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Abstract: Attributed networks consist of not only a network structure but also node attributes.
Most existing community detection algorithms only focus on network structures and ignore node
attributes, which are also important. Although some algorithms using both node attributes and
network structure information have been proposed in recent years, the complex hierarchical
coupling relationships within and between attributes, nodes and network structure have not been
considered. Such hierarchical couplings are driving factors in community formation. This paper
introduces a novel coupled node similarity (CNS) to involve and learn attribute and structure
couplings and compute the similarity within and between nodes with categorical attributes in a
network. CNS learns and integrates the frequency-based intra-attribute coupled similarity within an
attribute, the co-occurrence-based inter-attribute coupled similarity between attributes, and coupled
attribute-to-structure similarity based on the homophily property. CNS is then used to generate the
weights of edges and transfer a plain graph to a weighted graph. Clustering algorithms detect
community structures that are topologically well-connected and semantically coherent on the
weighted graphs. Extensive experiments verify the effectiveness of CNS-based community detection
algorithms on several data sets by comparing with the state-of-the-art node similarity measures,
whether they involve node attribute information and hierarchical interactions, and on various levels
of network structure complexity.

Keywords: attributed networks; coupled node similarity; community detection

1. Introduction

Community detection is an important task in complex network analysis. So far, the definition
of community is still ambiguous. In most state-of-the-art research, the concept of community is a
group of nodes densely connected relatively to the rest of the network. Networks that consider both
object interactions and attributes, i.e., attributed networks, can be represented by an attributed graph in
which nodes represent the objects, edges represent the relationships between objects, and the feature
vectors associated with nodes represent the attributes. The network topological structure reflects the
interactions between nodes and the node attribute information reflects the common characteristics
among nodes. They both play important roles in the formation of the network community structure.
However, nowadays most community detection algorithms only use the network topological structure.
Community detection on such attributed networks using both network topological structure and node
attribute information is important yet challenging, and relies on appropriate similarity learning.

Community detection on attributed networks. Nowadays, many approaches have been
proposed that incorporate node attributes and edges in the community detection process.
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Existing methods can be classified roughly into two categories. The first category is composed
of probabilistic generative models that formulate joint models of edges and node attributes, and that
use the models to infer the community memberships of nodes in an attributed network [1–4]. However,
they are not as efficient as hybrid methods. Cruz et al. [5] proposed an iterative optimization algorithm
by maximizing the modularity and entropy to obtain the structural and semantically related community
structures. CODICIL [6] constructs content edges by selecting the top K neighbors of each node using
their attributes, obtains the combined similarity of each pair of nodes, and then sparsifies the newly
constructed graph with content edges. Finally, an existing community detection algorithm is used to
partition the sparsified graph into a given number of communities. SA-cluster [7] views node attributes
as virtual vertices, constructs an attribute-augmented graph, and performs a random walk on the
attribute-augmented graph to obtain a unified distance. It then adopts the K-medoids algorithm to
detect the community based on learned pairwise distance. Inc-cluser [8,9] is a slightly faster version
of SA-cluster.

Related work on similarity learning in community detection. In understanding attributed
graphs, many methods take the following strategy. First, an attributed graph is converted (reduced) to
a weighted graph, where weights represent attribute similarity. The edge weights indicate particularly
close connections or similarity between nodes. Then, clustering algorithms for weighted graphs can be
applied. For example, Steinhaeuser and Chawla [10] presented a simple approach to constructing a
network with edge weights based on node attributes and clustering nodes whose edge weight exceeds
the threshold in the same community. The authors show that edge weights based on node attribute
similarity are superior to edge weights based on network topology in a large scale-free social network.

Appropriately, learning node similarity is critical for understanding network complexity and
effectively detecting communities. Accordingly, a number of methods have been developed that exploit
node similarity by capturing node relationships. Node similarity learning in existing methods can
be roughly assigned to two categories: structure similarity and attribute similarity. Structure similarity,
which focuses on so-called structure equivalence, is commonly used; that is, two nodes are similar
if they share the same or similar network neighbors. Typical examples include the cosine similarity
(Cosine) [11] and the Jaccard index (Jaccard) [12]. The other kind of methods collect both local and
global scale information to compute the weight of each edge, including k-path edge centrality [13],
SimRank-based edge weighting scheme [14], and WNF [15]. Few attribute similarity learning methods
are proposed for categorical network data. The representative methods are simple matching coefficient
(SMC) [16] and the recently proposed coupled object similarity (COS) [17,18]. COS has been shown
to be effective in categorical data analysis for clustering [19], classification [20], and recommender
systems [21], as it aims to capture the value-to-object coupling relationships [22] embedded in a
complex dataset.

