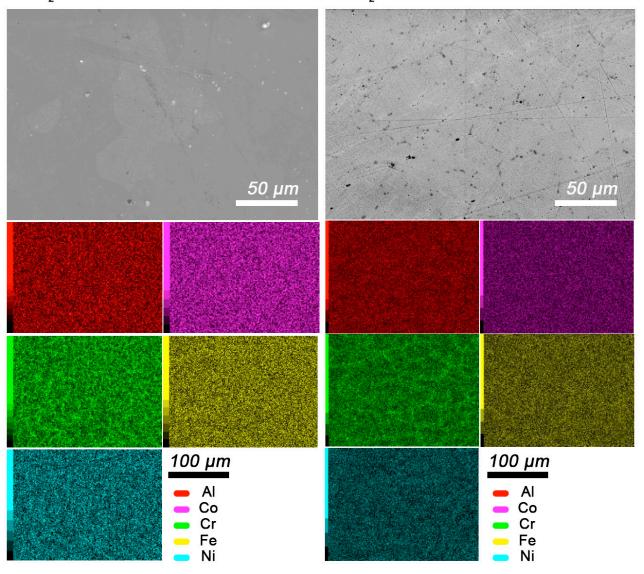
² Leipzig University, Faculty of Chemistry and Mineralogy; Institute for Mineralogy, Crystallography and Materials Science; Scharnhorststr. 20, 04275 Leipzig, Germany

³ Institute of Solid State Chemistry, Pervomaiskaia str. 91, 620990 Ekaterinburg, Russia

Table S1. Rationale of the alloys presented in this work, with the corresponding characterization. The acronyms RT, HT and LT refer to synchrotron experiments performed at room temperature, high-temperature and low-temperature respectively. The notation Thermoelectric properties includes the measurement of Seebeck coefficient, electrical conductivity and thermal diffusivity.

Alloy	Form	Performed analysis			
	A	SEM-EDX, Density, Vickers			
Al2CoCrFeNi	As cast pellet	hardness, DSC, Disc punch test			
	Annealed pellet (850 °C, 12h)	SEM-EDX, RT PXRD			
	Powder from as-cast pellet	RT PXRD, HT PXRD, LT PXRD			
Al2CoCrFeNi + 0.3wt.% Sc	A c cast pollot	SEM-EDX, RT PXRD,			
Al2CoCIFEINI + 0.3WL % 5C	As-cast pellet	Thermoelectric properties			
Al2CoCrFeNi + 0.5wt.% Sc	As east pollet	SEM-EDX, RT PXRD, Disc punch			
AI2COCIFEINI + 0.5 Wt. // 5C	As-cast pellet	test			
Al2CoCrFeNi + 2wt.% Sc	As east pollet	SEM-EDX, RT PXRD, Disc punch			
Al2COCIFEINI + 2WL. /6 5C	As-cast pellet	test			
Al2CoCrFeNi + 3wt.% Sc	As cast pollet	SEM-EDX, Density, RT PXRD,			
Al2COCIFENI + Swt. % Sc	As-cast pellet	Vickers hardness, DSC			
	Annealed pellet (900 °C, 12h)	SEM-EDX, RT PXRD			
	Powder from as-cast pellet	RT PXRD, HT PXRD, LT PXRD			
Al2CoCrFeNi + 5wt.% Sc	As-cast pellet	SEM-EDX, RT PXRD,			
Al2COCITEINI + 5Wt. // 5C	As-cast penet	Thermoelectric properties			
Alo.5CoCrCuFeNi	As-cast pellet	SEM-EDX, Vickers hardness,			
Allosedereurenn	As-cast penet	DSC			
	Annealed pellet (850 °C. 12h)	SEM-EDX			
	Powder from as-cast pellet	RT PXRD, HT PXRD			
Alo.5CoCrCuFeNi + 0.5wt.% Sc	As-cast pellet	SEM-EDX, Vickers hardness			
Alo.5CoCrCuFeNi + 2wt.% Sc	As-cast pellet	SEM-EDX, Vickers hardness			
Alo.5CoCrCuFeNi + 3wt.% Sc	As-cast pellet	SEM-EDX, Vickers hardness,			
	As-cast penet	DSC			
	Annealed pellet (930 °C, 6h)	SEM-EDX			
	Powder from as-cast pellet	RT PXRD, HT PXRD			
AlCoCrCu0.5FeNi	As-cast pellet	SEM-EDX, Vickers hardness,			
	As-cast penet	DSC, Disc punch test			
	Annealed pellet (850 °C, 12h)	SEM-EDX			
	Powder from as-cast pellet	RT PXRD			
AlCoCrCu _{0.5} FeNi + 0.5wt.% Sc	As-cast pellet	SEM-EDX, Vickers hardness			
AlCoCrCu _{0.5} FeNi + 2wt.% Sc	As-cast pellet	SEM-EDX, Vickers hardness			

