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Abstract: The calculation of the entropy production rate within an operational high temperature solid
oxide fuel cell (SOFC) is necessary to design and improve heating and cooling strategies. However,
due to a lack of information, most of the studies are limited to empirical relations, which are not in
line with the more general approach given by non-equilibrium thermodynamics (NET). The SOFC
1D-model presented in this study is based on non-equilibrium thermodynamics and we parameterize
it with experimental data and data from molecular dynamics (MD). The validation of the model
shows that it can effectively describe the behavior of a SOFC at 1300 K. Moreover, we show that
the highest entropy production is present in the electrolyte and the catalyst layers, and that the
Peltier heat transfer is considerable for the calculation of the heat flux in the electrolyte and cannot be
neglected. To our knowledge, this is the first validated model of a SOFC based on non-equilibrium
thermodynamics and this study can be extended to analyze SOFCs with other solid oxide electrolytes,
with perovskites electrolytes or even other electrochemical systems like solid oxide electrolysis
cells (SOECs).
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1. Introduction

Fuel cells are an alternative technology for power generation [1]. High temperature solid oxide
fuel cells (SOFCs) have high efficiency and are, together with the polymer-electrolyte membrane fuel
cell (PEMFC), the most promising type [2,3]. Some of the main advantages of SOFCs are the high
tolerance to CO and their flexibility with the purity of the H2 needed, in comparison to PEMFCs [4,5].
SOFC systems with pre- or internal reforming can work with common fuels in the actual infrastructure
and also work in a future hydrogen network [6–8]. Depending on the electrolyte material and thickness,
SOFCs are operated at a temperature between 700 ◦C and 1100 ◦C [9,10].

Consistent simulation data is beneficial considering the effort needed to obtain reliable results
for different electrolytes through experimental research [11,12]. Many 2D-models or 3D-models of
SOFCs exist in the literature [13–19], but only few are founded within the theory of non-equilibrium
thermodynamics (NET) [20]. This theory includes possible coupled transport mechanisms driven
by multiple gradients and does not claim mono-causal transport mechanisms as the classical kinetic
equations [21–23]. Coupled transport mechanisms are; e.g., the Peltier effect—where a gradient in the
electric potential drives a heat flux. The classical Fourier equation, used in many simulation models,
only accounts for a heat flux due to a temperature gradient [24,25]. The coupling effects are small in
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many technical systems and neglecting them still gives reliable simulation results [26]. Since most
simulation models have empirical parameters to be fitted to the individual application, a deficit in the
kinetic equation does not become apparent immediately. It results in “effective” transport coefficients.
A well-known case is the simulation of multi-component diffusion with Fick’s law instead of using the
Maxwell–Stefan equations [27,28].

In NET [22,23] the fluxes Ji of extensive thermodynamic properties are assigned to more than one
generalized force Xj [21]. The force Xj is a gradient of an intensive property like temperature, chemical
potential, etc. For the fluxes Ji, we can write the following phenomenological equations:

Ji ≈∑
j

LijXj, (1)

where Lij are the phenomenological coefficients, also called Onsager-coefficients or conductivities.
This approximation is the result of a Taylor expansion of the entropy in dependency on the deviations
from equilibrium of all variables and the assumption that all processes occur near equilibrium [29].
Only in this case, the Onsager relations for the phenomenological coefficients Lij = Lji apply [30].
The entropy production rate

.
σ is given by the fluxes and the corresponding forces:

.
σ = ∑

i
JiXi. (2)

This fundamental relationship between the local entropy production rate
.
σ and the fluxes is

extremely valuable for understanding dissipative phenomena and for possibly improving the efficiency
of the cell by lowering the entropy production.

A 1D SOFC-model dealing with the transport mechanisms across the cell and using NET is given
by S. Kjelstrup and D. Bedeaux [20]. In this model, empirical coefficients are used to calculate the
conductivities Lij and to describe the bulk-phases and the catalyst layers CLs. The assumption of
infinite surfaces and a small heat conductivity in their model approach leads to temperature jumps
in the CLs. However, the authors do not calculate the entropy production rate. The studies of A.
Sciacovelly and V. Verda [31,32], as well as the recent studies of J. J. Ramírez-Minguela et al. [33,34],
deal with the 3D calculation of the entropy production rate in a SOFC. They only use empirical
equations and do not conduct any validation. Other studies regarding the entropy production are
limited to the system level [35].

Since the validation of all details in the typical standard simulation approach for a SOFC is not yet
completed [36,37], it is the aim of this paper to compare standard kinetic equations against the more
general NET approach. Especially for electrochemical systems showing increasingly strong gradients
due to very thin functional layers, it seems advisable to check the validity of mono-causal kinetic
equations. In this study, we conduct experiments on a single SOFC and develop a 1D-model of the
cell in steady state. We evaluate the cell experimentally with electrochemical impedance spectroscopy
(EIS) and measure the voltage (E)-current(j)-characteristic. The model is based on NET, except for
the CLs, where we assume them to be isotherm and calculate the reaction rate using Butler–Volmer
kinetics. For an overall simulation model based on the NET-approach all conductivities Lij need
to be known [38]. These coefficients can be estimated from known (effective) standard transport
coefficients [20,39,40], for example:

Lqq =
λ

(kBβ)2 +
κπ2

kBβ
, (3)

where the conductivity Lqq describes the heat transport in a solid conductor, λ the heat conductivity,
κ the electronic conductivity and π the peltier coefficient. Furthermore, β = (kBT)−1 is the reciprocal
of the temperature and kB the Boltzmann constant (1.3806× 10−23 J/K). As the measured transport
coefficients depend significantly on the exact individual nature of the sample; e.g., the grain size and
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boundaries [41,42]—care must be taken when using relations like Equation (3). To overcome these
problems, the direct calculation of the conductivities can be done using MD [43–45].