To the best of our knowledge, there are no such node similarity learning methods in attributed
network analysis that effectively capture the complex interactions between node attributes and
network structure, and the coupling relationships within and between node attributes. These complex
interactions and relationships drive the formation of communities, so it is fundamental to understand
how they interact and affect community and network dynamics.

Learning complex coupling relationships and our main contributions. We illustrate the various
coupling relationships in a co-authoring network in Figure 1, in which the information table shows
the co-authoring information. A node represents an author, and an edge represents the co-authoring
relationship between two authors. In addition, there is topic and country information associated with
each author. We convert the co-authoring information table to graphs based on different approaches to
represent the structure and relationships between authors. Below, we discuss the different outcomes of
author communities detected as a result of these different representation approaches.

First, if only the structure of the co-authoring graph is considered in the detection of author
communities, we have the co-authoring structure shown in Figure 1a. Two clearly separated
communities emerge: {David, Jia, Jones} and {Ying, Hua, Pitt}; however, we cannot tell which
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community George belongs to since he has the same relationship with Jones and Ying who separately
belong to two different communities. Second, if both graph structure and node attributes are
considered, which results in the diagram in Figure 1b, we still cannot cluster George to a proper
community by using SMC to compute the similarity between two connected authors. Since SMC
uses 0 and 1 to distinguish the similarity between categorical values, the similarity between authors
who live in AU and the US is equal to that between authors who live in AU and CN. Therefore,
the similarity between George and Jones is still same as the similarity between George and Ying.
However, by involving the co-authoring relationships in Figure 1c, we observe that the similarity
between AU and CN should be greater because authors from these two countries collaborate more
frequently. Therefore, George is more similar to Ying than Jones, and we can correctly divide George
to the right community.
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Figure 1. Structure and attribute couplings in a co-authoring network. (Note: Symbol indicates the
linkage between two nodes; refers to simple attribute similarity between two nodes, and
represents the complex coupling relationships between two nodes.)

The above three scenarios illustrate the importance of involving relevant information and
relationships and learning their similarity in community detection. As shown in the limited work
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reported in the literature [23], engaging both structure and attribute similarities can generate more
meaningful communities. However, existing methods do not consider the complex interactions within
and between attributes, and between node attributes and structure. In most attributed networks,
nodes prefer to connect to other nodes with similar attributes (i.e., homophily) [24]. The presence of
homophily has been discovered in a vast array of network studies. More than 100 studies that have
observed homophily in some form or another and they establish that similarity breeds connection [25].
The homophily property reflects the effect of node attributes on the network edges. On the other
hand, the edges in the network should also reflect the difference between attributes. In this paper, we
propose a novel coupled node similarity (CNS) learning method, which involves both node attributes
and structure information in an attributed graph. The main idea behind CNS and its contributions to
community detection are presented below:

• CNS captures different levels of coupling relationships in an attributed graph,
including value-to-value, value-to-node, and attribute-to-structure relationships. To the
best of our knowledge, this is the first work that systematically represents the hierarchical
interactions in terms of both structural and attribute aspects.

• CNS learns the above respective relationships in terms of calculating and integrating the
intra-attribute coupled similarity, the inter-attribute coupled similarity, and the coupled
attribute-to-structure similarity. Hence, CNS captures not only the attribute value interactions
within and between attributes, but also the interactions between node attributes and structure.
This provides a comprehensive means of understanding the intrinsic driving forces and
complexity in community formation.

• We incorporate CNS into attributed graphs to generate weighted graphs, combining the
topological structure and node attributes in a unified manner to detect communities in
attributed networks.

• We also empirically evaluate the effectiveness of CNS similarity in terms of whether node
attributes are involved, what types of node interactions are learned, and different levels of
network structure complexity.

2. Learning Coupled Node Similarity

In this section, we introduce the framework and specific similarity measures for learning coupled
node similarity.

2.1. The CNS Framework

The framework for learning CNS is shown in Figure 2. CNS captures four sources of interactions
and similarities: (1) the intra-attribute coupled similarity learns the interactions within a node attribute;
(2) the inter-attribute coupled similarity models the interactions between node attributes; (3) the
coupled attribute similarity integrates both of them; and (4) the coupled attribute-to-structure similarity
captures the interactions between node attributes and network structure. Lastly, CNS integrates the
coupled attribute similarity and the coupled attribute-to-structure similarity to represent the overall
relationships and similarities in an attributed network.

