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Abstract: Combinatoric measures of entropy capture the complexity of a graph but rely upon
the calculation of its independent sets, or collections of non-adjacent vertices. This decomposition
of the vertex set is a known NP-Complete problem and for most real world graphs is an inaccessible
calculation. Recent work by Dehmer et al. and Tee et al. identified a number of vertex level measures
that do not suffer from this pathological computational complexity, but that can be shown to be
effective at quantifying graph complexity. In this paper, we consider whether these local measures
are fundamentally equivalent to global entropy measures. Specifically, we investigate the existence
of a correlation between vertex level and global measures of entropy for a narrow subset of random
graphs. We use the greedy algorithm approximation for calculating the chromatic information and
therefore Körner entropy. We are able to demonstrate strong correlation for this subset of graphs and
outline how this may arise theoretically.

Keywords: graph entropy; chromatic classes; random graphs

1. Introduction and Background

1.1. Overview

Global measures of graph entropy, defined combinatorially, capture the complexity of a graph
by specifically quantifying the information content of the graph as a function of the structure. In this
context, complexity is a measure of how distinct or different each vertex is in terms of its interconnection
to the rest of the graph. In many practical applications of network science, which can range from fault
localization in computer networks to cancer genomics, this difference in connectivity can indicate that
certain vertices in a graph are in some way more important to the correct functioning of the network
the graph represents. In this paper, we explore the potential correlations between vertex level entropy
measures [1,2] and global graph entropy [3]. This is an important problem for a very simple reason.
Global graph entropy, as defined originally by Körner [3], is expensive to compute, as it relies upon
the calculation of independent sets of the graph. This is a known NP-Complete problem, and in most
real world graphs the computation of graph entropy is prohibitive. As stated before though, the value
of this graph metric though is high, as it fundamentally captures a measure of the complexity of the
graph that has a range of practical applications.

In previous work [4], we performed an extensive analysis of how local measures of entropy at
the vertex level could be used as a tool in fault localization. The main result of that paper was that this
“vertex entropy”, analyzed in a number of forms, was able to be used as a mechanism to eliminate noisy
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events from a communications network efficiently, by identifying important nodes in the network.
Additionally, we were able to demonstrate that across a narrow set of representative graphs (star,
paths, cycles, and perfect graphs), the vertex entropies and global entropies behaved similarly in
terms of extrema. The more general relationship between local and global measures of information
across an arbitrary graph has previously not been considered in our prior work. Indeed, it has never
been established to what extent there is a meaningful correlation between these information measures.
The existence and nature of such a correlation is the focus of this work and is the principal contribution
of this paper.

If it were possible to approximate the value of graph entropy with a much more easily computable
metric, it would be possible to use entropy in these and potentially many other applications.
The fundamental barrier to computability is the fact that the entropy calculation depends upon
combinatoric constructs across the whole graph. If instead, a metric were available that was intrinsically
local, that is computable for each vertex in the graph with reference to only the local topology of the
graph, it would then be possible to efficiently calculate a value for each vertex and then simply
sum these values across the graph to obtain an upper bound for the entropy of the graph. The fact
that it is an upper bound is possible to assert by simply appealing to the sub additivity property
of graph entropy. That is, for any two graphs G1 and G2, the entropy of the union of the graphs obeys
H(G1 ∪ G2) ≤ H(G1) + H(G2).

Local measures of entropy at the vertex level have been advanced in work by Dehmer et al. [1,2,5–7],
and developed by many other authors including in recent work we published [4] exploring the utility
of vertex entropies in the localization of faults on a computer network. The formalisms used by
Dehmer et al. and in our previous work differ in the construction of the entropies, and how graphs are
partitioned into local sets. A primary motivation for this difference was motivated by the practical
application of these measures described in [4]. The relation between the vertex entropy formalisms
introduced by Dehmer, and global graph entropies have been analyzed [8] and the central focus of this
paper is to explore how closely our definitions of vertex entropy approximate global entropies for two
classes of random graphs, the traditional Gilbert graph [9], and the Scale-Free graphs first advanced
by Barabási [10]. We restrict our experimental investigation to simple connected graphs, which in
the case of Scale Free graphs arise naturally, for the Gilbert graphs we chose to focus on the giant
component (GC) of the generated graph. For statistical significance, this further restricts the choice
of connection probability to a range above the critical threshold at which a GC emerges.

In this section, we present an overview of both global and vertex graph entropy, before discussing
the experimental analysis in Section 2. The data analysis produces a strong correlation between vertex
and global entropy, which we seek to explain in Section 3, by comparing the limits on the values
of chromatic information (as a proxy for graph entropy) of random graphs and the expected values for
vertex entropy when considering an ensemble of random graphs.

The main finding of this paper is that for random graphs the correlation is strong and that we can
construct arguments based upon probabilistic reasoning to explain how vertex entropy and chromatic
information can be related. We conclude in Section 4 and point to further directions in this research.
If the strong correlation that we describe in this paper, subject to more rigorous theoretical results
that are beyond the scope of this paper, emerges as a more fundamental relationship, this opens up
the use of vertex level measures to frame entropic arguments for many dynamical processes on graphs,
including network evolution. Such models of network evolution have been advanced by a number
of authors including Peterson et al. [11] and ourselves [12].

Before presenting the experimental and theoretical analysis of the possible correlation between
local node and global measures of entropy, in the rest of this section, we will briefly survey the necessary
concepts. In the discussion that follows we will highlight the fundamental difference between the two
ways of computing an entropy. At the heart of the discussion is the difference between global and
local structure. Global graph entropy, and chromatic information are defined across the whole graph,
and any change to the global topology of the graph can in principle produce very different values



Entropy 2018, 20, 481 3 of 19

for the entropy. Local vertex measures, however, are only ever defined in reference to a restricted
knowledge of the local subgraph of a given vertex. As there are many different ways to produce
a globally different graph with similar local topology, a correlation between local and global measures
is a significant new result.