We believe that the processes across the cell are the most relevant to give insights of the coupled
mechanisms and, thus, we limit our study to the spatial dimension perpendicular to the cell area.
The coefficients to describe the electrolyte are taken from our previous MD study [40]. These values
agree with the experimental data and are calculated from a single “experiment”. Furthermore, we can
evaluate Equation (1) without any transformation. Unfortunately, the values are given only for 1300 K
and, thus, we limit our study to this temperature.

The novelty of our study lies mostly on the following features:

• We expand the gas diffusion layers’ (GDLs’) NET models of S. Kjelstrup and D. Bedeaux [20]
accounting for diffusion.

• We give a detailed description of the transport mechanisms in YSZ electrolytes based on NET
using the phenomenological coefficients calculated with MD.

• Our NET model is validated with our own experimental data.
• We discuss in detail the influence of the coupled mechanisms and calculate each contribution to

the entropy production rate in each layer.

2. Materials and Methods

2.1. Materials and Experimental Methods

We conduct all measurements with an Evaluator-HT test facility from FuelCon AG, Germany.
We use a SOFC of type KeraCell II manufactured by KERAFOL GmbH, Germany. The KeraCell II is an
electrolyte supported cell (ESC) with an 8YSZ electrolyte and an electrolyte thickness of 1.6× 10−4 m.
The NiO/GDC anode and the ScSZ/LSM cathode GDLs are 0.4× 10−4 m thick. We conduct our
measurements after a first commissioning of the cell. Here, the first step is to heat the cell to 1123 K.
The heating process is done with a 1 K/min ramp function in order to achieve a homogenous
temperature field across the cell. After heating, the temperature of the cell is held at 1123 K for
several hours before the anode material is reduced to Ni/GDC.

We conduct our EIS-measurements with a ModuLab XM ECS from the company AMETEK GmbH
at atmospheric pressure and different oven temperatures (1023 K, 1073 K, 1123 K, 1173 K and 1300 K).
The EIS-measurements are galvanostatic with a current amplitude of ±280× 10−3 A in a frequency
range of 0.1 Hz to 100 kHz. We choose the equivalent circuit given in Figure 1. We use three elements
in series. The first element is a resistance to describe the ohmic losses from the electrolyte. In the
second and the third element, we use a resistance and a constant phase element (CPE) in parallel to
describe the losses in the catalyst layers (CLs). We fit our impedance spectra with the equivalent circuit
using the software XM-studio of the analyzer. From this fitting, we get the electrolyte resistance Re

and the polarization resistances Ri
P.

We conduct an extra measurement of the E-j-characteristic of the cell with an oven temperature of
1300 K. This measurement is galvanostatic in a range of 0 to 8000 A/m2.
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2.2. Theoretical Methods

2.2.1. SOFC-System

We define y as the spatial coordinate perpendicular to the SOFC active area and divide the cell
in the following regions: the anode GDL, the anode CL, the electrolyte, the cathode CL and the
cathode GDL. The anode GDL has a thickness of ∆ya, the electrolyte a thickness of ∆ye and the cathode
diffusion layer a thickness of ∆yc. In Figure 2, the resulting system including all the heat and molar
fluxes is depicted. Since we only consider one spatial direction, the fluxes can be written as scalars and
not as vectors.

The oxygen molar flux Jc
O2

coming from the gas channel flows through the cathode diffusion layer
and into the CL. Here, an oxygen atom reacts with two electrons to build oxygen anions during the
oxygen reduction reaction (ORR):

1/2 O2(g) + 2e− � O2−. (4)

The oxygen anions are then transported through the solid oxide electrolyte. In this work, we study
only YSZ-electrolytes. The doping of Y2O3 in ZrO2 to form YSZ results in vacancies [46]. This defect
formation can be described by the following reaction in Kröger–Vink notation:

Y2O3
ZrO2↔ 2Y′ + V••O + 3Ox

O, (5)

with the electro-neutrality condition [Y′] = 2
[
V••O

]
. The anion flux Je

O−2 is transported through these
defects in the opposite direction of the electric current density j carrying two negative electric charges.
From the gas channel through the anode GDL, the hydrogen molecules are transported as part of
a molar flux Ja

H2
to the anode CL, where they react with the anions. From this hydrogen oxidation

reaction (HOR), water and two free electrons result:

H2(g) + O2− � H2O(g) + 2e−. (6)

The electrons flow opposite to j from the anode to the cathode in an external electronic circuit.
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Figure 2. Solid oxide fuel cell (SOFC) including the electric current density j, all heat fluxes Ji
q and all

molar fluxes Ji
k. The spatial coordinate y is defined perpendicular to the cell area.



Entropy 2018, 20, 469 5 of 19

We define all heat fluxes in the direction of the spatial coordinate y. The heat flux Ja
q (y) flows

through the anode GDL. At the CL, the heat flux Ja
q (∆ya) is equal to Jd,a

q . Due to the half-cell reaction,
heat may be released at the CL, so that the heat Je,a

q flowing from the anode to the electrolyte is not
necessarily equal to Jd,a

q . From then on, the heat Je
q(y) with Je

q(∆ya) = Jd,a
q flows through the electrolyte

and, at the CL, Je
q(∆ya + ∆ye) is equal to Je,c

q . Again, the heat released from the cathode reaction

results in a non-equality between Je,c
q and Jd,c

q . Finally, the heat flux Jc
q(y) with Jc

q(∆ya + ∆ye) = Jd,c
q is

transported further through the cathode diffusion layer.
We only consider a H2,H2O-ideal gas mixture at the anode side and an O2,N2-ideal gas mixture

at the cathode side. The thermodynamic state point is given by T = 1300 K and p = po = 1 bar, and
we only consider steady state conditions.