An attributed network can be modeled as a graph G = (V, E, F), where V is the set of nodes,
E is the set of edges, and F is the set of node attribute vectors. All the main notations are described
in Table 1.
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Table 1. Notation explanation.

Notation Description

M The number of node attributes
(Fm) The set of all distinct values on the mth attribute
Fm(i) The value of the mth attribute for node i
K The number of communities
C The communities of the network, C =

⋃K
k=1 Ck

ci The community to which node i belongs
Γi The neighbor set of node i
A(i, j) The adjacency relationship between nodes i and j. A(i, j) = 1 if nodes i and j are connected;

otherwise A(i, j) = 0
W(i, j) The weight between nodes i and j
S(i, j) The similarity between nodes i and j
lr(i) The received label of node i
mw The sum of all edge weights in the network, mw = ∑i,j∈V W(i, j)
dw

i The sum of edge weights which are connected to node i, dw
i = ∑j∈Γi

W(i, j)
gm(x) The node set whose mth attribute value is x
αn The weight parameter for the nth attribute, ∑M

n=1 αn = 1, αn ∈ [0, 1]
δm|n(x, y) the inter-relative attribute coupled similarities between values x and y of the mth attribute based

on the nth attribute (n 6= m)
B B = Fn/B, the complement set of B under the complete distinct value set Fn of the nth attribute
g∗n(B) the node set whose attribute value in the nth attribute is in B
δIa

m (x, y) The intra-attribute coupled similarity between the attribute values x and y of the mth attribute
δIe

m (x, y) The inter-attribute coupled similarity between the attribute values x and y of the mth attribute
based on other attributes

δA
m(x, y) The coupled attribute similarity between the attribute values x and y of the mth attribute

δAS
m (x, y) The coupled attribute-to-structure similarity between the attribute values x and y of the mth

attribute
CAS(i, j) The coupled attribute similarity between nodes i and j
CNS(i, j) The coupled node similarity between nodes i and j
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Figure 2. The framework for learning CNS. (Note: Symbol L9999K indicates intra-attribute coupled
similarity calculated using the interaction between attribute values within an attribute and←→ refers
to inter-attribute coupled similarity involved the couplings between attributes. The coupled attribute
similarity in the second level integrates both of intra-attribute coupled similarity and inter-attribute
coupled similarity. The coupled attribute-to-structure similarity in the second level captures the
interactions between node attributes and network structure. In the last level, CNS integrates the
coupled attribute similarity and the coupled attribute-to-structure similarity.)
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2.2. Coupled Attribute Similarity

Coupled attribute similarity (CAS) is extended from the concept of Coupled Attribute Similarity
for Object (CASO) in Wang et al. [18]. CASO is based on the coupled attribute similarity for values,
by considering both the intra-coupled and inter-coupled attribute value similarities, which globally
capture the attribute value frequency distribution and attribute dependency aggregation with
high accuracy and relatively low complexity. CAS combines the intra-attribute coupled similarity
(Defintion 1) and inter-attribute coupled similarity (Defintion 2) to cater for specific characteristics in
network data.

Definition 1. (Intra-Attribute Coupled Similarity) The intra-attribute coupled similarity δIa
m (x, y) between

node attribute values where x and y, x= Fm(i) and y = Fm(j) are the values of nodes i and j in the mth attribute,
is calculated by considering the relationship between the frequency of their occurrence.

δIa
m (x, y) =

|gm(x)| × |gm(y)|
|gm(x)|+ |gm(y)|+ |gm(x)| × |gm(y)|

(1)

gm(x) and gm(y) are the node sets which have the same attribute value as nodes i and j, respectively, in the
mth attribute. |gm(x)| and |gm(y)| are the occurrence times of node attribute values x and y across all nodes in
the network.

In the toy example in Figure 1, for example, there are two authors from Australia {George, Pitt}
and three from China {Ying, Hua, Jia}, so δIa

country(AU, CN) = 6/11.
Below, the inter-attribute coupled similarity is defined, which considers the couplings between node

attributes when the node attribute value similarity is calculated.

Definition 2. (Inter-Attribute Coupled Similarity) The inter-attribute coupled similarity δIe
m (x, y) between

values x and y of the mth attribute based on other attributes is defined as follows.

δIe
m (x, y) =

M

∑
n=1,n 6=m

αnδm|n(x, y). (2)

αn is the weight parameter for the nth attribute, ∑M
n=1 αn = 1, αn ∈ [0, 1]. M is the total number of node

attributes. δm|n(x, y) is one of the inter-relative attribute coupled similarities between values x and y of the mth
attribute based on the nth attribute (n 6= m).

