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Abstract: In this paper, a noise enhanced binary hypothesis-testing problem was studied for a
variable detector under certain constraints in which the detection probability can be increased
and the false-alarm probability can be decreased simultaneously. According to the constraints,
three alternative cases are proposed, the first two cases concerned minimization of the false-alarm
probability and maximization of the detection probability without deterioration of one by the other,
respectively, and the third case was achieved by a randomization of two optimal noise enhanced
solutions obtained in the first two limit cases. Furthermore, the noise enhanced solutions that satisfy
the three cases were determined whether randomization between different detectors was allowed
or not. In addition, the practicality of the third case was proven from the perspective of Bayes risk.
Finally, numerous examples and conclusions are presented.
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1. Introduction

Stochastic resonance (SR) is a physical phenomenon where noise plays an active role in enhancing
the performance of some nonlinear systems under certain conditions. Since the concept of SR was
first put forward by Benzi et al. in 1981 [1], the positive effect of SR has been widely investigated
and applied in various research fields, such as physics, chemical, biological and electronic, etc. [2–10].
In signal detection theory, it is also called noise enhanced detection [3]. The classical signature of
noise enhanced detection can be an increase in output signal-to-noise ratio (SNR) [11–13] or mutual
information (MI) [14–18], a decrease in Bayes risk [19–21] or probability of error [22], or an increase in
detection probability without increasing the false-alarm probability [23–28].

Studies in recent years indicate that the detection performance of a nonlinear detector in a
hypothesis testing problem can be improved by adding additive noise to the system input or adjusting
the background noise level based on the Bayesian [19], Minimax [20] or Neyman–Pearson [24,25,28]
criteria. In [19], S. Bayram et al. analyzed the noise enhanced M-ary composite hypothesis testing
problem in a restricted Bayesian framework. Specifically, the minimax criterion can be used when the
prior probabilities are unknown. The research results showed that the noise enhanced detection in the
Minimax framework [20] can be viewed as a special case in the restricted Bayesian framework.

Numerous researches on how to increase the detection probability according to the
Neyman–Pearson criterion have been made. In [23], S. Kay showed that for the detection of a
direct current (DC) signal in a Gaussian mixture noise background, the detection probability of a
sign detector can be enhanced by adding a suitable white Gaussian noise under certain conditions.
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A mathematical framework was established by H. Chen et al. in order to analyze the mechanism
of the SR effect on the binary hypothesis testing problem according to Neyman–Pearson criterion
for a fixed detector in [24]. The optimal additive noise that maximizes the detection probability
without decreasing the false-alarm probability and its probability density function (pdf) are derived in
detail. In addition, the conditions sufficing for improvability and non-improvability are given. In [27],
Ashok Patel and Bart Kosko presented theorems and an algorithm to search the optimal or near-optimal
additive noise for the same problem as in [24] from another perspective. In [28], binary noise enhanced
composite hypothesis-testing problems are investigated according to the Max-sum, Max-min and
Max-max criteria, respectively. Furthermore, a noise enhanced detection problem for a variable
detector according to Neyman–Pearson criterion is investigated in [25]. Similar to [24,27,28], it also
only considers how to increase the detection probability but ignores the importance of decreasing the
false-alarm probability.

Few researchers focus on how to reduce the false-alarm probability and there is no evidence to
indicate that the false-alarm probability cannot be decreased by adding additive noise on the premise of
not deteriorating the detection probability. In fact, it is significant to decrease the false-alarm probability
without decreasing the detection probability. In [2], a noise enhanced model for a fixed detector is
proposed, which considers how to use the additive noise to decrease the false-alarm probability and
increase the detection probability simultaneously. However, unfortunately, it does not take into account
the case where the detector is variable. When no randomization exists between different detectors,
we just need to find the most appropriate detector since the optimum solution for each detector can
be obtained straightforwardly by utilizing the results in [2]. On the other hand, if the randomization
between different detectors is allowed, some new noise enhanced solutions can be introduced by the
randomization of multiple detector and additive noise pairs. Therefore, the aim of this paper was to
find the optimal noise enhanced solutions for the randomization case.

Actually, in many cases, although the structure of the detector cannot be altered, some of its
parameters can be adjusted to obtain a better performance. Even in some particular situations, the
structure can also be changed. In this paper, we consider the noise enhanced model established
in [2] for a variable detector, where a candidate set of decision functions can be utilized. Instead of
solving the model directly, three alternative cases are considered. The first two cases are to minimize
the false-alarm probability and maximize the detection probability without deterioration of one by
the other, respectively. When the randomization between the detectors cannot be allowed, the first
two cases can be realized by choosing a suitable detector and adding the corresponding optimal
additive noise. When the randomization between different detectors can be allowed, the optimal noise
enhanced solutions for the first two cases are suitable randomization between the two detectors and
additive noise pairs. Whether the randomization between the detectors is allowed or not, the last case
can be obtained by a convex combination of the optimal noise enhanced solutions for the first two
cases with corresponding weights. In addition, the noise enhanced model also provides a solution to
reduce the Bayes risk for the variable detector in this paper, which is different from the minimization
of Bayes risk under Bayesian criterion in [19] where the false-alarm and detection probabilities are not
of concern.

The remainder of this paper is organized as follows. In Section 2, a noise enhanced binary
hypothesis-testing model for a variable detector is established, which is simplified into three different
cases. In Section 3, the forms of the noise enhanced solutions are discussed. Furthermore, the exact
parameter values of these noise enhanced solutions are determined in Section 4 allowing randomization
between the detectors. Numerous results are presented in Section 5 and the conclusions are provided
in Section 6.

Notation: Lower-case bold letters denote vectors, x is a K-dimensional observation vector;
upper-case hollow letters denote sets, e.g., R denotes a set of real numbers; p(·) is used to denote pdf,
while p(·|·) its corresponding conditional counterpart; φ denotes the decision function, Φ denotes
a set of decision functions; δ(·) denotes the Dirac function; ∗, ∑ ,

∫
, E{·}, min, max and arg
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denote convolution, summation, integral, expectation, minimum, maximum and argument operators,
respectively; inf{·} and sup{·} denote infimum and supremum operators, respectively; ϕ(·; µ, σ2)

denotes a Gaussian pdf with mean µ and variance σ2.