2.2.2. Mathematical Description of the GDLs

Our start point is the energy balance for the anode GDL and the cathode GDL:

0 =
dJa

q

dy
+ j

dφ

dy
+ Ja

H2

dHH2

dy
− Ja

H2O
dHH2O

dy
, (7)

0 =
dJc

q

dy
+ j

dφ

dy
− Jc

O2

dHO2

dy
, (8)

where φ describes the electric potential. Heat Ji
q and electric power j·φ are transported through the

GDLs, while the gas components k enter or leave them with the molar enthalpy Hk. The molar
enthalpy of ideal gases is only dependent on the temperature and can be expressed differentially
as dHk = Cp,k(T)dT, where Cp,k(T) is the molar isobaric heat capacity of species k. We define all
molar fluxes relative to the spatial direction (see Figure 2) and, considering the component balances
2Ja

H2
= −2Ja

H2O = j/F and −4Jc
O2

= j/F, we get:

0 =
dJa

q

dy
+ j
[

dφ

dy
+

1
2F
[
Cp,H2(T) + Cp,H2O(T)

]dT
dy

]
, (9)

0 =
dJc

q

dy
+ j
[

dφ

dy
+

1
4F

Cp,O2(T)
dT
dy

]
, (10)

where F is the Faraday constant (96, 485 C/mol). All thermodynamic properties for the ideal gases are
calculated with the equations of Kabelac et al. [47]. To describe the fluxes and thermodynamic forces
we use the following kinetics [20]:

Ji
q = −λi dT

dy
+ πi j (11)

j = −πi

ri
1
T

dT
dy
− 1

ri
dφ

dy
, (12)

Ji
k = −Dk

dck
dy

, (13)

where the upper script i = a, c denotes the anode or the cathode, ri the area specific resistance and
Dk the effective diffusion coefficient of species k. The derivation of Equations (11) and (12) using
non-equilibrium thermodynamics can be found in the work of S. Kjelstrup and D. Bedeux [20].

The area specific resistance ri is described by following the Arrhenius equation:

ri/T = ri
0·e

Ei
A,r
RT . (14)
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Here, Ei
A,r is the activation energy and ri

0 the pre-exponential factor. To give Equation (14)
theoretical support, we firstly assume that all phenomenological coefficients Lij may have an Arrhenius
behavior. The coefficient Lφφ, which describes the electronic transport, is related to the electronic
conductivity κ as follows:

F2Li
ΦΦ = κiT. (15)

Equation (15) can be derived from Equation (1) following the steps given in our previous work [48].
As a consequence, the following Arrhenius equation arises:

κiT = κi
0·e−

Ei
A,r
RT . (16)

This result is supported by experimental data [49]. The electronic conductivity behaves inversely
proportionally to the area specific resistance; i.e., κ ∼ 1/ri and the proportionality factor is of mere
geometrical nature. Therefore, Equation (14) follows directly from Equation (16) having the same
activation energy, different pre-exponential factor, and inverse temperature dependency.

As can be taken from Equation (11) and from Equation (12), the Peltier coefficient πi not only
describes the heat transported due to charge transport, but also the contribution of a temperature
gradient to the effective electric resistance.

The effective diffusion coefficient in Equation (13) also comprises multicomponent diffusion [24].
The Dusty gas model should give a better approximation than the one implemented in our
model, because it accounts Knudsen diffusion [38]. However, following the discussion of
R. Suwanwarangkul et al. [27], our model may also give satisfactory results within the simulation
conditions (see below). We integrate Equation (13) to describe the concentration profile of hydrogen
cH2 and water cH2O at the anode GDL and oxygen cO2 at the cathode GDL:

cH2(y) = c0
H2
− jy

2FDH2

, (17)

cH2O(y) = c0
H2O +

jy
2FDH2O

, (18)

cO2(y) = c0
O2
− j

4FDO2

(yc − y). (19)

Here, we use the component balances, the superscript 0 denotes the gas channel and
yc = ∆ya + ∆ye + ∆yc. Finally, we calculate the entropy production rate from Equation (2) as follows:

.
σ

i
= −Ji

q
1

T2
dT
dy
− j

1
T

dφ

dy
− R ∑

k
Ji
k

1
ck

dck
dy

, (20)

where R is the ideal gas constant (8.3144 J/(molK)). From the Equations (13) and (17)–(19),
a concentration dependent term is given for the anode and for the cathode:

∑
k

Ja
k

1
ck

dck
dy

= −
(

j
2F

)2[ 1
cH2 DH2

+
1

cH2ODH2O

]
, (21)

∑
k

Jc
k

1
ck

dck
dy

= −
(

j
4F

)2 1
cO2 DO2

. (22)

2.2.3. Mathematical Description of the CLs

We assume constant temperature at the CL and its surroundings, but with a jump in the electric
potential and the heat flux. To describe the potential jumps we begin by applying the Nernst-Equation
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to calculate the open circuit voltage (OCV) ∆φi
0 for the anode half reaction (4) and for the cathode half

reaction (6):

∆φa
0 =

1
2F

[
Go

H2O(T)− Go
H2
(T) + RT ln

(
xR

H2O

xR
H2

)]
, (23)

∆φc
0 =

1
2F

[
0.5·Go

O2
(T) +

RT
2

ln
(

xR
O2

)]
, (24)

where Go
i describes the standard molar free enthalpy and the superscript R denotes the CLs. These

equations result from the electrochemical equilibrium condition assuming 2F∆φi
0 = µ̃O2− − 2µ̃e− ,

where µ̃k is the electrochemical potential of the charged species k. The mole fractions xR
k are calculated

from Equations (17) to (19) evaluated at yR = ∆ya for H2 and H2O and at yR = ∆ya + ∆yc for O2,
and using the transformation xR

k = ck
(
yR)RT/p. We define following Butler–Volmer equations for the

ORR (4) and the HOR (6):
.
ξ

i
r =

ji0
2F

(
e−

αi2F
RT ηi − e

(1−αi)2F
RT ηi

)
, (25)