1.2. Global Graph Entropy

The concept of the entropy of a graph has been widely studied ever since it was first proposed by
Janos Körner in his 1973 paper on Fredman-Komlós bound [3]. The original definition rested upon
a graph reconstruction based upon an alphabet of symbols, not all of which are distinguishable.
The construction begins by identifying with each member of an alphabet of n possible signals
X = {x1, x2, . . . xn}, with a probability of emission Pi, i ∈ 1, 2, . . . , n in a given fixed time period.
Using this basic construction the regular Shannon entropy [13] is defined in the familiar way:

H(X) = −
n

∑
i=1

Pi log2 Pi. (1)

In [3], and beautifully explained in [14], János Körner introduced the concept of the entropy of
a graph in terms of a modified version of Shannon’s original argument. Considering the alphabet
X, as defined above, imagine that not all of the signals are distinguishable. In the analysis going
forward, we adopt the normal notation of a graph G(V, E) as the combination of a set of vertices V,
and the set of edges E that exist between the vertices. Further, all of our analysis is restricted to
simple graphs containing no self-edges (that is edges that connect a vertex to itself). A graph can be
constructed by mapping to the vertex set V each of the signals in the alphabet, so that vi ∈ V equates
to xi and naturally associated with each vertex is a probability of emission of a signal P(vi) = Pi,
which is a fixed property of each vertex. Now, each of the vertices are connected with an edge ei,j ∈ E,
if and only if the two signals xi, xj are distinguishable. The automorphism groups of this graph are
naturally related to the information lost (and hence entropy gained), by certain signals not being
distinguishable. To avoid the definition involving complex constructions using these automorphism
groups, Mowshowitz et al. [15] recast the definition in terms of the mutual information between
the independent sets of the graph. An independent set is a collection of vertices which are not
adjacent (i.e., there are no edges between them) [16]. As there is no adjacency between members of an
independent set, it is also a valid chromatic class, that is the vertices can be “colored” identically.
The optimal chromatic decomposition of a graph then amounts to the division of the vertex set into
the minimum number of independent sets, such that a vertex belongs to only one independent set,
at which point the independent sets and chromatic classes are identical. These sets then constitute
the optimal coloring of the graph and collection of chromatic classes. To establish the Mowshowitz
definition of graph entropy, let us imagine a process whereby we randomly select a vertex from the
graph, according to a probability distribution P(V) for each vertex, which as the process of selection is
uniform will be identically 1

n for each vertex in a graph of size n. Each vertex will in turn be a member
of an independent set si ∈ S (S is chosen to represent the independent sets to avoid confusion
with I the mutual information). The conditional probability P(V|S) is the probability of selecting
a vertex when the independent set that it belongs to is known. These probabilities capture important
information concerning the structure of the graph. Associated with P(V|S) is a measure of entropy
H(V|S), or the uncertainty in the first occurrence of selecting a vertex when the independent set is
known. Using these quantities we define structural entropy as follows:

Definition 1. The structural entropy of a graph G(V, E), over a probability distribution P(V), H(G, P),
is defined as

H(G, P) = H(P)− H(V|S) (2)

where S is the set of independent sets of G, or equivalently the set of chromatic classes.
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Closely related to this definition of entropy is chromatic information. This is defined in terms
of the colorings of the graphs that divide the graph into subsets of V where each vertex in V has
the same color label. Each graph has an optimal minimum set of colorings that can be achieved,
the number of such sets being referred to as the chromatic number of the graph χ. These subsets
are called Chromatic Classes Ci, with the constraint that

⋃
i Ci = V. Chromatic information is then

naturally defined as

Definition 2. The chromatic information of a graph of n vertices is defined as

Ic(G) = min
{Ci}

[
−∑

i

|Ci|
n

log2

(
|Ci|
n

)]
(3)

where the minimization is over all possible collections of chromatic classes, or colorings, of the graph Ci.

Crucially, the chromatic information is closely related to the second term in Equation (2), H(V|S),
and if we assume that the probability distribution P is uniform, we can relate the two quantities
through the following identity.

H(G, P) = log2 n− Ic(G). (4)

This relationship is derived in the overview by Mowshowitz [15] and indicates that the entropy
is determined by the chromatic decomposition of the graph when the vertex probability distribution
is uniform. The maximum value of entropy can be seen to be when chromatic information is
minimized [4], this minimum being obtained by a perfect graph. We will make use of this identity in
Section 2 as chromatic information is much more readily calculable than entropy in standard network
analysis packages. It is also common in this measure of information to drop the P in H(G, P), as we
are assuming the probability is uniform.

1.3. Local Entropy Measures

The computational challenges in calculating global entropy measures stem from the calculation
of the independent sets of a graph, which is a known NP-Hard problem. Recent work by
Dehmer et al. [1,2] provided a framework for the definition of a form of graph entropy defined at the
purely local level of a node. In essence, Dehmer introduces the concept of a j-Sphere, Sj

i , centered at the
ith node. Dehmer’s original definition relied upon subsets of vertices of a fixed distance from a given
vertex vi, where distance d(vi, vj) is the shortest distance between distinct vertices vi and vj (i.e., i 6= j).
For a node vi ∈ V, we define, for j ≥ 1, the “j-Sphere” centered on vi as

Sj
i = {vk ∈ V|d(vi, vk) = j}. (5)

On these j-Spheres, Dehmer defined certain probability-like measures, using metrics calculable on
the nodes such as degree as a fraction of total degree of all nodes in the j-Sphere, from which entropies
can be defined. This locality avoids the computationally challenging issues present in the global forms
of entropy.