δm|n(x, y) = min
B⊆Fn
{2− Pn|m(B|x)− Pn|m(B|y)}. (3)

Fn represents the attribute values on the nth attribute. B is a subset of attribute values on the nth attribute.
B = Fn/B is the complement set of B under the complete distinct value set Fn of the nth attribute. Pn|m(B|x) is
the information conditional probability (ICP) of B with respect to x, which is defined as follows.

Pn|m(B|x) = |g
∗
n(B) ∩ gm(x)|
|gm(x)| . (4)

g∗n(B) is the node set whose attribute value in the nth attribute is in B. Intuitively, when given all the
objects with the value x on mth attribute, ICP is the percentage of common objects whose values on the nth
attribute fall in subset B and whose values on the mth attribute are exactly x as well.

In the toy example in Figure 1, Ftopic = {DM, ML}, and the number of its power sets is
four. If B = {DM} then B = {ML}, g∗topic(B) = {Jia, Jones, George, Ying, Pitt}, gcountry(AU) =

{George, Pitt}, Ptopic|country(B|AU) = 1. Similarly, Ptopic|country(B|CN) = 1/3. Considering all
conditions, δcountry|topic(AU, CN) = 2/3. Since there are only two attributes, δIe

country(AU, CN) = 2/3.
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Definition 3. (Coupled Attribute Similarity) The coupled attribute similarity δA
m(x, y) between values x and y

of the mth attribute is the combination of the intra-attribute coupled similarity and the inter-attribute coupled
similarity between x and y.

δA
m(x, y) = δIa

m (x, y)× δIe
m (x, y). (5)

Lastly, the coupled attribute similarity (CAS) for the two nodes i and j is calculated as follows.

CAS(i, j) =
M

∑
m=1

δA
m(Fm(i), Fm(j)). (6)

2.3. Coupled Attribute-to-Structure Similarity

In an attributed network, not all node attributes are equally important for community detection;
even for an attribute, two different value pairs may not contribute the same. Based on the homophily
property [24] of social networks, i.e., nodes to be connected with other nodes that share similar
attributes, the consistency between node attributes and structure information could guide the
community detection process. Therefore, the coupled attribute-to-structure similarity is proposed to
measure the different contribution of different attribute value pairs.

Definition 4. (Coupled Attribute-to-Structure Similarity) The coupled attribute-to-structure similarity
δAS

m (x, y) between values x and y of the mth attribute is defined as the degree of consistency between the
attribute value pair (x, y) and the linkage across all nodes in the network. It is equal to the number of edges
between the two node sets whose attribute values are x and y, respectively, in the mth attribute divided by the
total number of possible edges between them.

δAS
m (x, y) =

∑v1∈gm(x),v2∈gm(y) A(v1, v2)

|gm(x)| × |gm(y)|
. (7)

In the toy example in Figure 1, there are two authors from Australia and three from China,
and there are three connections between the authors from these two countries, {George-Ying, Pitt-Ying,
Pitt-Hua}, so δAS

country(AU, CN) = 0.5.

2.4. Coupled Node Similarity

Coupled node similarity is defined as the combination of the coupled attribute similarity and
coupled attribute-to-structure similarity.

Definition 5. (Coupled Node Similarity) The coupled node similarity CNS(i, j) between nodes i and j is
calculated below:

CNS(i, j) =
M

∑
m=1

δA
m(Fm(i), Fm(j))× δAS

m (Fm(i), Fm(j))

=
M

∑
m=1

δIa
m (Fm(i), Fm(j))× δIe

m (Fm(i), Fm(j))× δAS
m (Fm(i), Fm(j))

. (8)

In the toy example in Figure 1, CNS(George, Ying) = 0.41, CNS(George, Jones) = 0.29,
and George is more similar to Ying, so he belongs to community C2.

2.5. The Algorithm for Learning CNS

Algorithm 1 presents the process of learning coupled node similarity (CNS). It first calculates the
coupled attribute similarity and the coupled attribute-to-structure similarity for all attribute value
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pairs (Lines 1–8) and then computes CNS for all nodes (Lines 9–17). The CASS function computes the
coupled attribute-to-structure similarity (Lines 19–24).