The rate of reaction
.
ξ

i
r is imposed by the current density j, which determines the number of

charges to be transferred per time unit. We can define j = 2F
.
ξ

c
ORR and j = −2F

.
ξ

a
HOR from a charge

balance. For each reaction, an anodic and a cathodic barrier must be overcome, which are described by
exponential terms. The charge transfer coefficient αi determines the proportion of anodic or cathodic
losses to the total losses, and the over-voltages ηi play the role of an activation energy. The exchange
current density ji0 describes the current, which in equilibrium flows equally in both directions of the
half reaction. A more detailed discussion, can be found in [50]. We calculate ji0 with an approach from
Yonekura et al. [51]:

ja
0 =

(
xR

H2

)0.41(
xR

H2O

)0.4
γae

Ea
A,j0
RT , (26)

jc
0 =

(
xR

O2

)0.3
γce

Ec
A,j0
RT , (27)

where γi are pre-exponential factors. The exchange current density ji0 is related to the experimentally
measurable polarization resistance Ri

P as follows:

ji0 =
RT

2Ri
PF

. (28)

The potentials at the reaction layers are given by:

φe,a = φd,a − ∆φa
0 − ηa, (29)

φd,c = φe,c + ∆φc
0 + ηc. (30)

To calculate the heat fluxes, we use the entropy balances for each CL:

Je,a
q = Jd,a

q − T
j

2F
(
SH2O(T)− SH2(T)− SO2−(T) + 2Se−(T)

)
+ T

.
S

a
irr, (31)

Jd,c
q = Je,c

q − T
j

2F

(
SO2−(T)−

1
2

SO2(T)− 2Se−(T)
)
+ T

.
S

c
irr. (32)

Here, Sk is the molar entropy of species k, Si
irr the area specific entropy production rate. From the

literature [39], we assume that SO2− = 42 J/(molK) and Se− = 1 J/(molK) . Finally, we can write with
the overvoltage ηi from Equation (25) the following equation:

.
S

i
irr = −ηi·ξ i

r/T. (33)
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2.2.4. Mathematical Description of the Solid Oxide Electrolyte

To calculate the fluxes, we can write from Equation (1) following set of phenomenological equations:

Je
q/kB = −Lqq

dβ

dy
−∑

k
Lqk·β·

dµk
dy
− Lqϕ·β·F·

dϕ

dy
, (34)

Je
k/kB = −Lkq

dβ

dy
−∑

k
Lkk·β·

dµk
dy
− Lkϕ·β·F·

dϕ

dy
, (35)

j/(kBF) = −Lϕq
dβ

dy
−∑

k
Lϕk·β·

dµk
dy
− Lϕϕ·β·F·

dϕ

dy
, (36)

where ϕ the electrostatic potential in YSZ. The current density j describes the flux of electrons
transported along with the ionic fluxes Je

k with k = Z, Y, O for Zr4+, Y3+ and O2−. The conductivities
Lkk are given by the auto correlation function (ACF) of the micro ionic fluxes [40] and Lϕϕ by the
current ACF [45]. Due to polarization, the micro ionic fluxes may not necessarily be proportional to j,
resulting in coefficients with completely different natures. The coupled effect between the electron
and the ionic transport is then given by the conductivities Lkϕ. For 1300 K, no cation diffusion in YSZ
occurs; i.e., LZZ = LYY = 0 [52]. Furthermore, Valadez Huerta et al. [46] compare their classical MD
calculations of the Coulomb energy in YSZ with ab-initio calculations and do not find any substantial
differences, concluding that polarization effects can be neglected. With these assumptions, we can
write Je

O2− = j/(z∗F) and

Je
q/kB = −Lqq

dβ

dy
− LqO·β·

dµO−2

dy
− Lqϕ·β·F·

dϕ

dy
, (37)

Je
O2−/kB = −LOq

dβ

dy
− LOO·β·

dµO−2

dy
− LOϕ·β·F·

dϕ

dy
, (38)

j/(kBz∗F) = −Lϕq
1
z∗

dβ

dy
− LϕO·

β

z∗
·dµO−2

dy
− Lϕϕ·

β

z∗
·F dϕ

dy
(39)

with the valency z∗ = −2. Equations (38) and (39) are equivalent. Equating the coefficients and
using the Onsager relations LOϕ = LϕO and Lqϕ = Lϕq, we get Lϕϕ = (z∗)2LOO, LϕO = z∗LOO and
Lϕq = z∗LOq. As a result, only the conductivities LOO and LOq = LqO are necessary to describe the
anionic conduction and heat transport. Using the definition of the electric potential φ = µ̃O2−/(z∗F)
with µ̃O2− = µO−2 + z∗F·ϕ, two independent phenomenological equations arise:

Je
q = −Lqq

1
T2

dT
dy
− LqO

z∗F
T

dφ

dy
, (40)

Je
O2− = −LOq

1
T2

dT
dy
− LOO

z∗F
T

dφ

dy
. (41)

We can write for the entropy production rate in analogy to Equation (20)

.
σ

e
= −Je

q
1

T2
dT
dy
− Je

O2−
z∗F
T

dφ

dy
(42)

and for the energy balance

0 =
dJe

q

dy
− Je

O2−z∗F
dφ

dy
. (43)
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2.2.5. Computational Details

We conduct our calculation with MatLab® Version R2017a. We solve the equations consecutively
from the anode to the cathode using the Runge–Kutta (4,5) method [53]. We assume as initial conditions
T(0) = 1300 K and φ(0) = 0 V. To reproduce the isothermal operational modus, we iterate numerically
using the Newton–Raphson method. Thereby, the heat flux Jq is a variable with a start value of
1000 W/m2 until the temperature at y = ∆ya + ∆ye + ∆yc reaches T(0) with an accuracy of 10−34 K.