In recent work [4], the authors extended this definition to introduce some specific local measures
for Vertex Entropy, that is the graph entropy of an individual node in the graph. The analysis that was
followed was based upon the concept of locality introduced in Dehmer et al., using the concept of a
j-Sphere. In this work we will expand upon that analysis, and, instead consider the vertices of a graph
as part of an ensemble of vertices, and the graph itself in turn as part of an ensemble of graphs.

Returning to the fundamental definition of entropy, it is a measure of how incompletely
constrained a system is microscopically, when certain macroscopic properties of the system are known.
For example, if we have an ensemble of all possible simple, connected graphs of order N, G (N),
(that is |V| = N), we potentially have a very large collection of graphs. Further, we could go on to
prescribe a further property such as average node degree 〈k〉 for the whole ensemble, and ask what is
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the probability of randomly selecting a member of the ensemble Gi(N) ∈ G (N), that shares a given
value of this property 〈k〉, and denote that as P(Gi). Following the analysis in Newman et al. [17],
we can then define the Gibbs entropy of the ensemble as

SG (N) = − ∑
Gi∈G (N)

P(Gi) log2 P(Gi), (6)

which is maximized subject to the constraint, ∑
Gi∈G (N)

P(Gi)〈ki〉 = 〈k〉. This analysis allows us to go

from the observed value 〈k〉 to the form of degree distribution and then on to other properties for the
whole ensemble. In essence in our work, we take a different approach in two regards. Firstly, we restrict
ourselves to the vertex level, where we consider that the vertices of an individual graph are themselves
a randomized entity, which can be assembled in many ways to form the end graph. For example, if we
were to decompose a given graph into the degree sequence of the nodes, there will be many nodes of
the same degree, which does not completely prescribe which node in the graph we are considering.
In that way, a measure of uncertainty and therefore entropy naturally arises.

The second difference to the approach taken by Newman et al. is that, rather than work from
a measurable constraint and maximized form of entropy back to the vertex probability, we ask what
probabilities we can prescribe on a vertex. In the interests of computational efficiency, we construct
a purely local theory of the graph structure constrained to those vertex properties that are measurable
in the immediate (that is j = 1) neighborhood of the vertex. Out of the possible choices, we selected
node degree, node degree as a fraction of the total edges in the network, and local clustering coefficient.
In our work, we also redefined the local clustering coefficient Ci

1 of a node i as the fraction of existing
edges amongst nodes in the j = 1 neighborhood to possible edges in that neighborhood. This is
different to the traditional measure in that it includes the edges between the node vi and its neighbors,
a choice that was made to avoid a zero clustering coefficient for nodes that are the “center” of
a star-like network. Following the analysis in our prior work [4], we summarize the considered
probabilities below.

• Inverse Degree: In this case, we denote the vertex probability as

P(vi) =
Z
kγ

i
, with (7)

Z−1 = ∑
j

k−γ
j to ensure normalization. (8)

This type of vertex probability mirrors the attachment probability of the scale-free model and leads
to a power law of node degree. In the standard scale-free model γ = 3, but for the purposes of our
experimentation, and for simplicity, we set γ = 1. In essence, very large hubs are less probable,
which intuitively captures the notion that they carry more of the global structure, and therefore
information, of the graph. Graphs comprised of nodes with similar degrees will maximize
entropy using this measure, reflecting the fact that less information is carried by knowledge of
the node degree.

• Fractional Degree: We use in this case the following for vertex probability:

P(vi) =
ki

2|E| . (9)

This probability measure captures the likelihood that a given edge in the network terminates
or originates at the vertex vi. Nodes with a high value of this probability will be more highly
connected in the graph, and graphs which have nodes with identical values of the probability will
have a higher entropy. This reflects the fact that the more similar nodes are the less information is
known about the configuration of a given node by simply knowing its fractional degree.
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• Clustering Coefficient: The clustering coefficient measures the probability of an edge existing
between the neighbors of a particular vertex. However, its use in the context of a vertex entropy
needs to be adjusted by a normalization constant Z = ∑i Ci

1 to be a well behaved probability
measure and sum to unity. For simplicity, we omit this constant and assert the following:

P(vi) = Ci
1. (10)

The local clustering coefficient captures the probability that any two neighbors of the node vi
are connected. The larger this probability, the more the local one hop subgraph centered at vi is
to the perfect graph. Again graphs comprised of nodes with similar clustering coefficient will
maximize this entropy, reflecting the fact that the graph is less constrained by knowledge of the
nodes clustering coefficients.

In essence for a given graph G(N) ∈ G (N), we specify a measured quantity for vertex vi,
as x(vi) = xi, and ask what is the probability of a random vertex vi having this value. We denote this
probability as P(vi)x(vi)=xi

. This allows us to define entropy at the vertex level, and for the whole
graph as

S(vi) = −P(vi) log2 P(vi) (11)

S(G) = − ∑
vi∈G

P(vi) log2 P(vi) (12)

In our analysis, we compute the values of each of these variants of vertex entropy, summed across
the whole graph as described in Equation (12). Because of the local nature of the probability measures,
the vertex entropy values are far quicker to compute than any of the global variants and do not involve
any known NP-Complete calculations.