AlCoCrCu05FeNi + 3wt.% Sc	As-cast pellet	SEM-EDX, Vickers hardness, DSC, Disc punch test			
	Annealed pellet (930 °C, 6h)	SEM-EDX			
	Powder from as-cast pellet	RT PXRD			


Atomic composition and element distribution according to EDX maps.

	Al2CoCrFeNi at.%		Al2CoC	CrFeNi +	Al0.5CoC	CrCuFeNi	Al0.5CoCr	CuFeNi +	AlCoCr	Cu0.5FeNi	AlCoCrC	u0.5FeNi +
			3wt.	% Sc	a	t.%	3wt.9	% Sc	at	.%	3wt.'	% Sc
	As	Anneal.	Grain	Inter- grain	As	Anneal.	Grain	Inter- grain	As	Anneal.	Grain	Inter- grain
	melted (±0.04)	(±0.04)	at.% (±0.05)	at.%	melted (±0.03)	(±0.04)	at.% (±0.04)	at.%	melted (±0.03)	(±0.04)	at.% (±0.05)	at.%
	(±0.04)		(±0.03)	(±0.03)	(±0.03)		(±0.04)	(±0.04)	(±0.03)		(±0.03)	(±0.04)
Al	44.4(3)	39.5(1)	29.2(6)	18.4(2)	13.2(2)	6.6(3)	7.2(6)	2.8(5)	22.8(2)	27.5(7)	10.7(1)	8.8(3)
Со	14.7(2)	15.7(7)	19.6(4)	16.2(8)	17.9(4)	19.8(3)	20.4(0)	3.2(3)	17.2(5)	16.8(0)	21.3(3)	10.6(0)
Cr	13.6(2)	13.8(2)	14.1(8)	11.1(1)	16.6(6)	18.0(6)	17.3(2)	1.6(5)	17.6(0)	16.0(6)	29.9(3)	6.3(2)
Cu	-	-	-	-	16.9(4)	11.1(9)	16.2(7)	75.7(4)	8.6(7)	6.9(7)	6.0(1)	51.8(6)
Fe	14.3(4)	15.1(4)	16.5(1)	17.7(1)	18.5(1)	20.1(4)	20.2(3)	2.4(8)	17.8(4)	16.8(9)	23.2(5)	8.6(1)
Ni	12.8(9)	15.7(7)	19.9(9)	19.4(5)	17.5(2)	17.6(8)	18.2(6)	10.6(5)	15.8(1)	15.7(1)	14.6(3)	13.0(4)
Sc	-	-	0.4(2)	17.0(2)	-	-	0.2(2)	3.4(1)	-	-	0.1(4)	0.7(5)

Table S2. Atomic composition of the synthesized samples according to EDX map (x500, x2000).