The parameters used to describe the GDLs and the CLs are given in Table 1. The parameters
needed to describe the exchange current density ji0 in Equations (26) und (27) are derived directly from
experiments (see next section). In the case of the electrolyte (∆ye = 160× 10−6 m), we analyze different
YSZ compositions and take the values for the phenomenological coefficients from our previous work
(see Table 2) [40].

Table 1. Parameters used in the simulation for the GDLs and the CLs. Values taken from
Hajimolana et al. [25], Kjelstrup and Bedeaux [20], and Costamagna et al. [24].

Parameter Anode GDL Anode CL Cathode CL Cathode GDL Reference

∆yi in 10−6 m 40 - - 40 -
ri

0 in 10−6 Ωm/K 1/95 - - 1/42 [25]
Ei

A,r/R 1150 - - 1200 [25]
λi in W/mK 2 - - 2 [20]

πi/Tcell in J/(CK) −5.4× 10−4 - - −6.2× 10−4 [20]
DH2 = DH2O in m2/s 2.1× 10−5 - - [24]

DO2 in m2/s - - 5.4× 10−6 [24]
αi - 0.5 0.3 - [24]

Table 2. Parameters used in the phenomenological equations to describe the electrolyte. The values are
taken from the MD study of Valadez Huerta et al. [40].

YSZ LOO in 10−7mol2K(Jms)−1 Lqq in 106 W/m RLoq in W/m

YSZ08 6.22(79) 6.21(25) −0.81(69)
YSZ12 4.10(57) 5.37(27) −0.77(75)
YSZ16 2.85(36) 4.85(34) −0.55(56)
YSZ20 1.95(55) 4.54(29) −0.48(36)

3. Results and Discussion

3.1. EIS Measurements

We plot exemplarily in Figure 3a the impedance spectrum of the cell at a cell temperature of
1117 K. The measured cell temperature is not equal to the oven temperature due to heat losses.
For the impedance spectrum in Figure 3, we calculate for the CPE at the anode an angle of 60.33◦ and
at the cathode an angle of 83.52◦ despite the apparent circular progression of the curve. Therefore,
our assumption of CPEs instead of perfect capacities is more accurate. In Figure 3b, we plot the
Arrhenius plot for the specific resistance re and the exchange current densities jc,0

0 and ja,0
0 . From these

Arrhenius plots, we get the pre-exponential factors re
0 = 9.28(27)× 10−5 Ωm, γa = 24(37)× 106 A/m2

and γc = 1.82(67)× 1011 A/m2, and the activation energies Ee
A,r = 0.7816(65)e J, Ec

A,j0
= 1.62(10)e J

and Ea
A,j0

0.75(43)e J, where e is the elementary charge (1.6022× 10−19 C). Here, the deviation describes
the error due to the linear regression with a 95% confidence interval. The noise in the current results in
a poorly defined spectrum at low frequencies; i.e., a low linearity and a high error in the values for
the anode CL. The specific resistance re at a cell temperature of 1300 K is 0.0622(40) Ωm. The value
calculated from the coefficient LOO for YSZ08 is 0.0561(71) Ωm. The relative deviation between
both values is only ∼ 10% indicating that our approach effectively describes the electrolyte ionic
conductivity. At this point it should be mentioned that the effective resistance may also include
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a Peltier contribution given by the temperature gradient and the phenomenological coefficient Loq

(see Equation (40)), which is not included in the coefficient LOO. This will be discussed later on in
more detail.
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3.2. Model Validation

In Figure 4, we plot the measured (Exp) and the simulated E-j-characteristic (Sim1) for
Tcell = 1287 K. We use in Sim1 the specific resistance re(1287 K) = 0.0667(44) Ωm calculated from the
experimental Arrhenius curve and assume LOq = LqO = 0. The OCV value of the Sim1 curve deviates
only 1.2% from the experimental value. It can be concluded from Equations (22) and (23) that gas
leakages or uncertainties in the gas mixture concentration during the experiment may explain the
deviation of the OCV to the theoretical value. Furthermore, losses due to a low electronic conductivity
or a thermal gradient across the cell may also contribute to this deviation, since for j = 0 A/m2 our
model does not account such phenomena. We calculate the negative slope for each curve and assume it
as the area specific resistance (ASR). The ASR is 1.5457(98)× 10−5 Ωm2 for the experimental curve and
1.5696(10)× 10−5 Ωm2 for the Sim1 curve. The relative deviation of the ASR between the experimental
curve and Sim1 is only ∼ 1.5%. Not only the losses due to the resistance in the electrolyte contribute
to the ASR, but also the losses in the catalyst layer given by the reaction kinetics, as it can be taken
from Equation (29). The low deviation means a successful implementation of Equations (26) and (27)
using the experimental parameters for γi and Ei

A,0, despite the high error bars in the activation energy
Ea

A,j0
and the pre-exponential factor γa. Furthermore, the relative deviation between the experimental

voltage and the simulated voltage is only of ∼ 1.3% for j = 8000 A/m2. V. Eveloy et al. [54] reported
model predictions within 3% to 6% of the cell voltage from different literature sources and, therefore,
we can say that our simulation model effectively describes the E-j-characteristic for 1287 K.
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Figure 4. Experimental (Exp) and simulated voltage (E)-current(j)-characteristic (Sim1) at Tcell = 1287 K
(upper diagram), and simulated E-j-characteristics (Sim2 and Sim3) at Tcell = 1300 K (lower diagram).
We use the value re(1287 K) = 0.0667(44) Ωm in Sim1 and the value re(1300 K) = 0.0622(40) Ωm
in Sim2. Both values are calculated from the experimental Arrhenius curve. In Sim3, we use the
phenomenological coefficients for YSZ08 from Valadez Huerta et al. [40].