2. Noise Enhanced Detection Model for Binary Hypothesis-Testing

2.1. Problem Formulation

A binary hypothesis-testing problem is considered as follows

Hi : pi(x), i = 0, 1, (1)

where H0 and H1 denote the original and alternative hypotheses, respectively, x is a K-dimensional
observation vector, i.e., x ∈ RK, R denotes a set of real numbers, and pi(x) is the pdf of x under
Hi, i = 0, 1. Let φ(x) represent the decision function, which is also the probability of choosing H1,
and 0 ≤ φ(x) ≤ 1. For a given φ, the original false-alarm probability Px

FA and detection probability Px
D

can be calculated as
Px

FA =
∫
RK

φ(x)p0(x)dx, (2)

Px
D =

∫
RK

φ(x)p1(x)dx. (3)

The new noise modified observation y is obtained by adding an independent additive noise n to
the original observation x such that

y = x + n. (4)

Then the pdf of y under Hi can be formulated as the following convolutions of pi(·) and pn(·),

py(y|Hi) = pn(·) ∗ pi(·) =
∫
RK

pn(n)pi(y− n)dn. (5)

The noise modified false-alarm probability Py
FA,φ and detection probability Py

D,φ for the given φ

can be calculated by

Py
FA,φ =

∫
RK φ(y)py(y

∣∣H0)dy =
∫
RK pn(n)

(∫
RK φ(y)p0(y− n)dy

)
dn

=
∫
RK pn(n)F0,φ(n)dn = En(F0,φ(n))

, (6)

Py
D,φ =

∫
RK

φ(y)py(y
∣∣H1)dy =

∫
RK

pn(n)F1,φ(n)dn = En(F1,φ(n)), (7)

such that
Fi,φ(n) =

∫
RK

φ(y)pi(y− n)dy, i = 0, 1. (8)

From (6) and (7), Py
FA,φ and Py

D,φ are the respective expected values of F0,φ(n) and F1,φ(n) based
on the distribution of the additive noise pn(·). Especially, Px

FA = F0,φ(0) and Px
D = F1,φ(0) for the given

φ according to (8).

2.2. Noise Enhanced Detection Model for a Variable Detector

Actually, although the detector cannot be substituted in many cases, some parameters of the
detectors can be adjusted to achieve a better detection performance, such as the decision threshold.
Even in some particular cases, the structure of the detector can also be altered. Instead of the strictly
fixed φ(·), a candidate set of decision functions Φ is provided to be utilized here. As a result, for a
variable detector, the optimization of detection performance can be achieved by adding a suitable
noise and/or changing the detector. If the randomization between the detectors is allowed, the optimal
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solution of the noise enhanced detection problem would be a combination of multiple decision function
and additive noise pairs.

Under the constraints that Py
FA ≤ Px

FA and Py
D ≥ Px

D, a noise enhanced detection model for a
variable detector is established as follows{

Py
FA = Px

FA − z1 , 0 ≤ z1 ≤ Px
FA

Py
D = Px

D + z2 , 0 ≤ z2 ≤ 1− Px
D

, (9)

where z1 and z2 represent the improvements of false-alarm and detection probabilities, respectively.
Let z be the overall improvement of the detectability. Namely, z is the sum of z1 and z2 such that
z = z1 + z2.

It is obvious that the ranges of z1 and z2 are limited and the maximum values of z1 and z2 cannot
be obtained at the same time. In order to solve the noise enhanced detection model, we can first
consider two limit cases, i.e., the noise enhanced optimization problems of maximizing z1 and z2,
respectively, under the constraints that Py

FA ≤ Px
FA and Py

D ≥ Px
D,. Then a new suitable solution of the

noise enhanced detection model in (9) can be obtained by a convex combination of two optimal noise
enhanced solutions obtained in the two limit cases with corresponding weights. Consequently, the new
noise enhanced solution can always guarantee Py

FA ≤ Px
FA and Py

D ≥ Px
D, and the corresponding value

of z is between the values of z obtained in the two limit cases. The three cases discussed above can be
formulated as below.

(i) When Py
D ≥ Px

D, the minimization of Py
FA is explored such that the maximum achievable z1 is

denoted by zo
1, the corresponding z2 is remarked as z(i)2 and z(i)2 ≥ 0. Thus, the corresponding

false-alarm and detection probabilities can be written as below,{
Py

FA,opt = Px
FA − zo

1

Py
D = Px

D + z(i)2

. (10)

(ii) When Py
FA ≤ Px

FA, the maximum Py
D is searched such that the corresponding z1 and z2 are

denoted by z(ii)1 and zo
2, respectively, where z(ii)1 ≥ 0 and zo

2 is the maximum achievable z2.
The corresponding false-alarm and detection probabilities can be expressed by{

Py
FA = Px

FA − z(ii)1
Py

D,opt = Px
D + zo

2
. (11)

(iii) A noise enhanced solution obtained as a randomization between two optimal solutions of case (i)
and case (ii) with weights η and 1− η, respectively, is applied in this case. Combining (10) and
(11), the corresponding false-alarm and detection probabilities are calculated by Py

FA = Px
FA −

[
ηzo

1 + (1− η)z(ii)1

]
< Px

FA

Py
D = Px

D +
[
ηz(i)2 + (1− η)zo

2

]
> Px

D

. (12)

Naturally, z1 = ηzo
1 + (1− η)z(ii)1 and z2 = ηz(i)2 + (1− η)zo

2. It is obvious that case (iii) is identical to
cases (i) when η = 1, while case (iii) is the same as case (ii) when η = 0. In addition, when η ∈ (0, 1),
more different noise enhanced solutions can be obtained by adjusting the value of η to increase the
detection probability and decrease the false-alarm probabilities simultaneously.

Remarkably, if Py
FA < α and Py

D > β are required, we only need to replace Px
FA and Px

D in this
model with α and β, respectively.
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3. Form of Noise Enhanced Solution under Different Situations

For the noise enhanced detection problem, when the detector is fixed, we only need to consider
how to find the suitable or optimal additive noise. Nevertheless, when the detector is variable, we
also need to consider how to choose a suitable detector. In this section, the noise enhanced detection
problem for the variable detector is discussed for the case where the randomization between different
detectors is allowed or not.

3.1. No Randomization between Detectors

For the case where no randomization between detectors is allowed, only one detector can be
applied for each decision, thereby the noise enhanced detection problem for the variable detector can
be simplified to that for a fixed detector φo. That means the optimal noise enhanced solution is to find
the optimal detector φo from Φ and add the corresponding optimal additive noise. The actual noise
modified false-alarm and detection probabilities can be expressed by Py

FA = Py
FA,φo

and Py
D = Py

D,φo
.