1.4. Alternate Formulations of Entropy

Our definition of vertex entropy in Equation (12) follows the normal Shannon definition of
entropy. This is not the most general form of an entropy, and is in fact a special case of the entropy
formulations introduced by Alfred Rényi [18]. Indeed, for an alphabet of n signals {xi, x2, . . . xn},
each occurring with probability pi the normal properties of an entropy measure are satisfied by the
more general expression:

Hα =
1

1− α
log2

(
n

∑
i

pα
i

)
, (13)

which in the limit α→ 1 can be seen by application of L’Hôpital’s rule to yield the normal form for the
Shannon entropy. The special case of α = 2 is often termed the “Rényi entropy” or collision entropy
and is so called because it measures the likelihood of two random variables drawn from the same
distribution having the same value. For our purposes, the collision entropy is an interesting quantity to
investigate, as it captures the likelihood of different vertices sharing the same local topology, according
to the probability measures outlined above. In Section 2.4, we analyze the random graphs using
a variant of our vertex entropies formulated using this collision entropy. This analysis concurs with
our results using Shannon entropy.

2. Experimental Analysis

2.1. Method and Objectives

We seek to establish whether there is any strong correlation between the global graph entropy
of a graph, and the entropy obtained by summing the local node values of entropy. Because of the
computational limits involved in calculating global values of entropy, we are restricted to graphs
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of moderate size, which rules out analyzing repositories of real world graphs such as the Stanford
Large Network Dataset [19], or the Index of Complex Networks (ICON) [20]. A more tractable source
of graphs are randomly generated graphs, where we can control the scale.

Random graphs are well understood to replicate many of the features of real networks, including
the “small world” property, clustering and degree distributions. We consider in our analysis two
classes of randomly generated graphs: the Gilbert random graph G(n, p) [9] and the scale-free graphs
generated with a preferential attachment model [10]. For both types of graphs, we simulated a large
number of graphs with varying parameters to generate many possible examples of graphs that share
a fixed number of vertices, with the choice of Gilbert graphs permitting varying edge counts and
densities. For the purposes of our analysis, we fixed the vertex count at n = |V| = 300, and in each
case we included only fully connected, simple graphs. For the Gilbert graphs, this entailed analyzing
only the giant component (GC) to ensure a fully connected graph.

We will discuss the results for each type of graph in more detail below, but the data revealed
a strong correlation between the chromatic information of the graph (and therefore structural entropy),
and the value obtained by summing the local vertex entropies. We considered three variants of the
vertex entropy and included the edge density of the graph, defined as

C(G) =
2|E|

n(n− 1)
. (14)

This measures the probability of an edge existing between any two randomly selected vertices.
To quantify the nature of the correlation between each of the aforementioned local entropies

(including edge density) and chromatic information of the graphs, we adopted a model selection
approach by performing polynomial regression using polynomials of increasing order up to 5,
referred to as H1,...,5 henceforth, using the technique of least squares to numerically calculate the
polynomial coefficients. The best model (within the family of models considered) was assessed based
on the Bayesian information criterion (BIC), and Akaike information criterion (AIC) [21].

To calculate the measures, we made the assumption that the distribution of the errors are identically
and independently distributed, and reduced the likelihood function to the simpler expressions:

BIC = n loge(σ̂
2
r ) + k loge n (15)

AIC = n loge(σ̂
2
r ) + 2k (16)

σ̂2
r =

1
n

i=n

∑
i=1

(ŷi − yi)
2 (17)

where ŷi is the prediction by model H, σ̂2
r the residual sum of squares, k the number of parameters in

the model (in this case for Hj, k = j + 1), and n the number of data points.
The graph generation, analysis, and model selection was all performed with a mixture of Java

and MATLAB code, which is available upon request from the authors.

2.2. Scale-Free Graphs

The data for the scale-free graphs is displayed in Figure 1. We have segregated the plots by
the calculated chromatic number for the graphs and overlaid the optimal least squares fit model. It is
suggestive that, for graphs that share the same value of χ, there is a non-trivial, strong correlation
between the metrics. To gain insights into the nature of this correlation, the data was fitted using
a least squares approach to polynomials up to the 5th degree. In Tables 1–4, we applied both the BIC
and AIC to identify the best model. We have highlighted the row for the model with the strongest
performance in the BIC test, and the ∆BIC/∆AIC is measured from the H1 model, which performs
worse in both analyses. In each case, there is strong support for the existence of a strong correlation
between the vertex entropy measures and chromatic information. Both AIC and BIC have a marginal
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preference for higher order polynomial models, with rejection of higher order, indicating a preference
for H2 for inverse degree and edge density. The other measures require higher order fitting, over H4,
necessary for fractional degree and H3 for cluster entropy.

Table 1. Model selection analysis for inverse degree entropy for scale-free graphs of constant |V|.

Model Bayesian Information Criteria ∆BIC Akaike Information Criteria ∆AIC

H1 −734.33 0.00 −740.33 0.00
H2 −830.12 −95.80 −839.14 −98.80
H3 −825.16 −90.84 −837.18 −96.85
H4 −821.95 −87.62 −836.97 −96.63
H5 −818.63 −84.31 −836.66 −96.32

Table 2. Model selection analysis for fractional degree entropy for scale-free graphs of constant |V|.

Model Bayesian Information Criteria ∆BIC Akaike Information Criteria ∆AIC

H1 −708.84 0.00 −714.84 0.00
H2 −715.24 −6.41 −724.25 −9.41
H3 −719.49 −10.66 −731.51 −16.66
H4 −719.62 −10.79 −734.64 −19.80
H5 −715.31 −6.47 −733.33 −18.49

Table 3. Model selection analysis for cluster entropy for scale-free graphs of constant |V|.

Model Bayesian Information Criteria ∆BIC Akaike Information Criteria ∆AIC

H1 −728.34 0.00 −734.35 0.00
H2 −796.47 −68.12 −805.48 −71.13
H3 −798.84 −70.50 −810.86 −76.51
H4 −794.89 −66.54 −809.90 −75.55
H5 −793.77 −65.43 −811.80 −77.44

Table 4. Model selection analysis for edge density for scale-free graphs of constant |V|.