Element distribution of the as-cast and annealed alloys according to EDX maps

a. Al₂CoCrFeNi as cast

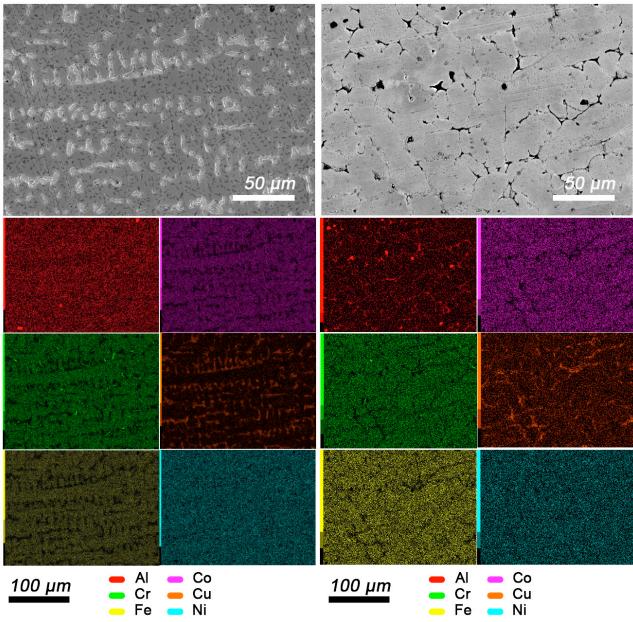
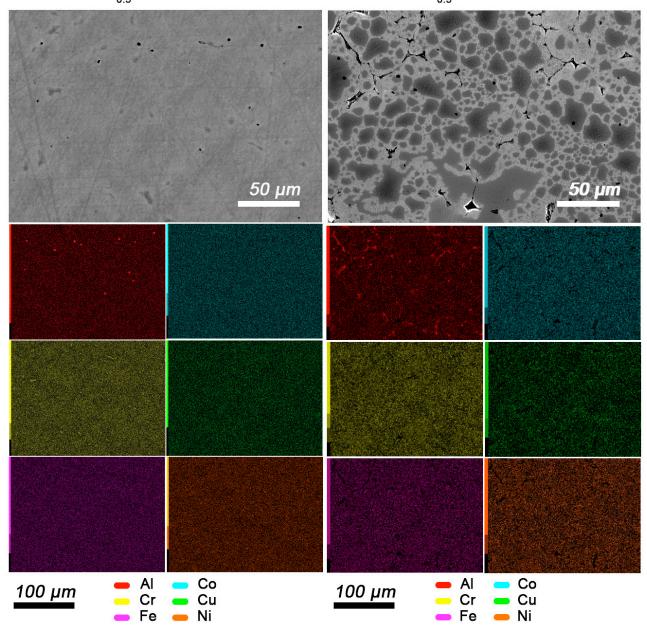
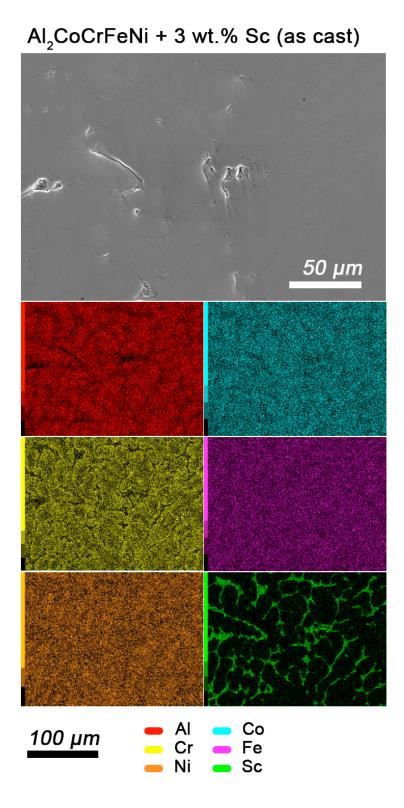


Figure S1. BSE images and element distribution of as cast and annealed Al₂CoCrFeNi samples according to EDX. From top to bottom and left to right, elements are: Al, Co, Cr, Fe, Ni.