For any φ ∈ Φ, the corresponding zo
1,φ and zo

2,φ can be obtained straightforwardly by utilizing
the results in [2]. Then the optimal detectors corresponding to case (i) and case (ii) can be selected as
φi = argmax

φ∈Φ
zo

1,φ and φii = argmax
φ∈Φ

zo
2,φ. When φi = φii, the optimal detector for case (iii) is selected as

φi. When φi 6= φii, if zφi = zo
1,φi

+ z(i)2,,φi
> zφii = z(ii)1,,φii

+ zo
2,φii

, φi is selected as the optimal detector for
case (iii). Otherwise, φii is selected.

3.2. Randomization between Detectors

For the case where the randomization between different detectors is allowed, multiple detector
and additive noise pairs can be utilized for each decision, thereby the actual noise modified false-alarm
and detection probabilities can be expressed as

Py
FA =

L
∑

i=1
ξiP

y
FA,φi

Py
D =

L
∑

i=1
ξiP

y
D,φi

, (13)

where L ≥ 1 is the number of detectors involved in the noise enhanced solution, Px
FA,φi

and Px
D,φi

are the
respective false-alarm and detection probabilities for φi ∈ Φ, ξi is the probability of φi, and 0 ≤ ξi ≤ 1.

Let f1 = F1,φ(n), then we have n = F−1
1,φ ( f1) and f0 = F0,φ(n) = F0,φ(F−1

1,φ ( f1)) where F−1
1,φ is a

function which maps f1 to n based on function F1,φ. Thus f0 can be a one-to-one or one-to-multiple
function with respect to (w.r.t.) f1, and vice versa. In addition, let U be the set of all pairs of ( f0, f1), i.e.,
U =

{
( f0, f1)

∣∣ f0 = F0,φ(n), f1 = F1,φ(n), n ∈ RK, φ ∈ Φ
}

. On the basis of these definitions, the forms
of the optimal enhanced solutions for case (i) and case (ii) can be presented in the following theorem.

Theorem 1. The optimal noise enhanced solution for case (i) (case (ii)) is a randomization of at most two detectors
and discrete vector pairs, i.e.,[φ1, n1] and [φ2, n2] with the corresponding probabilities. The corresponding proof
is presented in Appendix A and omitted here.

4. Solutions of the Noise Enhanced Model with Randomization

In this section, we will explore and find the optimal enhanced solutions corresponding to cases (i)
and (ii), then achieve case (iii) through utilizing the solutions of cases (i) and (ii). From (8), f0 = F0,φ(n)
and f1 = F1,φ(n) can be treated as the false-alarm and detection probabilities, respectively, which are
obtained by choosing a suitable φ ∈ Φ and adding a discrete vector n to x. Thus we can find the
minimum f0 marked as F0m and the maximum f1 denoted by F1M from the set U. Then realizations of
the case (i) and case (ii) can start with F0m and F1M, respectively. A more detailed solving process is
given as follows.
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4.1. The Optimal Noise Enhanced Solution for Case (i)

In this subsection, the main goal is to determine the exact values of two detectors and constant
vector pairs in the optimal noise enhanced solution for case (i).

Define Γφ( f1) = inf( f0 : F1,φ(n) = f1) and Γ( f1) = inf
φ∈Φ

(Γφ( f1)). Namely, Γφ( f1) and Γ( f1) are the

minimum f0 corresponding to a given f1 for a fixed φ and for all φ ∈ Φ, respectively. According to the
definitions of F0m and Γ( f1), F0m is rewritten as F0m = min(Γ( f1)), and the maximum f1 corresponding
to F0m can be denoted by f ∗1 = argmax

f1
(Γ( f1) = F0m). Combining with the location of f ∗1 and Theorem

1, we have the following theorem.

Theorem 2. If f ∗1 ≥ Px
D, then Py

FA,opt = F0m < Py
FA and Py

D = f ∗1 ≥ Px
D, the minimum achievable Py

FA is
obtained by choosing the detector φ1o and adding a discrete vector n1o. If f ∗1 < Px

D, the optimal noise enhanced
solution that minimizes Py

FA is a randomization of two detectors and discrete vector pairs, i.e., [φ11, n11] and
[φ12, n12] with probabilities ζ and 1− ζ, and the corresponding Py

D = Px
D. The corresponding proof is given

in Appendix B.

Obviously, when f ∗1 ≥ Px
D, the detector φ1o and constant vector n1o that minimizes Py

FA can be

determined by F0,φ1o (n1o) = F0m and F1,φ1o (n1o) = f ∗1 . Moreover, zo
1 = Px

FA − F0m and z(i)2 = f ∗1 − Px
D.

In order to determine the exact values of [φ11, n11], [φ12, n12] and ζ for the case of f ∗1 < Px
D, an

auxiliary function H( f1, c) = Γ( f1) − c f1 is provided. There exists at least one c0 > 0 that makes
H( f1, c) obtain the same minimum value marked as υ in two intervals I1 = [0, Px

D] and I2 = [Px
D, 1].

The maximum f1 corresponding to υ in I1 and I2 are expressed by f11(c0) and f12(c0), respectively. As
a result, the optimal false-alarm probability Py

FA,opt and the corresponding detection probability Py
D can

be calculated as
Py

FA,opt = ζF0,φ11(n11) + (1− ζ)F0,φ12(n12) < Py
FA, (14)

Py
D = ζF1,φ11(n11) + (1− ζ)F1,φ12(n12) = Px

D, (15)

where ζ = ( f12(c0)− Px
D)/( f12(c0)− f11(c0)), φ11 and n11 are determined by F0,φ11(n11) = υ +

c0 f11(c0) and F1,φ11(n11) = f11(c0), φ12 and n12 are determined by F0,φ12(n12) = υ + c0 f12(c0) and

F1,φ12(n12) = f12(c0). As a result, zo
1 = Px

FA − Py
FA,opt and z(i)2 = 0.

4.2. The Optimal Noise Enhanced Solution for Case (ii)

The focus of this subsection is to determine the exact values of the parameters in the optimal noise
enhanced solution for case (ii).

Define Gφ( f0) = sup( f1 : F0,φ(n) = f0) and G( f0) = sup
φ∈Φ

Gφ( f0), such that Gφ( f0) and G( f0) are

the maximum f1 corresponding to a given f0 for a fixed φ and all φ ∈ Φ, respectively. In addition,
F1M = max(G( f0)) since F1M denotes the maximum f1, and the minimum f0 corresponding to F1M
can be denoted by f ∗0 = argmin

f0
(G( f0) = F1M). Combined with the location of f ∗0 and Theorem 1, the

following theorem is obtained.