Model Bayesian Information Criteria ∆BIC Akaike Information Criteria ∆AIC

H1 −777.77 0.00 −783.78 0.00
H2 −844.94 −67.17 −853.96 −70.18
H3 −842.39 −64.62 −854.40 −70.63
H4 −839.21 −61.43 −854.23 −70.45
H5 −836.87 −59.10 −854.89 −71.11

(a) Inverse degree. (b) Fractional degree.

Figure 1. Cont.
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(c) Clustering coefficient entropy. (d) Edge density.

Figure 1. Sum of vertex entropies for whole graph vs. chromatic information for Barabási–Albert
scale-free graphs of constant |V|.

2.3. Gilbert Random Graphs G(n, p)

In addition to scale-free graphs we analyzed random graphs. The results are displayed in
Figure 2, overlaid with the least squares optimized best fit. On visual inspection, it appears that there
is a systematic and non-trivial correlation between the metrics. In order to gain insights into this
correlation, the data was again fitted using a least squares approach to polynomials up to the 5th
degree. In Tables 5–8, we applied both the BIC and AIC to select the best model (among the models
considered). As in the case of the scale-free graphs, we have highlighted the row in bold corresponding
to the best model from a BIC perspective, and ∆BIC/∆AIC is measured against the worst performing
model H1. For Gilbert graphs, AIC and BIC both support the hypothesis of a strong correlation
between the metrics. In the case of all but the inverse degree, it would appear that H2 is an optimal
choice of model. The inverse degree, however, would appear to be best fitted by H3, in contrast to
the behavior of the scale-free graphs.

(a) Inverse degree. (b) Fractional degree.

Figure 2. Cont.
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(c) Clustering coefficient entropy. (d) Edge density.

Figure 2. Sum of vertex entropies for whole graph vs. chromatic information for Gilbert graphs G(n, p)
for p ∈ [0.31, 0.7].

Table 5. Model selection analysis for inverse degree entropy for random graphs of constant |V|.

Model Bayesian Information Criteria ∆BIC Akaike Information Criteria ∆AIC

H1 −2004.92 0.00 −2008.75 0.00
H2 −2181.68 −176.76 −2189.33 −180.59
H3 −2182.62 −177.70 −2194.10 −185.35
H4 −2176.82 −171.90 −2192.12 −183.37
H5 −2171.14 −166.22 −2190.27 −181.52

Table 6. Model selection analysis for fractional degree entropy for random graphs of constant |V|.

Model Bayesian Information Criteria ∆BIC Akaike Information Criteria ∆AIC

H1 −1806.14 0.00 −1809.96 0.00
H2 −1874.29 −68.15 −1881.94 −71.98
H3 −1868.70 −62.56 −1880.17 −70.21
H4 −1859.34 −53.20 −1874.64 −64.68
H5 −1856.25 −50.11 −1875.38 −65.42

Table 7. Model selection analysis for cluster entropy for random graphs of constant |V|.

Model Bayesian Information Criteria ∆BIC Akaike Information Criteria ∆AIC

H1 −2109.61 0.00 −2113.44 0.00
H2 −2146.19 −36.58 −2153.84 −40.40
H3 −2140.43 −30.82 −2151.91 −38.47
H4 −2134.61 −25.00 −2149.92 −36.48
H5 −2128.86 −19.25 −2147.99 −34.56

Table 8. Model selection analysis for edge density for random graphs of constant |V|.

Model Bayesian Information Criteria ∆BIC Akaike Information Criteria ∆AIC

H1 −951.67 0.00 −955.49 0.00
H2 −985.93 −34.26 −993.58 −38.08
H3 −980.15 −28.48 −991.63 −36.13
H4 −974.37 −22.71 −989.68 −34.18
H5 −969.80 −18.13 −988.93 −33.43
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2.4. Alternate Entropy Formulations

Following on from the observation in Section 1.4, we performed our calculations using the same
vertex probabilities, but converted into a collision entropy using Equation (13). We restricted our
analysis to inverse degree and fractional degree for brevity, as the results are somewhat similar to
the regular Shannon entropy variants of these measures. We present the results for both Gilbert
and scale-free graphs in Figure 3. Similar to the results using Shannon entropy, visual inspection
would indicate a strong correlation between the local and global measures, and this is borne out in
the model selection analysis summarized in Tables 9–12. The results of the model selection analysis
are also broadly in line with the Shannon entropy case, favoring a quadratic and cubic relationship,
with curiously inverse degree favoring a linear model. We conclude that the analysis supports that,
even with an alternative formulation of entropy based upon vertex probabilities, there is a strong
correlation between the local and global values.

Table 9. Model selection analysis for inverse degree Renyi entropy for random graphs of constant |V|.

Model Bayesian Information Criteria ∆BIC Akaike Information Criteria ∆AIC

H1 −1801.25 0.00 −1805.08 0.00
H2 −1886.55 −85.30 −1894.20 −89.12
H3 −1880.76 −79.51 −1892.23 −87.16
H4 −1875.15 −73.90 −1890.46 −85.38
H5 −1869.02 −67.77 −1888.15 −83.08

Table 10. Model selection analysis for fractional degree Renyi entropy for random graphs of constant |V|.

Model Bayesian Information Criteria ∆BIC Akaike Information Criteria ∆AIC

H1 −1810.08 0.00 −1813.90 0.00
H2 −1891.42 −81.34 −1899.07 −85.17
H3 −1885.63 −75.56 −1897.11 −83.21
H4 −1880.33 −70.25 −1895.63 −81.73
H5 −1873.93 −63.86 −1893.06 −79.16

Table 11. Model selection analysis for inverse degree Renyi entropy for scale-free graphs of constant |V|.