Algorithm 1 Learning Coupled Node Similarity

Input: G(V, E, F)
Output: CNS

1: for m← 1, M do
2: for all value pairs x, y ∈ unique(Fm) do
3: δIa

m (x, y) = CIAAS(x, y, m)
4: δIe

m (x, y) = CIEAS(x, y, m)
5: δA

m(x, y) = δIa
m (x, y)× δIe

m (x, y)
6: δAS

m (x, y) = CASS(x, y, m)
7: end for
8: end for
9: for all nodes i and j ∈ V do

10: for m← 1, M do
11: x = Fm(i) , y = Fm(j)
12: if A(i, j) == 1 then
13: CNS(i, j)+ = δA

m(x, y)× δAS
m (x, y)

14: end if
15: end for
16: end for
17: return CNS
18:

19: Function CASS(x, y, m)
20: for all nodes v1 ∈ gm(x) and v2 ∈ gm(y) do
21: Enum+ = A(v1, v2)
22: end for
23: δAS

m (x, y) = Enum/(|gm(x)| × |gm(y)|)
24: return δAS

m (x, y)
25:

26: Function CIAAS(x, y, m)
27: U1 ← {vi|Fm(i) == x}, U2 ← {vi|Fm(i) == y}
28: δIa

m (x, y) = (|U1| × |U2|)/(|U1|+ |U2|+ |U1| × |U2|)
29: return δIa

m (x, y)
30:

31: Function CIEAS(x, y, m)
32: U1 ← {vi|Fm(i) == x}, U2 ← {vi|Fm(i) == y}
33: for (n← 1, M)and(n 6= m) do
34: for all subset B ∈ Fm do
35: U3 ← {vi|Fm(i) ∈ B}, U4 ← {vi|vi|Fm(i) ∈ (Fm − B)}
36: ICPx(B) = (|U1|

⋂ |U3|)/(|U1|)
37: ICPy(Fm − B) = (|U2|

⋂ |U4|)/(|U2|)
38: end for
39: Minm|n = min(2− ICPx − ICPy)
40: δIe

m (x, y)+ = αn ×Minm|n
41: end for
42: return δIe

m (x, y)
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2.6. Complexity Analysis

CNS integrates three similarities, e.g., The intra-attribute coupled similarity, the inter-attribute
similarity, and the coupled attribute-to-structure similarity. The time complexity analysis is as
follows: (1) Compute intra-attribute coupled similarity: O(MR2|V|), where |V| is the number
of nodes in the network; (2) Compute inter-attribute coupled similarity: O(M2R22R|V|), where
R is the maximal number of values for each attribute and M is the number of node attributes;
(3) Compute coupled attribute-to-structure similarity: O(MR2|V|). Therefore, the overall time
complexity is O(M2R22R|V|).

3. Similarity-Based Community Detection

Our proposed method mainly concentrates on unweighted graphs. CNS is used to generate the
edge weight (W(i, j)) where an edge exists when two nodes are linked structurally.

W(i, j) =

{
S(i, j) i f A(i, j) = 1

0 otherwise
. (9)

S(i, j) represents a similarity metric (e.g., CNS(i, j)) to be used to construct the weighted network.
SLPA [26], BGLL [27], and K-medoids [28] then detect communities on the weighted networks.

SLPA is an extension of LPA [29] that can analyze communities in weighted networks. It starts
by giving each node a unique label and provides each node with a memory to store received labels.
In every iteration, each node receives labels from its neighbors and adds the most popular label to
its memory. The most popular label is that which carries the maximum weight according to nodes
that send the same label. Lastly, every node chooses the maximum frequent label in its memory as its
community label and nodes with the same label are assigned to one community.

lr(i) = argmax
l

∑
j∈Γi

W(i, j)× ϕ(ls(j), l). (10)

lr(i) represents the received label of node i and ls(j) is the send label from node j. If ls(j) = l,
then ϕ(ls(j), l) = 1, else ϕ(ls(j), l) = 0.

BGLL is an iterative two-phase algorithm based on weighted modularity (WQ) optimization.
In the first phase, all nodes are placed into different communities. For each node i, BGLL considers each
neighbor j and evaluates the gain of WQ that would take place if i was removed from its community
and placed in the community of j. Node i is then placed in the community for which this gain is
maximum and positive. The second phase consists of building a new network whose nodes are now the
communities found during the previous phase, and the weights of the edges between the new nodes
are given by the sum of the weight of the edges between nodes in the corresponding two communities.

WQ =
1

mw ∑
i,j∈V

[W(i, j)−
dw

i dw
j

mw ]× ϕ(ci, cj) (11)

mw = ∑i,j∈V W(i, j), dw
i = ∑j∈Γi

W(i, j), ci and cj respectively denote the community to which nodes i
and j belong. If ci = cj, then ϕ(ci, cj) = 1, else ϕ(ci, cj) = 0.