Theorem 3. If f ∗0 ≤ Px
FA, then Py

D,opt = F1M > Px
D and Py

FA = f ∗0 , the maximum achievable Py
D in case (i) is

obtained by choosing the detector φ2o and adding a constant vector n2o to x. Otherwise, the maximization of Py
D

in case (ii) is obtained by a randomization of two pairs of [φ21, n21] and [φ22, n22] with the probabilities λ and
1− λ, respectively, and the corresponding Py

FA = Px
FA. The corresponding proof is similar to that of Theorem 2

and omitted.
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According to Theorem 3, when f ∗0 ≤ Px
FA, the detector φ2o and constant vector n2o that maximizes

Py
D in case (ii) is determined by F0,φ2o (n2o) = f ∗0 and F1,φ2o (n2o) = F1M. Also, z(ii)1 = Px

FA − f ∗0 and
zo

2 = F1M − Px
D.

In addition, in order to determine the exact values of [φ21, n21], [φ22, n22] and λ that maximizes
Py

D when f ∗0 > Px
FA, we define an auxiliary function that J( f0, k) = G( f0)− k f0. There is at least one

k0 > 0 that makes J( f0, k) obtain the same maximum value denoted by ν in two intervals T1 = [0, Px
FA]

and T2 = [Px
FA, 1]. The minimum f0 corresponding to ν in T1 and T2 are expressed by f01(k0) and

f02(k0), respectively. As a consequence, the optimal detection probability Py
D,opt and the corresponding

false-alarm probability Py
FA are recalculated as

Py
D,opt = λF1,φ21(n21) + (1− λ)F1,φ22(n22) > Px

D, (16)

Py
FA = λF0,φ21(n21) + (1− λ)F0,φ22(n22) = Px

FA, (17)

where λ = ( f02(k0)− Px
FA)/( f02(k0)− f01(k0)), φ21 and n21 are determined by the two equations

F0,φ21(n21) = f01(k0) and F1,φ21(n21) = ν + k0 f01(k0), φ22 and n22 are determined by F0,φ22(n22) =

f02(k0) and F1,φ22(n22) = ν + k0 f02(k0). Then we have z(ii)1 = 0 and zo
2 = Py

D,opt − Px
D.

4.3. The Suitable Noise Solution for Case (iii)

According to the analyses in Sections 4.1 and 4.2, the model in (9) can be achieved by choosing
[φ1o, n1o] if f ∗1 > Px

D and/or choosing [φ2o, n2o] if f ∗0 < Px
FA. When f ∗1 > Px

D and f ∗0 < Px
FA hold at

the same time, the model can also be achieved by a randomization of two detectors and noise pairs
[φ1o, n1o] and [φ2o, n2o] with probabilities η and 1− η, respectively, where 0 ≤ η ≤ 1.

If f ∗1 ≤ Px
D and f ∗0 ≥ Px

FA, the model in (9), i.e., case (iii) can be achieved by the randomization
of the two optimal noise enhanced solutions for case (i) and case (ii) with probabilities η and
1 − η, respectively, where 0 < η < 1. In other words, case (iii) can be achieved by a suitable
randomization of [φ11, n11], [φ12, n12], [φ21, n21], and [φ22, n22] with probabilities ηζ, η(1− ζ), (1− η)λ,
and (1− η)(1− λ), respectively, as shown in Table 1.

Table 1. The probability of each component in the suitable noise enhanced solution for case (iii).

[φ, n] [φ11, n11] [φ12, n12] [φ21, n21] [φ22, n22]

probability ηζ η(1− ζ) (1− η)λ (1− η)(1− λ)

The corresponding false-alarm and detection probabilities are calculated as

Py
FA = ηζF0,φ11(n11) + η(1− ζ)F0,φ12(n12) + (1− η)Px

FA < Px
FA, (18)

Py
D = ηPx

D + (1− η)λF1,φ21(n21) + (1− η)(1− λ)F1,φ22(n22) > Px
D, (19)

where 0 ≤ ζ ≤ 1, 0 ≤ λ ≤ 1 and 0 < η < 1. Especially, η = 1 denotes case (i) and η = 0 denotes
case (ii). It is clearly that different available false-alarm and detection probabilities can be obtained by
adjusting the value of η under the constraints that Py

FA ≤ Px
FA and Py

D > Px
D.

From the perspective of Bayesian criterion, the noise modified Bayes risk can be expressed in the
form of a false-alarm and detection problem such that

R′ = p(H0)C00 + p(H1)C01 + p(H0)(C10 − C00)Py
FA − p(H1)(C01 − C11)Py

D. (20)
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where p(Hi) is the prior probability of Hi, Cji is the cost of choosing Hj when Hi is true, i, j = 0, 1,
and Cji > Cii if j 6= i. According to case (iii), the improvement ∆R of Bayes risk can be obtained by

∆R = R− R′ = p(H0)(C10 − C00)z1 + p(H1)(C01 − C11)z2 < 0, (21)

where R is the Bayes risk of the original detector. As a result, case (iii) provides a solution to decrease
the Bayes risk.

When p(Hi) are unknown and Cji are known, an alternative method considers the Minimax
criterion, i.e., min{max(R′0, R′1)}, where R′0 = C00 + (C10 − C00)Py

FA and R′1 = C01 − (C01 − C11)Py
D

are the conditional risks of choosing H0 and H1, respectively, for the noise modified detector.
Accordingly, case (i) and case (ii) also provide the optimal noise enhanced solution to minimize
R′0 and R′1, respectively, for the variable case.

The minimization of Bayes risk for a variable detector has also been discussed in [25]. Compared
to this paper, the minimum Bayes risk is obtained without considering the false-alarm and detection
probabilities, which is the biggest difference between reference [25] and our work. In addition,
the minimization of Bayes risk in [25] is studied only under uniform cost assignment (UCA), i.e.,
C10 = C01 = 1 and C00 = C11 = 0, when p(Hi) is known.