b. Al₂CoCrFeNi annealed


a. Al_{0.5}CoCrCuFeNi as cast


Figure S2. BSE images and element distribution of as cast and annealed Al_{0.5}CoCrCuFeNi samples according to EDX. From top to bottom and left to right, elements are: Al, Co, Cr, Cu, Fe, Ni.

a. AlCoCrCu_{0.5}FeNi as cast

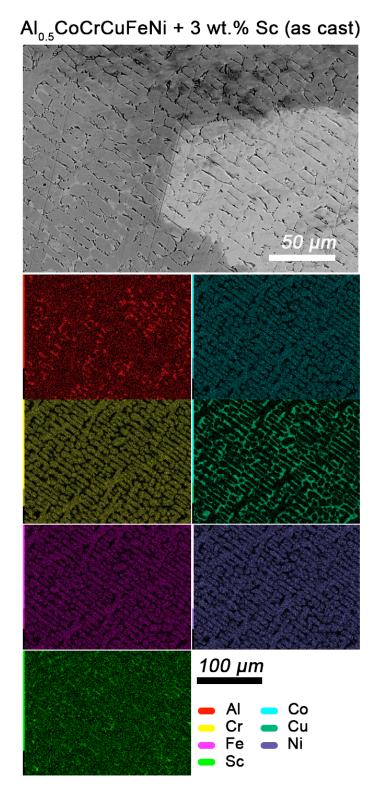


Figure S3. BSE images and element distribution of as cast and annealed AlCoCrCu_{0.5}FeNi samples according to EDX. From top to bottom and left to right, elements are: Al, Co, Cr, Cu, Fe, Ni.

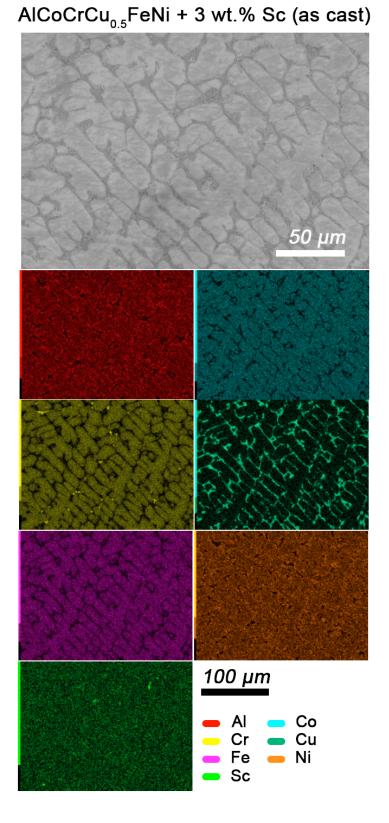

Element distribution of the as-cast Sc-containing alloys according to EDX maps

Figure S4. BSE image and element distribution of as cast Al₂CoCrFeNi +3wt.%Sc samples according to EDX. From top to bottom and left to right, elements are: Al, Co, Cr, Fe, Ni and Sc.

Figure S5. BSE image and element distribution of as cast Al_{0.5}CoCrCuFeNi +3wt.%Sc samples according to EDX. From top to bottom and left to right, elements are: Al, Co, Cr, Cu, Fe, Ni and Sc.

Figure S6. BSE image and element distribution of as cast AlCoCrCu_{0.5}FeNi +3wt.%Sc samples according to EDX. From top to bottom and left to right, elements are: Al, Co, Cr, Cu, Fe, Ni and Sc.

Mechanical properties: disk-punch test

Applied force was plotted against disk's displacement. To normalize the disks for the standard 0.5 mm thickness, the following equation(s) were used:

Ultimate tensile strength for brittle materials [MPa = Nmm⁻²] [1]

$$Cl = A - (D + 2t) = 8 - (4 + 2t)$$
$$UTS = \frac{F_m}{t(0.14D - 0.82Cl + 2.17u_m + 0.6)}$$

Where F_m is the maximum load during PT, *t* is the disk thickness in mm, *D* is the punch diameter (4 mm), *Cl* is the die clearance in mm and u_m is the displacement at failure. In the first equation, *A* is the diameter of the lower die (8 mm).