To further validation, we calculate the E-j-characteristic using re(1300 K) = 0.0622(40) Ωm (Sim2)
as well as the phenomenological coefficients for YSZ08 (Sim3) at 1300 K respectively and plot the
results in Figure 4. From the discussion above, we can assume that the progression of the Sim2 curve
may provide a satisfactory approach for the progression of the E-j-characteristic at 1300 K, because the
simulation model, which is based on the same assumptions, effectively describes the E-j-progression
for 1287 K. For that reason, we can use the Sim2 curve as a reference to evaluate the progression of
the Sim3 curve. In this case and because of the same model framework, the OCV values are equal.
The calculated ASR is 1.46524(80)× 10−5 Ωm2 for the Sim2 curve and 1.37117(80)× 10−5 Ωm2 for
the Sim3 curve. The discrepancy between both ASRs of ∼ 6.4% is mostly accounted by the relative
deviation between the resistance calculated using LOO and the value from the experimental Arrhenius
curve. Furthermore, the relative deviation of the voltage E between the Sim2 and the Sim3 curves is
only ∼ 1% for a current density of 8× 103A/m2, meaning our model gives a satisfactory description
of the cell up to this current density.

3.3. Simulation Results

In Figure 5a, the simulated temperature profile across the SOFC at 1300 K is depicted for various
YSZ-electrolytes and j = 1000 A/m2 and 8000 A/m2. The temperature gradient is negative in the
GDLs and positive in the electrolyte. In all cases, the progression of the temperature can be seen as
linear. A higher current density and a higher electrolyte Y2O3 concentration result in higher absolute
values for the temperature gradient in all of the bulk phases. Furthermore, a minimum at the anode
and a maximum at the cathode can be observed. To explain these effects, we plot in Figure 5a the
results of a simulation for YSZ08 and YSZ20 at j = 8000 A/m2, where we neglect all Peltier (coupling)
mechanisms. Here, all absolute values of the temperature gradients are lower than for the original
conditions. In the YSZ20 electrolyte case, the one in the anode is positive and the one in the electrolyte
does not progress linearly, experiencing a maximum at y = 1.8× 10−4 m. From a comparison with the
previous results, the high absolute values for the temperature gradients may result from a Seebeck
mechanism. While Je

O−2 , LOq and z∗ are negative in Equation (41), LOO is positive. A high potential loss
in the electrolyte results in a high negative value of the potential gradient and the negative Ohmic term
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decreases. To counter this and to assure a constant anion flux, the temperature gradient has to have a
high positive value. This may explain not only the pronounced temperature progression, but also its
dependency on the current density, since a higher anion flux gives a higher counter effect. A calculation
without these coupled mechanisms results in a significantly different temperature progression.
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various YSZ-electrolytes and the current densities j = 1000 A/m2 and j = 8000 A/m2. For the
simulated curves marked with *, we neglect all Peltier type coupled mechanisms.

In Figure 5b, we plot the profile of the electric potential across the cell. In all bulk phases,
the potential decreases. The progression also shows two jumps: a positive at the anode CL and a
negative at the cathode CL. These jumps result from the equilibrium potentials ∆φa

0 = −1.68 V and
∆φc

0 = −0.81 V, and from the activation losses in each electrode. We calculate the over-potentials
ηa = 3.4·10−3 V and ηc = −9.3× 10−4 V for 1000 A/m2, and ηa = 0.027 V and ηc = −7.3× 10−3 V
for 8000 A/m2. As expected, ηa is positive, ηc is negative and their magnitude does not depend on
the electrolyte type. The potential losses in the bulk phases increase for a higher current density and
for a higher Y2O3 concentration in the electrolyte. Since the potential losses in the anode GDL and
in the cathode GDL are too small, the progression of the curve is mostly defined by the losses in
the electrolyte. To give a more detailed discussion, Figure 5b also includes results for simulations
neglecting all Peltier mechanisms. The progression of the potential in the electrolyte is not substantially
different from the original results and the losses are mainly Ohmic. However, the potential losses in
the GDLs are mainly given by the temperature gradient rather than by the electric resistance. To justify
this statement, we can argue analogous to the discussion of the pronounced temperature gradient by
using Equation (12). We can calculate the effective specific resistance re(1300 K) ≈ 0.05621 Ωm using
the potential gradient across the electrolyte and the current density. This value deviates only ∼0.2%
from the one calculated with the conductivity LOO. Therefore, the potential losses due to the coupled
effects do not significantly affect the progression of the E-j charactersitic and the direct comparison
between LOO and re in Section 3.1 is appropriate.