5. Numerical Results

In this section, numerical detection examples are given to verify the theoretical conclusions
presented in the previous sections. A binary hypothesis-testing problem is given by{

H0 : x[i] = ω[i]
H1 : x[i] = A + ω[i]

, (22)

where x is a K-dimensional observation vector, i = 0, . . . , K− 1, A > 0 is a known signal and ω[i] are
i.i.d. symmetric Gaussian mixture noise samples with the pdf

pω(ω) = 0.5ϕ(ω;−µ, σ2) + 0.5ϕ(ω; µ, σ2), (23)

where ϕ(ω; µ, σ2) = (1/
√

2πσ2) exp(−(ω− µ)2/2σ2). Let µ = 3, A = 1, and σ = 1. A general
decision process of a suboptimal detector is expressed as

T(x)

H1

>

<

H0

γ, (24)

where γ is the decision threshold.

5.1. A Detection Example for K = 1

In this subsection, suppose that K = 1 and

T(x) = x. (25)

The corresponding decision function is

φ(x) =

{
1, x ≥ γ

0, x < γ
. (26)
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When we add an additive noise n to x, the noise modified decision function can be written as

φ(y = x + n) =

{
1, x + n ≥ γ

0, x + n < γ
=

{
1, x + (n− γ) ≥ 0
0, x + (n− γ) < 0

(27)

It is obvious from (27) that the detection performance obtained by setting the threshold as γ

and adding a noise n is identical with that achieved by keeping the threshold as zero and adding a
noise n− γ. As a result, the optimal noise enhanced performances obtained are the same for different
thresholds. That is also to say, the randomization between different thresholds cannot improve the
optimum performance further and only the non-randomization case should be considered in this
example. According to (8), we have

F0,φ(n) =
∫ ∞

−∞
φ(y)p0(y− n)dn =

1
2

Q(
γ− n− µ

σ0
) +

1
2

Q(
γ− n + µ

σ0
), (28)

F1,φ(n) =
∫ ∞

−∞
φ(y)p1(y− n)dy =

1
2

Q(
γ− n− µ− A

σ0
) +

1
2

Q(
γ− n + µ− A

σ0
), (29)

where Q(x) =
∫ +∞

x
1√
2π

exp(− t2

2 )dt. Based on the analysis on Equation (8), the original false-alarm

and detection probabilities are Px
FA,φ = F0,φ(0) = 1

2 Q( γ−µ
σ0

) + 1
2 Q( γ+µ

σ0
) and Px

D,φ = F1,φ(0) =

1
2 Q( γ−µ−A

σ0
) + 1

2 Q( γ+µ−A
σ0

), respectively.
From the definition of function Q, F1,φ(n), and F0,φ(n) are monotonically increasing with n and

F1,φ(n) > F0,φ(n) for any n. In addition, both F1,φ(n) and F0,φ(n) are one-to-one mapping functions
w.r.t. n. Therefore, we have Γφ( f1) = F0,φ(F−1

1,φ ( f1)) = F0,φ(n) = f0 and Gφ( f0) = F1,φ(F−1
0,φ ( f0)) =

F1,φ(n) = f1 for any φ′. Furthermore, Γ( f1) = Γφ( f1) and G( f0) = Gφ( f0). The relationship between
f01,φ(k0) and f11,φ(c0) is one-to-one, as well as that between f02,φ(k0) and f12,φ(c0). As a result,
f01,φ(k0) = f01(k0), f11,φ(c0) = f11(c0), f02,φ(k0) = f02(k0), and f12,φ(c0) = f12(c0) for any φ. That
is to say, n11 = n21 and n12 = n22, where (n11, n12) and (n21, n22) are the respective optimal noise
components for case (i) and case (ii) for any γ. From [2,24], we have

n11 = n21 = γ− µ− 0.5A, (30)

n12 = n22 = γ + µ + 0.5A. (31)

Then the pdf of the optimal additive noise corresponding to case (i) and case (ii) for the detector
given in (26) can be expressed as

popt
1,φ(n) = ζδ(n− n11) + (1− ζ)δ(n− n12), (32)

popt
2,φ(n) = λδ(n− n21) + (1− λ)δ(n− n22), (33)

where ζ = (F1,φ(n12)− Px
D,γ)/(F1,φ(n12)− F1,φ(n11)) and λ = (F0,φ(n22)− Px

FA,γ)/
(F0,φ(n22)− F0,φ(n21)). Thus the suitable additive noise for case (iii) can be given by

p3,φ(n) = ηpopt
1,φ(n) + (1− η)popt

2,φ(n), (34)

where 0 ≤ η ≤ 1. In this example, let η = 0.5. The false alarm and detection probabilities for the three
cases versus different γ are shown in Figure 1.
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Figure 1. PFA and PD as functions of γ for the original detector and the three cases where µ = 3, A = 1,
and σ = 1

As plotted in Figure 1, with the increase of γ, the false alarm and detection probabilities for
the three cases and the original detector gradually decrease from 1 to 0, and the noise enhanced
phenomenon only occurs when γ ∈ (−2.5, 3.5). Namely, the detection performance can be improved
by adding additive noise when the value of γ is between −2.5 and 3.5. When γ ∈ (−2.5, 3.5),
f11(c0) < Px

D,φ < f12(c0) and f01(k0) < Px
FA,φ < f02(k0), the corresponding 0 < ζ < 1 and 0 < λ < 1,

thereby the additive noises as shown in (32) and (33) exist to improve the detection performance.
Furthermore, the receiver operating characteristic (ROC) curves for the three cases and the original
detector are plotted in Figure 2. The ROC curves for the three cases overlap with each other exactly,
and the detection probability can be increased by adding additive noise only when the false-alarm
probability is between 0.1543 and 0.6543.
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Figure 2. Receiver operating characteristic (ROC) curves for the original detector and the three cases
where µ = 3, A = 1, and σ = 1.

Given Cji and the prior probability p(Hi), i, j = 0, 1, the noise enhanced Bayes risk obtained
according to case (iii) is given by

Riii,,φ = R− [p(H0)(C10 − C00)ηzo
1,φ + p(H1)(C01 − C11)(1− η)zo

2,φ], (35)
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where zo
1,φ = Px

FA,φ −
∫

p3,φ(n)F0,φ(n)dn and zo
2,φ =

∫
p3,φ(n)F1,φ(n)dn − Px

D,φ. Let η = 0.5, C10 =

C01 = 1 and C00 = C11 = 0, then the Bayes risk of the original detector is calculated as

R = p(H0)Px
FA − p(H1)(1− Px

D). (36)

Figures 3 and 4 depict the Bayes risks of the noise enhanced and the original detectors versus
different γ for p(H0) = 0.45 and 0.55, respectively.