Punch test results obtained after normalizing thickness to 0.5mm: [2]

The inflexion point is a constant in the following equations.

For $P_{test} < P_{inflexion}$

$$P_{0.5} = 0.5^2 \left(\frac{P_{test}}{t^2}\right)$$

For $P_{test} > P_{inflexion}$

$$P_{0.5} = 0.5 \left(\frac{P_{test}}{t}\right) + 0.5 P_{inflexion} \left(\frac{0.5 - t}{t^2}\right)$$

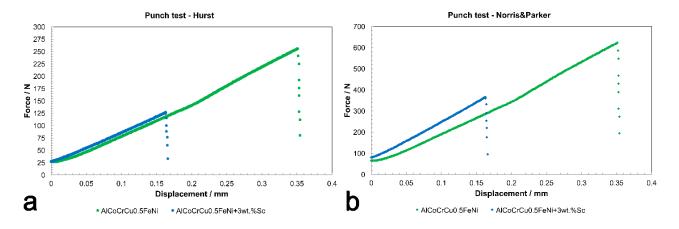
Ultimate tensile strength [MPa = Nmm⁻²]

$$UTS = \frac{0.4964 F_m}{u_m h_o} - 94.146$$

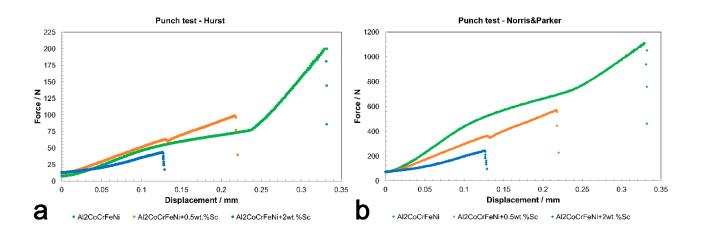
Yield stress

$$YS = \frac{0.4454 \, F_e}{h_o^2} + 86.866$$

Where F_m is the maximum load during PT, $_{um}$ is the displacement related to the maximum load F_m , h_o is the normalized thickness (0.5mm) and F_e is the load illustrating the conversion between linearity and yield zone (intersection between zone 1 and 2). [3]


Fracture stress for brittle materials

$$\sigma_f = 130 \frac{F_m}{t^2} - 320$$


Fracture toughness for brittle materials

$$K_{IC} = 0.07 (\sigma_f)^{2/3}$$

The units of KIC are MPa, *F*_m is in N and *t* is the initial thickness in mm. [4]

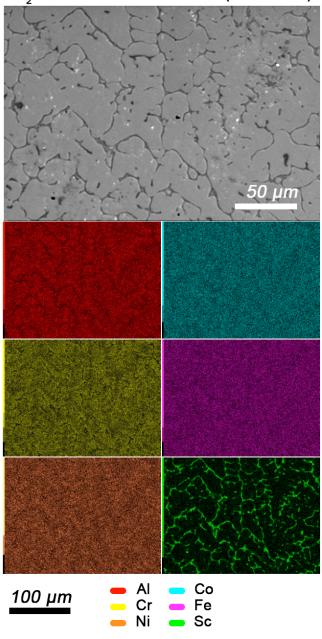
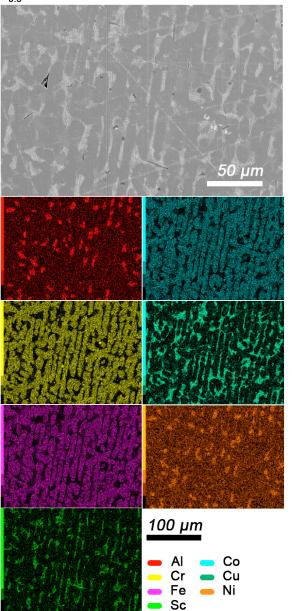


Figure S7. Disk punch test for the AlCoCrCu_{0.5}FeNi HEA with 0 and 3wt.% Sc, data elaborated according to the equations reported by Norris and Parker (*right*) and Hurst (*left*) [1], [3].