K-medoids is a clustering algorithm related to the K-means algorithm [30]. Its inputs are the
similarity matrix and the number of clusters K. In our experiments, K is set to the true number of
clusters. The similarity between two connected nodes is equal to the edge weight that connects them,
and the similarity of two disconnected nodes is 0. First, it selects K initial medoids randomly; clusters
are then defined as the subsets of points that are similar to the respective medoids, and the objective
function is defined as the similarity between a point and the corresponding medoid. The new medoids
are then updated as the object of a cluster whose average similarity to all the objects in the cluster is
maximal. This process is repeated until all medoids no longer change.
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4. Experiments and Analysis

Similarity measures for comparison. This section compares CNS with several representative
node similarity measures including Adjacency, Cosine, Jaccard, SMC, and CAS in terms of community
detection performance. Table 2 shows the main formulas.

Table 2. The similarities.

Similarity Formula

Adjacency SAdjacency(i, j) = A(i, j)

Cosine SCosine(i, j) = |Γi∩Γj |√
|Γi |×|Γj |

Jaccard SJaccard(i, j) = |Γi∩Γj |
|Γi∪Γj |

SMC SSMC(i, j) = ∑M
m=1 1(Fm(i)=Fm(j))

M
CAS Equation (6)
CNS Equation (8)

Baseline methods. SLPA, BGLL, and K-medoids are used. Since SLPA and K-medoids are not
stable, they are repeated 100 times and averaged for the final results. The value of parameter αn in
CAS and CNS is 1/M. M is the total number of node attributes. We apply the algorithms on both
synthetic and real networks to test their community detection performance.

Synthetic networks. The structure-only networks consisting of nodes, edges, and communities
are generated according to the LFR benchmark networks [31], which are currently the most commonly
used synthetic networks in community detection. An LFR network includes the following parameters:
N is the number of nodes; avgk is the average degree of the nodes; maxk is the maximum degree of
the nodes; minc is the number of nodes contained by the minimum community; maxc is the number
of nodes contained by the biggest community; mu is a mixed parameter, which is the probability of
nodes connected to nodes of an external community. The greater mu is, the more difficult it is to detect
the community structure.

In real networks, not all node attributes are the same important for community detection. Some are
critical for cluster nodes, and some are not as important or are not even relevant. Therefore, three kinds
of value distributions are generated as follows. (1) Attribute 1: For each community, all of the nodes in
a community are assigned the same domain value; (2) Attribute 2: All of the nodes in the network are
assigned a random domain value; (3) Attribute 3: All of the nodes in each community are assigned the
same domain value. Nodes in the community are selected to host the noise. The noise is a random
domain value that is different from the cluster domain value. The noise level nl (the percentage of
noise nodes) can be varied.

Real networks. Experiments are also conducted on three well-known real networks: the lawyer
friendship network (Lazega) [32], the researcher relationship network (Research) [33], and the counselor
relationship network (Consult) [33]. The detailed information of each network is shown in Table 3.

Table 3. The information of real networks.

ID Name Abbr. |V | |E| K M

R1 Lazega Laz 71 575 2 7
R2 Research Res 77 2228 3 4
R3 Consult Con 46 879 4 2

|V|:The number of nodes; |E|: The number of edges; K: The number of communities; M: The number of
node attributes.

Lazega reflects corporate law partnership in a Northeastern US corporate law firm from 1988
to 1991. It includes friendship and working networks between the 71 attorneys of this firm. Various
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number of attributes are used in this paper, including status (1: partner; 2: associate), gender (1: man;
2: woman), office (1: Boston; 2: Hartford; 3: Providence), years with the firm, age, practice (1: litigation;
2: corporate), and law school (1: harvard, yale; 2: ucon; 3: other).

Research is about a research team consisting of 77 employees in a manufacturing company.
The dataset contains several attributes of each employee: location (1: Paris; 2: Frankfurt; 3: Warsaw;
4: Geneva), tenure (1: 1–12 months; 2: 13–36 months; 3: 37–60 months; 4: 61+ months), and the
organizational level (1: Global Dept Manager; 2: Local Dept Manager; 3: Project Leader; 4: Researcher).
Since the network is a weighted and directed network, we first convert it to an unweighted and
undirected network.

Consult is the relationship between 46 employees in a consulting company. The following
attributes are known for the counselors: the organisational level (1: Research Assistant; 2: Junior
Consultant; 3: Senior Consultant; 4: Managing Consultant; 5: Partner), gender (1: male; 2: female),
region (1: Europe; 2: USA), and location (1: Boston; 2: London; 3: Paris; 4: Rome; 5: Madrid; 6: Oslo;
7: Copenhagen). This network is also a weighted and directed network, we first convert it to an
unweighted and undirected network.