From Figures 3 and 4, we can see that when the decision threshold γ is very small, the Bayes
risks of the noise enhanced and the original detectors are close to p(H0). As illustrated in Figures 3
and 4, only when γ ∈ (−2.5, 3.5), can the Bayes risk be decreased by adding additive noise. With the
increase of γ, the difference between the Bayes risks of the noise enhanced detector and the original
detector first increases and then decreases to zero, and reaches the maximum value when γ = 0.5.
If the decision threshold γ is large enough, the Bayes risks for the two detectors are close to p(H1) =

1− p(H0). In addition, there is no link between the values of p(H0) and the possibility of the detection
performance can or cannot be improved via additive noise, which is consistent with (35).
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5.2. A Detection Example for K = 2

In this example, suppose that

T(x) =
1
K

K−1

∑
i=0

S(x[i]), (37)

where S(x[i]) =

{
1, x[i] ≥ 0
0, x[i] < 0

. When K = 2, we have

T(x) =
1
2

1

∑
i=0

(S(x[i])) =


1, S(x[0]) ≥ 0 and S(x[1]) ≥ 0
0.5, S(x[0]) ≥ 0 or S(x[1]) ≥ 0
0, S(x[0]) < 0 and S(x[1]) < 0

. (38)

It is obvious that T(x) > γ when γ < 0 and T(x) < γ when γ > 1, which implies the
detection result is invalid if γ < 0 or γ > 1. In addition, the detection performance is the same
for γ ∈ (0, 0.5] (γ ∈ (0.5, 1]). Therefore, suppose that two alternative thresholds are γ = 1 and γ = 0.5,
the corresponding decision functions are denoted by φ1 and φ2, respectively. Let n = (n1, n2)

T ,
then we have

Fi,φ1(n) = Fi,φ(n1)Fi,φ(n2), (39)

Fi,φ2(n) = 1− (1− Fi,φ(n1))(1− Fi,φ(n2)), (40)

where i = 0, 1, φ(·) is the decision function given in (26) with γ = 0. Based on the theoretical analysis
in Section 4, Γφi ( f1) = min(F0,φi (n) : F1,φi (n) = f1), and Gφi ( f0) = max(F1,φi (n) : F0,φi (n) = f0).
Furthermore, Γ( f1) = min(Γφ1( f1), Γφ2( f1)) and G( f0) = max(Gφ1( f0), Gφ2( f0)).

Through a series of analyses and calculations, it is true that Γφ1( f1) = min(F2
0,φ(n1), F0,φ(n2)),

where n1 and n2 are determined by F2
1,φ(n1) = f1 and F1,φ(n2) = f1, respectively. Similarly, Γφ2( f1) =

min(1− (1− F0,φ(n1))
2, 1− (1− F0,φ(n2))), where n1 and n2 are determined by 1− (1− F1,φ(n1))

2 =

f1 and 1− (1− F1,φ(n2)) = f1, respectively. Moreover, Γ( f1) = min(F2
0,φ(n1), 1 − (1− F0,φ(n2))

2)

where F2
1,φ(n1) = 1− (1− F1,φ(n2))

2 = f1.
On the other hand, Gφ1( f0) = max(F2

1,φ(n1), F1,φ(n2)) where n1 and n2 are determined by

F2
0,φ(n1) = f0 and F0,φ(n2) = f0. Moreover, Gφ2( f0) = max(1− (1− F1,φ(n1))

2, 1− (1− F1,φ(n2))),

where 1 − (1− F0,φ(n1))
2 = f0 and 1 − (1 − F0,φ(n2)) = f0. As a consequence, G( f0) =

max(F2
1,φ(n1), 1− (1− F1,φ(n2))

2) where F2
0,φ(n1) = 1− (1− F0,φ(n2))

2 = f0.

The minimum achievable false-alarm probabilities for φ1 and φ2, i.e., Py
FA,φ1

and Py
FA,φ2

, can be
obtained, respectively, by utilizing the relationships between Γφ1( f1), Γφ2( f1), and Γ( f1) as depicted
in Figure 5. Then Figures 6–8 are given to illustrate the relationship between PFA and PD clearly
under two different decision thresholds. As illustrated in Figure 6, for the case of threshold γ = 1,
the false-alarm probability can be decreased by adding an additive noise when 0.2994 ≤ PD ≤ 0.7153.
Correspondingly, the false-alarm probability can be decreased by adding an additive noise only when
0.5416 ≤ PD ≤ 0.8867 for γ = 0.5 as shown in Figure 7. The minimum false-alarm probability for a
given PD without threshold randomization is Py

FA,m = min(Py
FA,φ1

, Py
FA,φ2

), which is plotted in Figure 8
and represented by the legend “NRD”.

As illustrated in Figure 8, when the randomization between decision thresholds is allowed,
the noise modified false-alarm probability can be decreased further compared with the case
where no randomization between decision thresholds is allowed for 0.5091 ≤ PD ≤ 0.7862.
Actually, the minimum achievable noise modified false-alarm probability is obtained by a suitable
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randomization between two threshold and discrete vector pairs, i.e., {γ = 0.5, n11 = [−3.75,−3.75]}
and {γ = 1, n12 = [2.75, 2.75]}, with probabilities ζ and 1− ζ, respectively, such that

ζ =
0.7862− PD

0.2771
. (41)
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Remarkably, the minimum false-alarm probability obtained in the “NRD” case is always superior
to the original false-alarm probability for any PD.

If the randomization between different decision thresholds is not allowed, the detection probability
can be increased by adding additive noise when 0.1133 ≤ PFA ≤ 0.4281 and 0.2501 ≤ PFA ≤ 0.7006
for γ = 1 and γ = 0.5, respectively. When the randomization is allowed, for 0.2164 ≤ PFA ≤ 0.4909,
the maximum achievable detection probability can be obtained by a randomization of two pairs
{γ = 0.5, n21 = [−3.75,−3.75]} and {γ = 1, n22 = [2.75, 2.75]} with the corresponding weights λ =
0.4909−PFA

0.2745 and 1− λ.
The probabilities of false-alarm and detection for different σ of the original detector and cases

(i), (ii), and (iii) when the decision threshold γ = 1 and γ = 0.5 are compared in Figures 9 and 10,
respectively. As shown in Figure 9a,b, the original PFA maintains 0.25 for any σ and the original PD is
between 0.25 and 0.3371 when γ = 1. As plotted in Figure 10a,b, the original PFA maintains 0.75 and
the original PD is between 0.75 and 0.8242 when γ = 0.5.Entropy 2018, 20, x  15 of 22 
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Figure 9. PFA and PD as functions of σ for the original detector and the three cases without
randomization existing between thresholds when γ = 1 for µ = 3, A = 1, and η = 0.5.
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Figure 10. PFA and PD as functions of σ for the original detector and the three cases without
randomization exisingt between thresholds when γ = 0.5 for µ = 3, A = 1, and η = 0.5.