Model Bayesian Information Criteria ∆BIC Akaike Information Criteria ∆AIC

H1 −574.07 0.00 −580.08 0.00
H2 −569.17 4.90 −578.18 1.90
H3 −564.48 9.59 −576.50 3.58
H4 −559.90 14.17 −574.92 5.16
H5 −555.14 18.93 −573.16 6.92

Table 12. Model selection analysis for fractional degree Renyi entropy for scale-free graphs of constant |V|.

Model Bayesian Information Criteria ∆BIC Akaike Information Criteria ∆AIC

H1 −694.87 0.00 −700.88 0.00
H2 −690.61 4.25 −699.63 1.25
H3 −698.94 −4.07 −710.96 −10.08
H4 −695.68 −0.82 −710.70 −9.83
H5 −690.75 4.11 −708.78 −7.90
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(a) Gilbert graph: inverse degree collision entropy. (b) Gilbert graph: fractional degree collision entropy.

(c) Scale-free graph: inverse degree collision entropy. (d) Scale-free graph: fractional degree collision entropy.

Figure 3. Sum of collision vertex entropies for whole graph vs. chromatic information for Gilbert
graphs G(n, p) for p ∈ [0.31, 0.7] and scale-free graphs of constant |V|.

3. Theoretical Discussion of the Results

The strong correlation between chromatic information and the various forms of vertex entropy
derived graph entropies may at first seem paradoxical. The first quantity is combinatorial in nature
and depends upon the precise arrangement of edges and vertices to produce the optimal coloring,
which dictates its value. The summed vertex entropies, at least to first order, depend solely upon
the individual node degrees and take little or no account of the global arrangement of the graph.

It is certainly beyond the scope of this work, and indeed to the opinion of the authors, intractable to
calculate a precise relationship between the two quantities. It is possible, however, to construct an
argument as to why the two quantities might be in such strong correlation. A number of approaches
have been made to obtain upper and lower bounds for entropy measures in random and more general
graphs [6,22] and in the analysis that follows, we will make use of a bounding approach to identify
how the correlation between vertex entropy and chromatic information may arise.

To begin our analysis, it must first be noted that the experimental data is generated by sampling
a number of randomly generated graphs of varying size. The only relationship between the graphs is
the manner of their construction, and, crucially the resultant degree distributions of the graphs. Let us
consider an ensemble of graphs G (G(V, E)), with degree distributions P(k) and fixed order n = |V|.
For this ensemble, as we do not know in advance the structure of the chromatic decomposition of
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a given graph, we can calculate the chromatic information for an “averaged” member G of order n,
and chromatic number χ(G), by using the average size of a chromatic class as follows:

ĪC(G) ≈ −χ(G)× 〈|Cα|〉
n

log2
〈|Cα|〉

n
(18)

where 〈|Cα|〉 is the average size of the chromatic class. This quantity, although not an actual expectation
value, can be used to provide an upper bound on chromatic information (and conversely the minimum
of entropy) as discussed below. In order to establish that this expression acts as an upper bound, it is
sufficient to note that ∑

α

|Cα |
n = 1, and Equation (3) must be maximized subject to this constraint. It is

a standard result that this is satisfied when |Cα| are identical for all chromatic classes. Equation (18)
simply sets them to be an identical partitioning of vertices by chromatic number.

Using the definitions of vertex entropy described in Section 1, we can similarly compute an
average value of each vertex entropy for a member of the ensemble G , where we have taken the
continuum approximation in the integral on the right hand side:

S̄vertex = n× 〈S(vi)〉 = n
∫ ∞

1
P(k)S(k)dk. (19)

In the case of the scale-free graphs, this yields analytically soluble integrals for inverse degree,
fractional degree vertex entropies, and edge densities but for the clustering coefficient entropies,
and for all G(n, p) random graphs the integrals are not solvable directly. To simplify the analysis,
we use the approximate continuum result for the scale-free degree distributions at t→ ∞, P(k) = 2m2

k3 ,
where m is the number of nodes a new nodes connects to during attachment. For the clustering
coefficient, we can make a very rough approximation in the case of scale-free networks of 4m/n by
arguing that, for an average node degree of 〈k〉 = 2m, each of the neighbors shares the average degree
and has a probability if 2m/n of connecting to another neighbor of the vertex. The quantity is not
exactly calculable, but in [10], a closer approximation gives C1

i ∝ n−3/4, though for simplicity we will
use our rough approximation. Where an exact solution is not available, we can roughly approximate
the value of 〈S(vi)〉, by replacing the exact degree of the node by the average degree and then asserting

〈Svertex〉 = n× S(〈k〉). (20)

We summarize these expressions in Table 13.

Table 13. Average entropies across random graphs.

Vertex Entropy Measure Scale-Free Graphs Random Graphs G(n, p)

Inverse Degree 2m2n/9 ln 2 p−1 log2(pn)
Fractional Degree m log2(2mn) log2 n

Clustering Coefficient 4m log2(n/4m) −np log2 p

In Section 2, we presented the analysis of samples of randomly generated graphs created using
three schemes. Each of these showed a surprisingly strong correlation between the vertex entropy
measures, summed across the whole graph, and the chromatic information obtained using the greedy
algorithm. The greedy algorithm is well known to obtain a coloring of an arbitrary graph which is
close, but not optimal. Indeed, the chromatic number of the graph obtained from the greedy algorithm
χg(G) is an upper bound of the true chromatic number χ(G). For a full description, see [9,16].