Evaluation Criteria. For networks with known community structure, we use normalized mutual
information (NMI) [34], F-Measure [35] and Accuracy as the evaluation criteria to compare results of
different algorithms. The calculation formulas are shown as follows.

NMI =
−2×∑R

r=1 ∑K
k=1

|Ur
⋂

Ck |
|V| log( |V|×|Ur

⋂
Ck |

|Ur |×|Ck |
)

∑R
r=1

|Ur |
|V| log( |Ur |

|V| ) + ∑K
k=1

|Ck |
|V| log( |Ck |

|V| )
. (12)

C = {C1, C2, · · · , CK} represents a community detection result generated by the evaluated
algorithm, and U = {U1, U2, · · · , UR} represents the ground-truth community structure. |V|
represents the number of nodes in the network. K and R are the number of communities.

F−Measure =
R

∑
r=1

|Ur|
|V| max

Ck∈C
F(Ur, Ck). (13)

F(Ur, Ck) =
2× P(Ur, Ck)× R(Ur, Ck)

P(Ur, Ck) + R(Ur, Ck)
. (14)

P(Ur, Ck) = |Ur
⋂

Ck|/|Ck|, and R(Ur, Ck) = |Ur
⋂

Ck|/|Ur|.

Accuracy = TC/|V|. (15)

TC represents the number of correct clustering nodes.

4.1. Detection Performance with vs. without Node Attribute Information

This section performs experiments to compare the results of three algorithms based on different
similarity methods that do or do not involve node attribute information. The results are shown
in Tables 4–6. Numbers in bold style means they are the biggest among six similarities.

Tables 4–6 show that community detection based on CNS achieves better NMI (e.g., maximally
35.45% improvement on the Consult data), F-Measure (e.g., maximally 12.14% improvement on
the Consult data), and accuracy (e.g., maximally 15.14% improvement on the Consult data) when
compared with the best result of other structure and attribute similarity measures. The results based
on SMC are not always better than those based on structure similarities. This illustrates the importance
of considering the complex hierarchical interactions within and between node attributes and network
structure when calculating node similarity. When the similarity based solely on the node attribute is
compared, CAS cannot guarantee better results than SMC. This means the interactions between node
attributes and network structure play a vital role in capturing node similarity.
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Table 4. The results of NMI(%) w.r.t. six similarities.

Similarity
SLPA BGLL K-Medoids

Laz Res Con Laz Res Con Laz Res Con

Adjacency 14.04 65.68 58.15 31.47 70.92 66.42 11.25 29.02 20.15
Cosine 25.81 80.22 64.94 36.65 75.66 49.60 22.61 58.64 37.79
Jaccard 26.16 78.48 64.66 39.13 75.62 49.60 39.76 62.88 30.80
SMC 27.67 92.05 70.46 39.04 100 66.42 28.46 34.75 47.74
CAS 26.11 87.84 67.23 36.18 86.64 66.42 72.55 34.08 54.11
CNS 29.47 98.71 78.67 48.67 100 66.42 76.02 76.46 73.29

∆% 6.51 7.24 11.65 24.38 0.00 0.00 4.78 21.60 35.45

Table 5. The results of F-Measure(%) w.r.t. six similarities.

Similarity
SLPA BGLL K-Medoids

Laz Res Con Laz Res Con Laz Res Con

Adjacency 52.32 68.25 80.00 71.96 62.98 80.87 53.54 40.36 63.36
Cosine 66.27 87.22 79.81 75.85 89.52 36.67 71.57 70.58 76.66
Jaccard 65.32 85.00 79.62 70.14 86.47 36.67 75.21 74.85 74.52
SMC 65.57 93.89 74.11 73.81 100 80.87 74.48 54.06 74.48
CAS 64.84 92.60 82.12 77.39 71.55 80.87 91.60 52.40 75.78
CNS 67.38 98.93 90.79 80.41 100 80.87 93.48 78.80 85.97

∆% 1.67 5.37 10.56 3.90 0.00 0.00 2.05 5.28 12.14

Table 6. The results of Accuracy(%) w.r.t. six similarities.