We plot in Figure 6 the heat flux Jq across the cell. We only calculate the net heat flux in the
y-direction. It increases in the electrolyte with a slope dJe

q/dy, which becomes higher for higher current
densities and higher potential losses due to energy conservation (see Equation (43)). Furthermore,
it remains almost constant at the GDLs. The heat flux shows a negative jump at the anode CL and
a positive jump at the cathode CL, meaning the anode half reaction is endothermic and the cathode
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half reaction is exothermic. This is in agreement with the study of K. Fischer and J. R. Seume [55].
Both jumps increase for a higher current density due to the higher activation losses, yet they remain
almost the same for the different electrolytes. Independent of the current density, the heat flows
across the anode GDL and across the cathode GDL in y-direction for YSZ08, but across the electrolyte
opposite to this direction. As expected from classical behavior, the heat flows from a higher to a lower
temperature. However, the heat is transported from a low to a high temperature in electrolytes with
a higher Y2O3 concentration, contradicting Fourier conduction behavior. In Figure 6, the heat flux
resulting from a simulation without any coupled effects is given for the cases of an YSZ08 and an YSZ20
electrolyte at 8000 A/m2. Due to energy conservation, the progression of these curves is almost equal
to the progression of the original curves. However, the amount and sign of the heat flux is different.
If the coupled mechanisms are considered, the heat transported is higher in all layers. On one hand,
the higher heat flux at the GDLs results from the higher temperature gradient, since the Peltier-effect
may reduce it (see Equation (11)). On the other hand, the higher heat flux in the electrolyte results from
the potential gradient, since the positive temperature gradient may diminish it (see Equation (40)).
This effect is most pronounced for a higher Y2O3 concentration in the electrolyte and a higher current
density due to the higher potential losses. As it can be seen from the YSZ20 case, if the coupled
mechanisms are neglected, not only the amount of heat transported may be underestimated, but also
the direction of the heat flux. This may lead to the wrong decisions regarding the material design or
heating/cooling strategies of SOFCs, such as which gas inlet flow may be used for cooling the cell to
minimize thermal stress.
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In Figure 7, the heat contribution
.

σQ, the potential contribution
.
σφ and the diffusion contribution

.
σc to the local entropy production rate

.
σ are depicted for each layer for different electrolyte

compositions at 1000 A/m2 and 8000 A/m2.
.

σQ is the term given by the temperature gradient
(see Equations (20) and (42)),

.
σφ the term given by the potential gradient (see Equations (20) and (42)),
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Figure 7. Simulated local entropy production rate contributions
.
σQ (heat flux contribution),

.
σφ (potential contribution) and

.
σc (diffusion contribution) in the anode GDL, in the cathode

GDL and in the electrolyte. We normalized the values with
.
σi,0 =

.
σi(y = 0) for the anode,

.
σi,0 =

.
σi
(
y = 2× 10−4 m

)
for the cathode and (c)

.
σi,0 =

.
σi
(
y = 0.4× 10−4m

)
for the electrolyte (see

Table 3). The curves are given for a SOFC at 1300 K, for various YSZ-electrolytes and two current
densities, j = 1000 A/m2 and j = 8000 A/m2. For the simulated curves marked with *, we neglect all
Peltier type coupled mechanisms.

Table 3. Values of the entropy production rate used for the normalization in Figure 7. For the values
marked with *, we neglect all Peltier type coupled mechanisms.

YSZ|j

Anode GDL
.

œi(y = 0 m)
W/

(
m2K

)
i = Q|Œ|C

Electrolyte
.

œi
(
y = 0.4× 10−4m

)
W/

(
m2K

)
i = Q|Œ

Cathode GDL
.

œi
(
y = 2× 10−4m

)
W/

(
m2K

)
i = Q|Œ|C

YSZ08|1000 A/m2 0.03|0.17|4.60 0.007|43.24 0.074|0.25|5.37
YSZ20|1000 A/m2 0.28|0.29|4.60 −0.12|138.6 0.40|0.39|5.37
YSZ08|8000 A/m2 1.02|10.26|294.20 0.70|2767 5.77|16.58|369.73
YSZ12|8000 A/m2 6.11|13.54|294.20 −2.04|4204 14.65|20.91|369.73
YSZ16|8000 A/m2 7.33|14.16|294.20 −2.82|6033 18.27|22.35|369.73
YSZ20|8000 A/m2 13.55|16.84|294.20 −6.64|8871 30.77|26.55|369.73
YSZ08*|8000 A/m2 0.001|0.001|294.20 0.20|2760 0.90|0.003|369.73
YSZ20*|8000 A/m2 0.06|0.001|294.20 0.57|8846 1.86|0.003|369.73

The absolute values for
.
σQ,0 in all layers become higher for increasing current density and

increasing Y2O3 content. Due to the Peltier effect, most of the values are negative across the electrolyte.
These negative contributions are smaller than the potential contribution and a positive local entropy
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production rate is always ensured. The heat flux contributions are only positive for YSZ08 and, clearly,
for the cases assuming no Peltier effect. For these latter cases, the absolute values for

.
σQ,0 are smaller

than for the original cases. The values for
.
σQ,0 are proportional to the temperature gradient (see

Equations (20) and (42)) and, thus, all these dependencies can be explained following the above
discussion. The absolute values for

.
σQ,0 are higher across the GDLs than across the electrolyte in

each case, resembling the results for the heat flux in Figure 6. Looking at Figure 7, the value of the
heat flux contribution

.
σQ in the GDLs increases slightly in the y-direction. If we assume a constant

temperature gradient, the temperature and the heat flux progression may define the progression of
.
σQ.

Here, the dependency on the Y2O3 concentration is not well defined and, thus, we cannot find a direct
correlation to the curves for the temperature or the heat flux. Therefore, the resulting behavior may be
given from a combination of both effects. This may also explain the low changes in the progression of
the curves for lower current densities and for the cases neglecting all coupled mechanisms. However,
these changes are smaller than 0.2% of the initial value. As already discussed, the negative potential
gradient in the electrolyte and a high current density result into an increasing heat flux due to energy
conservation. Together with the increasing temperature appearing in the denominator of the term

.
σQ

in Equation (43), the negative progression of Je
q results in a decreasing progression of

.
σQ for YSZ08.