Figure S8. Disk punch test for the Al₂CoCrFeNi alloy with 0, 0.5 and 2wt.% Sc, data elaborated according to the equations reported by Hurst (*left*) and Norris and Parker (*right*) [1], [3].

Element distribution of the annealed alloys according to EDX maps

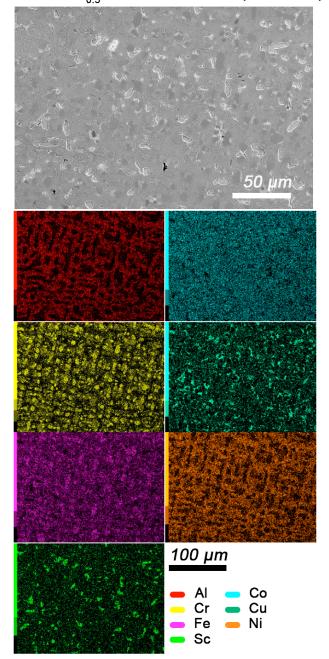

Al₂CoCrFeNi + 3 wt.% Sc (annealed)

Figure S9. BSE image and element distribution of Al₂CoCrFeNi+3wt.%Sc samples after annealing at 900°C, 12h. Data from EDX maps. From top to bottom and left to right, elements are: Al, Co, Cr, Fe, Ni and Sc.

Al_{0.5}CoCrCuFeNi + 3 wt.% Sc (annealed)

Figure S10. BSE image and element distribution in Al_{0.5}CoCrCuFeNi +3wt.%Sc samples after annealing at 930°C, 6h, respectively. Data from EDX maps. From top to bottom and left to right, elements are: Al, Co, Cr, Cu, Fe, Ni and Sc.

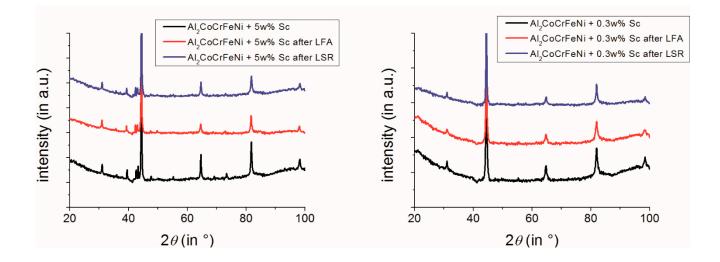
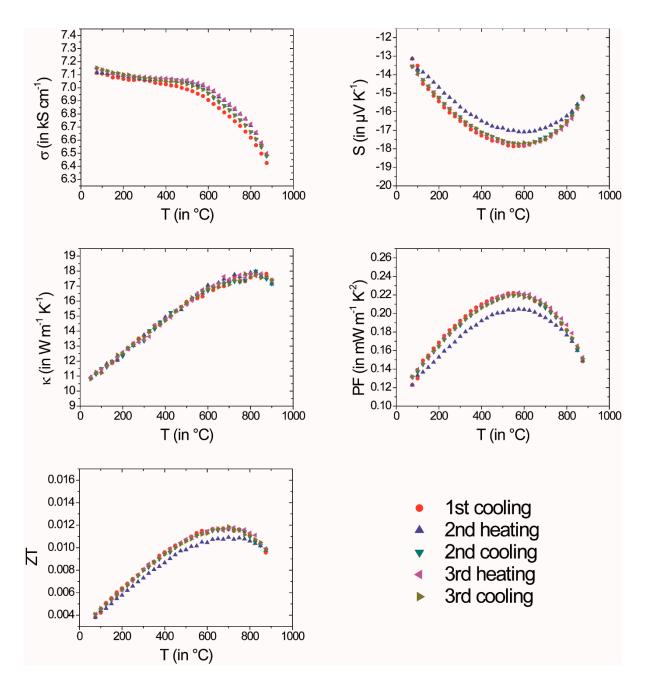

AlCoCrCu_{0.5}FeNi + 3 wt.% Sc (annealed)

Figure S11. BSE image and element distribution of AlCoCrCu_{0.5}FeNi +3wt.%Sc samples after annealing at 930°C, 6h, respectively. Data from EDX maps. From top to bottom and left to right, elements are: Al, Co, Cr, Cu, Fe, Ni and Sc.