3.1. Gilbert Random Graphs

Let us first consider the case of the Gilbert random graphs. We follow the same treatment and
notation as in [9,23]. We construct the graph starting with n vertices, and each of the 1

2 n(n − 1)
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possible links are connected with a probability p. The two parameters n and p completely describe
the parameters of the generated graph graph, and we denote this family of graphs as G(n, p). It is
well known that Equation (18) is maximized when each of the chromatic classes of the graph Cα are
uniform. That is, if the cardinality of a chromatic class is denoted by |Cα|, and χ is the chromatic
number of the graph, we have

|Cα| =
n
χ

, ∀ Cα. (21)

This chromatic decomposition is only obtained from the perfect graph on n vertices, Kn, and proof
of this upper bound is outlined in [4]. For a given random graph G(n, p), we denote the coloring
obtained in this way, the homogenized coloring C̄α of G(n, p), and we assert that IC(G) ≤ ĪC(G). It is
easy to verify that this yields the following as an expression for the chromatic information:

IC(G) ≤ ĪC(G) = log χ. (22)

To build upon the analysis, we consider a randomly selected chromatic class Cα, which has c = n
χ

nodes. For brevity of notation, we write c(χ) as c and ask the reader to remember that c is a function of
the chromatic number of the graph. We denote the probability that c randomly selected nodes do not
possess a link between them as P̄(Cα, χ), and the probability that at least one link exists between these
nodes as P(Cα, χ). We consider a large ensemble of random graphs, generated with the same Gilbert
graph parameters n, p, which we write as G (n, p). For a randomly chosen member of this ensemble,
the criterion for the graph G(n, p) ∈ G (n, p) to possess a chromatic number χ is simply that it is more
likely for c randomly selected nodes in G(n, p) to be disconnected. That is,

P̄(Cα, χ) ≥ P(Cα, χ). (23)

To estimate the first term, we note that for c randomly chosen nodes to have no connecting edges
is given by

P̄(Cα, χ) = (1− p)
1
2 c(c−1). (24)

We can also estimate the second term, by factoring the probability of a link from any of the nodes
vi ∈ Cα, connecting to another node in Cα. The total probability is accordingly the product of

P(Cα, χ) = P(of any link)× P( link connects two nodes vi, vj ∈ Cα)× c.

Feeding in the standard parameters from the Gilbert graphs, we obtain

P(Cα, χ) = p× c(c− 1)
n(n− 1)

× c

=
pc2(c− 1)
n(n− 1)

.

If we substitute back in the dependence of c upon the chromatic number, we obtain the following
inequality, as the criteria for a given chromatic number χ to support an effective random coloring of
the graph, that can be used to estimate χ:

(1− p)
1
2 c(c−1) ≥ pc2(c− 1)

n(n− 1)
. (25)

It is easy to verify that equality is only ever reached when p→ 1, which yields the perfect graph
in which c = 1, as every node is adjacent to every other node. The left hand side of Equation (25) is an
increasing function of χ, whereas the right hand side is a decreasing function, so as χ increases we
arrive at a minimum value such that the inequality is satisfied. We take this to be our estimate of the
value of χ. The obtained value is not a strict upper bound, as we see in Section 2, but it is a reasonable
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estimate of the value. Although Equation (25) as a transcendental equation is not directly soluble,
we can numerically solve to determine the value of χ for a fixed link probability p at which equality is
reached. We present the results of the analysis in Figure 4, together with the optimal least squares fit of
the relationship. We can also evaluate the best model for the correlation between our estimate and the
measured values using BIC and AIC in the same manner as with the metrics. We present the results in
Table 14. It is evident that a cubic relationship offers the best choice of model, and that fit is overlaid
on the experimental data in Figure 4.

Table 14. Model selection analysis for computed χ versus measured for |V| = 300.

Model Bayesian Information Criteria ∆BIC Akaike Information Criteria ∆AIC

H1 −90.00 0.00 −92.25 0.00
H2 −138.79 −48.79 −143.28 −51.04
H3 −146.53 −56.53 −153.28 −61.03
H4 −142.72 −52.72 −151.71 −59.47
H5 −138.60 −48.60 −149.84 −57.59

Figure 4. Calculated χ versus measured χ, for Gilbert graphs G(n, p) with n = 300 and p ∈ [0.3, 1.0].
Overlaid is the least squares fit for H3.

Having established that we can use Equation (25) to generate a good estimate of the chromatic
number of a Gilbert graph, we can now attempt to explain how the chromatic information obtained
from the greedy algorithm correlates with the vertex entropy measures. We begin by simplifying
Equation (25) to determine the minimum value of χ at which equality is reached, by assuming the
limit of c� n, and c, n� 1 to obtain

(1− p)
n2

2χ2 =
pn
χ3 .

Taking the logarithm of both sides of this equation and manipulating we arrive at the
following expression:

3 log χ = log pn− n2

2χ2 log(1− p) (26)

ĪC(G) =
1
3

log pn− n2

6χ2 log(1− p). (27)

Equation (27) represents an approximation for the chromatic information of a random graph.
Numerical experimentation indicates that the first term dominates for small values of p, and as p→ 1.0
the second terms becomes numerically larger. Inspection of Table 13 shows that Equation (27) contains
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terms that reflect a number of the expressions for the vertex entropy quantities we have considered.
Indeed, as the experiments were conducted at a fixed value of n = 300, for small p, by elementary
manipulation, one can see that ĪCG ∝ pSVE, or alternatively ĪCG ∝ SCE/p. Although this is a far
from rigorous analytical derivation of the dependence of the chromatic information on the vertex
entropy terms, the analysis does perhaps go some way to making the strong correlation experimentally
make sense in the context of this theoretical analysis. Deriving an exact relationship between the two
quantities is beyond the scope of this work.