This trend changes for higher Y2O3 concentrations because the heat flux becomes increasing positive
due to the Peltier effect. This behavior is observed for both current densities studied here. For an
YSZ08 electrolyte, the value can decrease by 30% across the electrolyte and, for higher compositions,
the value can increase by 150% depending on the current density. Additionally, the progression for
.
σQ is not well predicted if the coupled effects are neglected, resulting in a strong decaying tendency
independent of the electrolyte.

The values
.
σφ,0 increase for higher current density and higher Y2O3 composition in all bulk

phases, but its dependency on the electrolyte composition is not given in the GDLs if the Peltier effect is
neglected. The dependency on the current density and on the Y2O3 composition is given by Equation
(20), where

.
σφ,0 is negatively proportional to the product between j and the potential gradient divided

by the temperature. The low values for
.
σφ,0 in the GDLs for the cases assuming no Peltier effect

result from the low potential gradients. As expected from the similar progression of the potential
with and without any Peltier mechanisms, all

.
σφ,0 values in the electrolyte are similar for both cases.

Furthermore, this contribution is the highest across the cell. For all curves in Figure 7, the slightly
increasing or decreasing progression of

.
σφ is given by the temperature. This statement is justified,

since the dependency on the spatial dimension, on the current density, on the Y2O3 composition and
on whether the Peltier mechanisms are taken into account, is in agreement with the results depicted in
Figure 5.

As expected from Equations (21) and (22), the values of
.
σc,0 depend only on the current density

and not on the YSZ composition of the electrolyte. Since the temperature and potential differences
at the GDLs are very low, the diffusion process provides the major contribution to the local entropy
production rate. This contribution is lower at the anode GDL than at the cathode GDL. Here, the losses
due to the oxygen diffusion are higher than the losses due to the diffusion of hydrogen and water at the
anode GDL. The non-linearity of the increasing progression of

.
σc at the anode can be accounted for by

the superposition of a decreasing hydrogen concentration and an increasing water concentration across
the GDL. This effect is not present at the cathode GDL, where the increasing oxygen concentration in
the y-direction results in a decreasing progression of

.
σC.

The jump in the entropy production rate per area at the anode CL is 2.6× 10−3 W/m2K for
1000 A/m2 and 0.17 W/m2K for 8000 A/m2, and at the cathode CL 7.1× 10−4 W/m2K for 1000 A/m2

and 0.045 W/m2K for 8000 A/m2. These jumps do not depend substantially on the Y2O3 concentration
of the electrolyte. To make a comparison between the entropy production at the CLs and at the
bulk phases, non-specific values are needed. If we consider an YSZ12 cell with a 4 cm × 4 cm
active area working at 8000 A/m2 and use the values given in Table 3 as an estimate for the entropy
production rate contributions, it results in an entropy production rate of 4.60× 10−5 W/K in the GDLs,



Entropy 2018, 20, 469 16 of 19

of 1.08× 10−3 W/K in the electrolyte, and of 3.44× 10−4 W/K at the CLs. This means that 3% of
the losses would originate in the GDLs, 73% in the electrolyte, and 24% at the CLs. These values are
expected for an ESC like the one studied here.

4. Summary and Conclusions

The main goal of this study is the 1D-calculation of the local entropy production rate across an
electrolyte supported planar SOFC at 1300 K and atmospheric pressure. We describe all bulk phases
using non-equilibrium thermodynamics. While we use empirical coefficients from the literature to
describe the GDLs, the phenomenological coefficients from our previous MD study [40] are used to
characterize the cell with various electrolytes of different Y2O3 content. We describe the CLs using
the Butler–Volmer ansatz. We conduct EIS measurements in a YSZ08 SOFC to derive the parameters
to describe the exchange current densities ji,00 . Moreover, we measure the E-j-characteristic and use
this data to validate our model. Here, we show that the Butler–Volmer kinetics is well parametrized
and implemented. Furthermore, the relative deviation of ∼ 6.4% between the ASR of both curves is
mainly due to the deviation of the electrolyte resistance calculated with LOO to the experimental value
of ∼10%. For a current density of 8000 A/m2 the relative deviation between both E-j-characteristics is
only ∼1%, so that our approach effectively describes the SOFC. The temperature gradient across each
layer is higher for a higher Y2O3 electrolyte concentration and a higher current density. This effect
results from the coupled mechanisms and, thus, if the Peltier effect is neglected, the temperature
profile across the cell is not properly described. From the potential profile, we conclude that the
highest contribution to the electric potential losses are in the electrolyte. These losses are higher for a
higher Y2O3 concentration and no substantial differences arise, if the simulation does not consider any
coupled effects. Using the entropy balance for the calculation of the heat flux at the CLs, it results in
an endothermic half reaction at the anode and an exothermic half reaction at the cathode. Moreover,
the description of the transport mechanisms across a SOFC using NET cannot be avoided, since the heat
flux in the electrolyte is mainly given by the Peltier effect. If this effect is neglected, the heat flux will
not be properly described. Finally, we calculate the heat flux contribution, the potential contribution,
and the diffusion contribution to the local entropy production rate. The entropy production rate across
the electrolyte is mostly given by the ionic conduction, since the Peltier heat transfer from lower to
higher temperature would reduce the entropy production. While the temperature and the heat flux
define the progression of

.
σQ across the electrolyte, the potential contribution profile is mainly given

by the temperature. Despite the appreciable increasing or decreasing tendency of the contributions
to the entropy production rate, a substantial change along the y-direction can be observed only for
the heat flux contribution in the electrolyte. If we neglect the Peltier effect, the values for the heat
flux and potential contribution are underestimated in the GDLs and a different profile of the heat flux
contribution to the local entropy production rate is predicted across the electrolyte. Finally, the entropy
production rate of a cell is the highest in the electrolyte (73%) followed by the contribution in both
GDLs with (24%).
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