Similarity
SLPA BGLL K-Medoids

Laz Res Con Laz Res Con Laz Res Con

Adjacency 61.32 73.95 72.60 60.87 66.22 70.00 60.14 46.31 67.10
Cosine 63.16 93.47 68.35 63.77 86.49 27.50 72.62 71.55 77.05
Jaccard 59.64 80.35 68.10 55.07 78.38 27.50 76.14 75.97 75.03
SMC 68.22 89.89 74.95 59.42 100 70.00 75.20 56.92 76.60
CAS 70.26 91.65 71.78 66.67 83.78 70.00 92.17 54.03 78.03
CNS 70.87 98.36 86.30 69.57 100 70.00 93.64 80.96 88.10

∆% 0.87 5.23 15.14 4.35 0.00 0.00 1.59 6.57 12.91

4.2. Effect of Differently Integrating Node Similarities

There are different ways to integrate the proposed node similarity components to form the
coupled node similarity. Four combinations are used to obtain CNS: CNS1 = δIa

m × δIe
m × δAS

m , CNS2 =

(δIa
m + δIe

m )× δAS
m , CNS3 = δIa

m × δIe
m + δAS

m , and CNS4 = δIa
m + δIe

m + δAS
m . These CNSs are then fed into

SLPA, BGLL, and K-medoids for community detection.
Figures 3–5 show that CNS1 and CNS3 are better in most cases, e.g., CNS1 gains 42.40%

improvement of NMI over CNS4 on the Lazega data, and CNS3 gains 47.41% improvement over CNS4.
However, we cannot tell which works the best in all cases. Various combinations of the three types of
similarities may lead to different results and sometimes the difference is significant (e.g., NMI between
54.21% and 76.02% on the Lazega data). This will be further explored in our future work.
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(a)NMI

(b)F-Measure

(c)Accuracy

Figure 3. The results of SLPA w.r.t. different CNSs.
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(a)NMI

(b)F-Measure

(c)Accuracy

Figure 4. The results of BGLL w.r.t. different CNSs.



Entropy 2018, 20, 471 15 of 19

(a)NMI

(b)F-Measure

(c)Accuracy

Figure 5. The results of Kmedoids w.r.t. different CNSs.
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4.3. Impact of Varying Network Structure Complexity

We generate nine LFR benchmark networks with N = 100, avgk = 5, maxk = 10, minc = 10,
and maxc = 30, but mu ranging from 0.1 to 0.9 to form networks with different structure complexities.
Three attributes (Attributes 1, 2 and 3) are generated for these LFR networks according to the rules of
synthetic node attributes and the noise level nl = 0.3.

Figure 6 reports the accuracy of the community detection results using BGLL on these networks.
With the increase of mu, the level of separation between the communities decreases and the task of
community detection is more difficult. Therefore, the accuracy of all methods decreases. However,
CNS-based BGLL achieves better results than other similarity methods. Even when mu = 0.9,
considering the complex interactions between node attributes and network structure still plays a
positive role in the community detection process. BGLL based on Cosine and Jaccard similarity
obtain almost the same results, with their two lines overlapping and are also the worst on all nine
LFR networks. This verifies that simply considering common neighbors cannot accurately reveal
their similarity.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

mu

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

Adjacency

Cosine

Jaccard

SMC

CAS

CNS

Figure 6. The results of BGLL w.r.t. different levels of network structure complexity.

4.4. Comparison Against Other Methods

We generate nine LFR benchmark networks with N = 5000, avgk = 5, maxk = 10, minc = 10,
and maxc = 30, but mu ranging from 0.1 to 0.9 to form networks with different structure complexities.
Three attributes (Attributes 1, 2 and 3) are generated for these LFR networks according to the rules of
synthetic node attributes and the noise level nl = 0.3. We compare the results of CNS-based K-medoids
with two other community detection algorithms on attributed networks, e.g., SA-cluster and CODICIL.
The results are shown as Figure 7.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

mu

N
M

I

CODICIL

SA−cluster

CNS−K−medoids

Figure 7. The results of NMI (%) w.r.t. three community detection algorithms on attributed networks.
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From Figure 7, it is observed that the NMI of experimental results on nine different networks
decreases with the increasing of parameter mu and the results of the proposed algorithm are optimal
in most cases.

5. Conclusions

A novel coupled node similarity (CNS) measure is proposed to capture both explicit and implicit
interactions between nodes using network structure and node attribute information in complex
networks. Different levels of couplings in categorically attributed networks are learned, from node
attribute values to nodes and between node attributes and network structure. Empirical analysis
verifies the effectiveness of CNS-based community detection in beating several benchmark similarity
methods, and, involving different node interactions and handling different levels of network structure
complexity, highlights its strengths in terms of whether or not node attributes are involved. However,
at present, our proposed method mainly concentrates on unweighted graphs. In the future, we will
give some rules for the combination of the new and pre-existing weights to handle the weighted
graphs. Our future work will also focus on using non-IID [36] learning on mixed attributed networks
considering the coupling between different types of attributes at the attribute level.
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