According to the analyses above, the original PFA and PD obtained when γ = 1 and γ = 0.5 are
in the interval where the noise enhanced detection could occur. When the randomization between
the thresholds is not allowed, according to the theoretical analysis, the optimal solutions of the noise
enhanced detection performance for both case (i) and (ii) are to choose a suitable threshold and add
the corresponding optimal noise to the observation. After some comparisons, the suitable threshold
is just the original detector under the constraints in which Py

FA ≤ Px
FA and Py

D ≥ Px
D in this example.

Naturally, case (iii) can be achieved by choosing the original detector and adding the noise which is a
randomization between two optimal additive noises obtained in case (i) and case (ii). The details are
plotted in Figures 9 and 10 for the original threshold γ = 1 and 0.5, respectively.

From Figures 9 and 10, it is clear that the smaller the σ, the smaller the false-alarm probability
and the larger the detection probability. When σ is close to 0, the false-alarm probability obtained
in case (i) is close to 0 and the detection probability obtained in case (ii) is close to 1. As shown
in Figure 9, compared to the original detector, the noise enhanced false-alarm probability and the
detection probability obtained in case (iii) are decreased by 0.125 and increased by 0.35, respectively,
when σ is close to 0 where γ = 1 and η = 0.5. As shown in Figure 10, compared to the original
detector, the noise enhanced false-alarm probability obtained in case (iii) is decreased by 0.375 and
the corresponding detection probability is increased by 0.125, respectively, when γ = 0.5 and η = 0.5.
With the increase of σ, the improvements of false-alarm and detection probabilities decrease gradually
to zero as shown in Figures 9 and 10. When σ > 2.81, because the pdf of pω(ω) gradually becomes a
unimodal noise, the detection performance cannot be enhanced by adding any noise.

After some calculations, we know that under the constraints that Py
FA ≤ Px

FA and Py
D ≥ Px

D,
the false-alarm probability cannot be decreased further by allowing randomization between the
two thresholds compared to the non-randomization case when the original threshold is γ = 1.
It means that even if randomization is allowed, the minimum false-alarm probability in case (i)
is obtained by choosing threshold γ = 1 and adding the corresponding optimal additive noise,
and the achievable minimum false-alarm probability in case (i) is the same as that plotted in Figure 9.
On the contrary, the detection probability obtained under the same constraints when randomization
exists between different thresholds is greater than that obtained in the non-randomization case for
σ < 2.3, which is shown in Figure 11. Based on the analysis in Section 3.2, the maximum detection
probability in case (ii) can be achieved by a suitable randomization of the two decision thresholds
and noise pairs {γ = 0.5, n21 = [n21, n21]} and {γ = 1, n22 = [n22, n22]} with probabilities λ and 1− λ,
respectively, where λ = (F0,φ1(n22)− F0,φ1(0))/(F0,φ1(n22)− F0,φ2(n21)). Such as n21 = [−4.25,−4.25],
n22 = [2.15, 2.15], and λ = 0.8966 when σ = 1.8. In addition, Figure 11 also plots the Px

D under the
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Likelihood ratio test (LRT) based on the original observation x. It is obvious that the PD obtained
under LRT is superior to that obtained in case (ii) for each σ. Although the performance of LRT is
much better than the original and noise enhanced decision solutions, its implementation is much
more complicated.
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Naturally, case (iii) can also be achieved by randomization of the noise enhanced solution for case
(i) and the new solution for case (ii) with the probabilities η and 1− η, respectively. Figure 12 compares
the probabilities of false-alarm and detection obtained by the original detector, LRT and case (iii) when
randomization can or cannot be allowed where η = 0.5 and the original threshold is γ = 1. As shown
in Figure 12, compared to the non-randomization case, the detection probability obtained in case (iii) is
further improved for σ < 2.3 by allowing randomization of the two thresholds while the false-alarm
probability cannot be further decreased. Moreover, the PFA of LRT increases when σ increases and will
be greater than that obtained in case (iii) when σ > 0.66 and the original detector when σ > 1.Entropy 2018, 20, x  17 of 22 
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Figure 13 illustrates the Bayes risks for the original detector, LRT and noise enhanced decision
solutions when the randomization between detectors can or cannot be allowed for different η,
where η = 1, η = 0, and η = 0.5 denote case (i), case (ii), and case (iii), respectively. As plotted
in Figure 13, the Bayes risks obtained in case (i), (ii), and (iii) are smaller than the original detector,
and the Bayes risk of LRT is the smallest one. Furthermore, the Bayes risk obtained in the randomization
case is smaller than that obtained in the non-randomization case.
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As shown in Figure 14, when the original threshold γ = 0.5, under the constraints that
Py

FA ≤ Px
FA and Py

D ≥ Px
D, the false-alarm probability can be greatly decreased by allowing

randomization between different thresholds compared to the non-randomization case when σ < 1.1.
In addition, LRT performs best on PFA. Accordingly, the minimum false-alarm probability in case
(i) is obtained by a suitable randomization of {γ = 0.5, n21 = [n21, n21]} and {γ = 1, n22 = [n21, n22]}
with probabilities ζ and 1− ζ, respectively, where ζ = (F1,φ1(n22)− F1,φ1(0))/(F1,φ1(n22)− F1,φ2(n21)).
Through some simple analyses, under the same constraints, the detection probability obtained when
there exists randomization between different thresholds cannot be greater than that obtained in
the non-randomization case. Thus the maximum detection probability in case (ii) is the same as
that illustrated in Figure 10, which is achieved by choosing a threshold γ = 0.5 and adding the
corresponding optimal additive noise to the observation.Entropy 2018, 20, x  18 of 22 
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Case (iii) can also be achieved by the randomization of the noise enhanced solutions for case
(i) and case (ii) with the probabilities η and 1− η, respectively. As shown in Figure 15, compared to
the non-randomization case, the false-alarm probability obtained in case (iii) is greatly improved by
allowing randomization of the two thresholds while the detection probability cannot be increased
when the original threshold γ = 0.5. Although the PFA of LRT is always superior to that obtained in
other cases, the PD of LRT will be smaller than that obtained by the original detector and case (iii)
when σ increases to a certain extent.
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Figure 15. Comparison of PFA and PD as functions of σ for the original detector, LRT and case (iii)
with or without randomization between thresholds, respectively, when µ = 3, A = 1, and the original
threshold γ = 0.5.