Electrical and thermal transport measurements

Composition	Density (in g cm ⁻³)	C _p (Dulong-Petit, in J g ⁻¹ K ⁻¹)
Al2CoCrFeNi + 5 w% Sc	5.99	0.53651
Al2CoCrFeNi + 0.3 w% Sc	6.35	0.53565

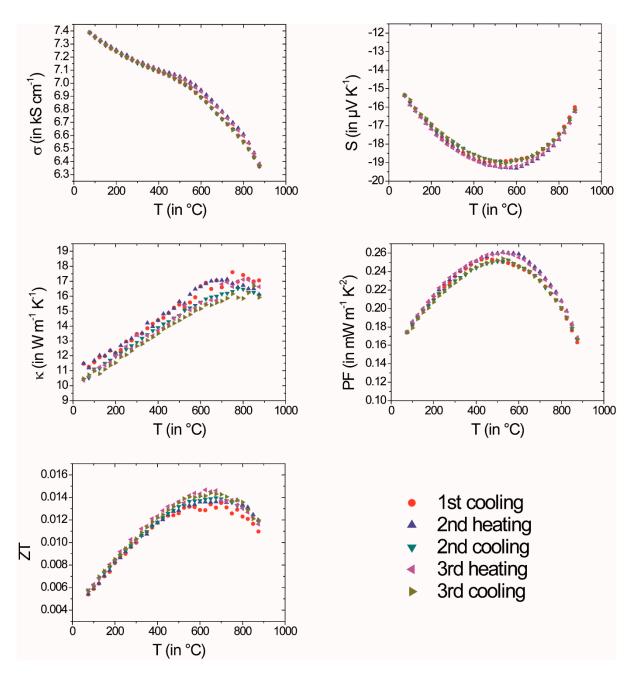

Table S3. Density and Dulong-Petit heat capacity used for the calculation of thermal conductivity.

Figure S12. PXRD data of Al2CoCrFeNi + 5 w% Sc (left) and Al2CoCrFeNi + 0.3 w% Sc (right) before thermoelectric measurements (black) and after LFA (red) and LSR (blue), respectively.

Figure S13. Thermoelectric properties of Al₂CrCoFeNi + 5 w% Sc for three consecutive cycles (without first heating) up to 875 °C: electrical conductivity σ (top, left), Seebeck coefficient S (top, right), thermal conductivity κ (middle, left), power factor PF (middle, right) and thermoelectric figure of merit ZT (bottom, left).

Figure S14. Thermoelectric properties of Al₂CrCoFeNi + 0.3 w% Sc for three consecutive cycles (without first heating) up to 875 °C: electrical conductivity σ (top, left), Seebeck coefficient S (top, right), thermal conductivity (middle, left), power factor PF (middle, right) and thermoelectric figure of merit ZT (bottom, left).

References

- 1. Norris, S.D., Parker, J.D., Deformation processes during disc bend loading, Mat. Sci. Tecnol. 1996, 12, 163-170.
- 2. Lacalle, R., Alvarez, J.A., Gutiérrez-Solana, F., Analysis of key factors for the interpretation of small punch test results, *Fatigue Fract. of Eng. Mat Struct.* **2008**, *31*, 841-849.
- 3. Hurst, R., The european code of practice for small punch testing: where do we go from here?, *Metall. J.* **2010**, *63*, 5-11.
- 4. Džugan, J., Konopìk, P., Evaluation of fracture toughness properties for low carbon steel in the brittle state by small punch test technique, *Metall. J.* **2010**, *63*, 119-122.