3.2. Scale-Free Graphs

In the case of scale-free graphs we can follow a similar analysis to that of the Gilbert graph
models. To derive the probability of a link, we can appeal to the preferential attachment model. For a
randomly selected node, the average probability of acquiring a link p is computable as p = 〈k〉/2mt.
The dependence upon the connection valence m drops out and the average probability of a link existing
between two nodes becomes p = 1/n.

Following an identical argument to the random graph case, we arrive at the following relationship:

ĪCG =
n2

4χ2 log2

(
n

n− 1

)
. (28)

Again, it is important to stress that this is not a rigorous derivation of a relationship between
chromatic information and vertex entropy, but it is possible to explain some of the correlations in
the results presented in Figure 1. For a given fixed value of χ, the experiments represent graphs
produced with increasing edge densities. As edges are added to the graph that do not increase the
chromatic number, the size of the chromatic classes will evidently equalize (a discussion of this point
can be found in [4]). This will have the effect of increasing the chromatic information, until a point
is reached where χ→ χ + 1. At this point, the denominator of Equation (28) will increase, causing a
drop in chromatic information. Therefore, as each vertex entropy measure is fundamentally dependent
upon the number of edges in a fixed sized graph, we would expect to see a series of correlations for
each value of chromatic information, which is indeed what is demonstrated in Figure 1.

4. Conclusions

In this work, we have principally been interested in investigating what, if any, correlation exists
between purely local measures of graph entropy and global ones. It is not possible to make a general
statement that, for any graph, this correlation exists, but for the two classes of random graphs
considered, it is persuasive that a such a strong correlation exists.

This is an interesting and important result.
It is interesting to speculate what the connection could be between local measures of entropy

at the vertex level and global measures, and indeed whether the two quantities are both measuring
information. Perhaps the original definition of graph entropy provides a hint at how the two may
be connected. In the original formulation, an edge exists between two vertices if the signals in
the alphabet represented by the connected vertices are indistinguishable. The inability for the signals
to be distinguished is a loss of information, and hence a gain in entropy, and the origin of the entropy
of the graph follows. This loss of information is intrinsically local, so it is perhaps unsurprising that
the vertex level measures, based upon degree, correlate to this. Of course, the local connectivity
does not capture the entire subtle construction of the graph, which is what is captured by the global
measures of entropy and why the local measures do not correlate exactly. The surprising part of our
analysis was how well correlated local measures are for random graphs. This may well ultimately
be a consequence of the nature of the construction of the graphs rather than a general result for all
possible graphs.
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There are other alternative measures of local connectivity that we could also have considered in
our analysis; in particular, we have not considered spectral measures such as the Estrada index [24,25],
which provide additional information on the degree to which a node participates in the subgraphs
of a graph. It is beyond the scope of this work to extend the measures beyond those considered, but it
would be an interesting avenue of further research to extend the investigation to a wider class of local
properties of a graph.

Interest in the informational content of graphs has a wide range of application, both in terms of
network dynamics as a model of network evolution. It is also under investigation outside the field
of network science, in many different fields. In addition to dynamical models of network evolution,
our formulation of vertex entropy has potential implications for dynamic processes on a network.
For example, Ritchie et al. [26] demonstrated that describing a network in terms of global network
metrics such as degree distribution and global clustering coefficient could obscure differences in local
clustering with substantial impact on dynamics unfolding on that network. An intriguing possibility
would therefore be that local entropy measures could encompass this higher-order structure and
provide insights into dynamic processes on a graph, such as epidemic spread, and presents a further
way to test the applicability of vertex entropy.

Beyond dynamic processes, it is possible that vertex entropy could also have relevance in the
study of network resilience, in particular the vulnerability of real world networks to attack. Our work is
based upon the Dehmer j-Sphere decomposition, and similar approaches have been used, for example,
by Shang [27]. In further work, it would be interesting to investigate how our approach could be used
to determine network resilience.

It is interesting to speculate what processes could underly the strong correlation between the
local and global entropy measures. One possibility is that the random graphs produce sparse, tree-like
graphs, which would cause the local entropy of the nodes to become solely dependent upon their
degree. There has been work on the likelihood of generating such sparse graphs by Shang [28], but for
the data sets that we generated there is more complex topology, including non-trivial clustering.
In further work, we would like to investigate the interplay between entropy and sparsity.

The starting point for our theoretical investigation, Equation (18), is asserted as a relationship
between the average chromatic class and the chromatic information. That assertion approximates
the expectation value of the chromatic information if the size of the chromatic classes is closely
bunched around a mean of narrow distribution. There have been recent contributions [29,30] that
could potentially provide a mechanism to test how well the actual distribution of the cardinality of the
chromatic classes is distributed according to a narrow Gaussian. Although beyond the scope of this
paper, we view this as an interesting additional direction to take our research.

Outside network science, quantum gravity fundamentally relies upon spacetime becoming
graph-like at the so-called Planck length [31]. With entropy becoming posited as a potential origin
of gravity [32], the entropy of the spacetime graph is of interest. It would be convenient if large-scale
information content was largely driven by the local graph structure of a typical node if a tractable
entropic theory of quantum gravity is to become possible. If the entropy of the spacetime mesh were
not definable locally, any theory obtained would suffer from a pathological lack of locality, a key
feature of most modern field theories.

Although far from settled, this paper does at least illustrate that, for certain types of graph,
the local environment of a typical node may indeed be a proxy for the information content of the
graph. In future work, we intend to investigate other implications of vertex entropy on the dynamical
processes possible on a graph.
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