Figure 16 illustrates the Bayes risks for the original detector, LRT and the noise enhanced decision
solutions for different η. Also, η = 1, η = 0, and η = 0.5 denote case (i), case (ii) and case (iii),
respectively. As plotted in Figure 16, the Bayes risks obtained by the three cases are smaller than the
original detector for σ < 2.81. The smallest one of the three is achieved in case (i) if σ < 0.7 or case (ii)
if 0.7 < σ < 2.81 when no randomization exists between the thresholds, while it is achieved in case
(i) if σ < 1.1 or case (ii) if 1.1 < σ < 2.81 when the randomization between the thresholds is allowed.
Obviously, the Bayes risk obtained in the randomization case is not greater than that obtained in the
non-randomization case. In addition, LRT achieves the minimum Bayes risk when σ < 1.83 and the
maximum Bayes risk when σ > 2.12.Entropy 2018, 20, x  19 of 22 
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As analyzed in 5.1, if the structure of a detector does not change with the decision thresholds, the
optimal noise enhanced detection performances for different thresholds are the same, which can be
achieved by adding the corresponding optimal noise. In such case, no improvement can be obtained
by allowing randomization between different decision thresholds. On the other hand, if different
thresholds correspond to different structures as shown in (39) and (40), randomization between
different decision thresholds can introduce new noise enhanced solutions to improve the detection
performance further under certain conditions.

6. Conclusions

In this study, a noise enhanced binary hypothesis-testing problem for a variable detector
was investigated. Specifically, a noise enhanced model that can increase the detection probability
and decrease the false-alarm probability simultaneously was formulated for a variable detector.
In order to solve the model, three alternative cases were considered, i.e., cases (i), (ii), and (iii).
First, the minimization of the false-alarm probability was achieved without decreasing the detection
probability in case (i). For the case where the randomization between different detectors is allowed,
the optimal noise enhanced solution of case (i) was proven as a randomization of at most two
detectors and additive noise pairs. Especially, no improvement could be introduced by allowing
the randomization between different detectors under certain conditions. Furthermore, the maximum
noise enhanced detection probability was considered in case (ii) without increasing the false-alarm
probability, and the corresponding optimal noise enhanced solution was explored regardless of whether
the randomization of detectors is allowed. In addition, case (iii) was achieved by the randomization
between two optimal noise enhanced solutions of cases (i) and (ii) with the corresponding weights.
Remarkably, numerous solutions for increasing the detection probability and decreasing the false-alarm
probability simultaneously are provided by adjusting the weights.

Moreover, the minimization of the Bayes risk based on the noise enhanced model was discussed
for the variable detector. The Bayes risk obtained in case (iii) is between that obtained in case (i) and
case (ii). Obviously, the noise enhanced Bayes risks obtained in the three cases are smaller than the
original one without additive noise. It is significant to investigate case (i) and case (iii), especially for
the situation where the result of case (ii) is not ideal or even not exists. Such as shown in Figure 16,
the Bayes risks obtained in cases (i) and (iii) are smaller than that obtained in case (ii) under certain
conditions. Studies on cases (i) and (iii) further supplement case (ii), and provide a more common
noise enhanced solution for the signal detection. Finally, through the simulation results, the theoretical
analyses were proven.

As a future work, the noise enhanced detection problem can be researched according
to the maximum likelihood (ML) or the maximum a posteriori probability (MAP) criterion.
Also, the theoretical results can be extended to the Rao test, which is a simpler alternative to the
generalized likelihood ratio test (GLRT) [29], and applied to a stable system, a spectrum sensing
problem in cognitive radio systems, and a decentralized detection problem [30–32]. In addition,
a generalized noise enhanced parameter estimation problem based on the minimum mean square
error (MMSE) criterion is another issue worth studying.
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Appendix A

Proof of Theorem 1. Due to A, U is a two-dimensional linear space. Further, suppose that B is the
convex hull of U. It can be testified that B is also the set of all possible (Py

FA, Py
D). Generally, the optimal

pairs of (Py
FA, Py

D) for case (i) and (ii) can only exist on C, i.e., the boundary of B. Furthermore, according
to the Caratheodory’s Theorem, an arbitrary point on C can be denoted by a convex combination of no
more than two elements in U. Consequently, case (i) and case (ii) can be achieved by a randomization
of at most two detectors and discrete vector pairs. �

Appendix B

Proof of Theorem 2. If f ∗1 ≥ Px
D, there must exist a detector φ1o and a constant vector n1o must satisfy

Py
FA,opt = F0,φ1o (n1o) = F0m < Py

FA and Py
D = F1,φ1o (n1o) = f ∗1 ≥ Px

D. Thus, the minimum achievable

Py
FA is obtained by choosing the detector φ1o and adding a discrete vector n1o to x. For the case of

f ∗1 < Px
D, the optimal noise enhanced solution that minimizes Py

FA is a randomization of two detectors
and discrete vector pairs, i.e., [φ11, n11] and [φ12, n12] with probabilities ζ and 1− ζ directly according
to Theorem 1. In addition, the contradiction method can be used here to prove Py

D = Px
D. First,

suppose the minimum false-alarm probability Py
FA,opt is obtained when Py

D,opt = d < Px
D with a noise

enhanced solution {E[φ, n]}opt. Then we suppose another valid solution which is a randomization
of {E[φ, n]}opt and [φ1o, n1o] with probabilities t = (Px

D − d)/( f ∗1 − d) and 1− t. Then the new noise
modified detection and false-alarm probabilities can be calculated as

Py
D =

Px
D − d

f ∗1 − d
f ∗1 +

f ∗1 − Px
D

f ∗1 − d
d = Px

D, (42)

Py
FA =

Px
D − d

f ∗1 − d
F0m +

f ∗1 − Px
D

f ∗1 − d
Py

FA,opt < Py
FA,opt, (43)

where the last inequality holds from F0m < Py
FA,opt. Therefore, Py

D,opt = Px
D since the result in (A2)

contracts the definition of Py
FA,opt.�
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