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Abstract: Asymptotic secrecy-capacity achieving polar coding schemes are proposed for the
memoryless degraded broadcast channel under different reliability and secrecy requirements: layered
decoding or layered secrecy. In these settings, the transmitter wishes to send multiple messages to
a set of legitimate receivers keeping them masked from a set of eavesdroppers. The layered decoding
structure requires receivers with better channel quality to reliably decode more messages, while the
layered secrecy structure requires eavesdroppers with worse channel quality to be kept ignorant of
more messages. Practical constructions for the proposed polar coding schemes are discussed and
their performance evaluated by means of simulations.
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1. Introduction

Information-theoretic security over noisy channels was introduced by Wyner in [1],
which characterized the (secrecy-)capacity of the degraded wiretap channel. Later, Csiszár and Körner
in [2] generalized Wyner’s results to the general wiretap channel. In these settings, one transmitter
wishes to reliably send one message to a legitimate receiver, while keeping it secret from an
eavesdropper, where secrecy is defined based on a condition on some information-theoretic
measure that is fully quantifiable. One of these measures is the information leakage, defined as the
mutual information I(W; Zn) between a uniformly-distributed random message W and the channel
observations Zn at the eavesdropper, n being the number of uses of the channel. Based on this
measure, the most common secrecy conditions required to be satisfied by channel codes are the weak
secrecy, which requires limn→∞

1
n I(W; Zn) = 0, and the strong secrecy, requiring limn→∞ I(W; Zn) = 0.

Although the second notion of security is stronger, surprisingly, both secrecy conditions result in the
same secrecy-capacity region [3].

In the last decade, information-theoretic security has been extended to a large variety of contexts,
and this paper focuses on two different classes of discrete memoryless Degraded Broadcast Channels
(DBC) surveyed in [4]: (a) with Non-Layered Decoding and Layered Secrecy (DBC-NLD-LS) and (b)
with Layered Decoding and Non-Layered Secrecy (DBC-LD-NLS). In these models, the transmitter
wishes to send a set of messages through the DBC, and each message must be reliably decoded by
a particular set of receivers and kept masked from a particular set of eavesdroppers. The degradedness
condition of the channel implies that individual channels can be ordered based on the quality of their
received signals. The layered decoding structure requires receivers with better channel quality to
reliably decode more messages, while the layered secrecy requires eavesdroppers with worse channel
quality to be kept ignorant of more messages.

The capacity region of these models was first characterized in [4–6]. However, the achievable
schemes used by these works rely on random coding arguments that are nonconstructive in practice.
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In this sense, the purpose of this paper is to provide coding schemes based on polar codes, which were
originally proposed by Arikan [7] to achieve the capacity of binary-input, symmetric, point-to-point
channels under Successive Cancellation (SC) decoding. Capacity achieving polar codes for the binary
symmetric degraded wiretap channel were introduced in [8,9], satisfying the weak and the strong
secrecy condition, respectively. Recently, polar coding has been extended to the general wiretap
channel in [10–13]. Indeed, [12,13] generalize their results providing polar coding schemes for the
broadcast channel with confidential messages, and [11] also proposes polar coding strategies to achieve
the best-known inner bounds on the secrecy-capacity region of some multi-user settings.

Although recent literature has proven the existence of different secrecy-capacity achieving polar
coding schemes for multi-user scenarios (for instance, see [11–18]), polar codes for the two models
on which this paper is focused have, as far as we know, not been analyzed yet. As mentioned in
[4], these settings capture practical scenarios in wireless systems, in which channels can be ordered
based on the quality of the received signals (for example, Gaussian channels are degraded). Hence,
the ultimate goal of this work is not only to prove the existence of two asymptotic secrecy-capacity
achieving polar coding schemes for these models under the strong secrecy condition, but also to
discuss their practical construction and evaluate their performance for a finite blocklength by means of
simulations.

1.1. Relation to Prior Work

A good overview of the similarities and differences between the polar codes proposed in [10–13]
for the general wiretap channel can be found in [13] (Figure 1). The polar coding schemes proposed in
this paper are based mainly on those introduced by [13] because of the following reasons:

• To provide strong secrecy. Despite both weak and strong secrecy conditions resulting in the
same secrecy-capacity region, the weak secrecy requirement in practical applications can result in
important system vulnerabilities [19] (Section 3.3).

• To provide polar coding schemes that are implementable in practice. Notice in [13] (Figure 1)
that the coding scheme presented in [10] relies on a construction for which no efficient code is
presently known. Moreover, the polar coding scheme in [12] relies on the existence, through
averaging, of certain deterministic mappings for the encoding/decoding process.

As in [13], our polar coding schemes are totally explicit. However, to provide strong secrecy and
reliability simultaneously, the transmitter and the legitimate receivers need to share a secret key of
negligible size in terms of rate, and the distribution induced by the encoder must be close in terms
of statistical distance to the original one considered for the code construction. Moreover, we adapt
the deterministic SC encoder of [20] to our channel models, and we show that it can perform well
in practice. As concluded in [20], this deterministic SC encoder will avoid the need to draw large
sequences according to specific distributions at the encoder, which can be useful in communication
systems requiring low complexity at the transmitter.

In [13] (Remark 3), the authors highlight the connection between polar code constructions and
random binning proofs that allows them to apply their designs to different problems in network
information theory. Nevertheless, in our polar coding schemes, the chaining construction used in [13]
is not needed because of the degradedness condition of the channels, and consequently, we can
introduce small changes in the design in order to make our proposed coding schemes more practical.
In this sense, we assume that a source of common randomness is accessible to all parties, which allows
the transmitter to send secret information in just one block of size n by only using a secret key with
negligible size in terms of rate. Despite this common randomness being available to the eavesdroppers,
no information will be leaked about the messages. Moreover, if we consider a communication system
requiring transmissions over several blocks of size n, the same realization of this source of common
randomness can be used at each block without compromising the strong secrecy condition.
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1.2. Overview of Novel Contributions

The main novelties of this paper can be summarized as follows:

1. Scenario. This paper focuses on two different models of the DBC with an arbitrary number of
legitimate receivers and an arbitrary number of eavesdroppers for which polar codes have not
yet been proposed. These two models arise very commonly in wireless communications.

2. Existence of the polar coding schemes. We prove the existence for sufficiently large n of two
secrecy-capacity achieving polar coding schemes under the strong secrecy condition.

3. Practical implementation. We provide polar codes that are implementable in real communication
systems, and we discuss further how to construct them in practice. As far as we know, although
the construction of polar codes has been covered in a large number of references (for instance,
see [21–23]), they only focus on polar code constructions under reliability constraints.

4. Performance evaluation. Simulations results are provided in order to evaluate the reliability and
secrecy performance of the polar coding schemes. The performance is evaluated according to
different design parameters of the practical code construction. As far as we know, this paper is
the first to evaluate the secrecy performance in terms of the strong secrecy, which is done by
upper-bounding the information leakage at the eavesdroppers.

1.3. Notation

Through this paper, let [n] = {1, . . . , n} for n ∈ Z+, an denote a row vector (a(1), . . . , a(n)).
We write a1:j for j ∈ [n] to denote the subvector (a(1), . . . , a(j)). Let A ⊂ [n], then we write a[A]
to denote the sequence {a(j)}j∈A, and we use AC to denote the set complement with respect
to the universal set [n], that is AC = [n] \ A. If A denotes an event, then AC also denotes its
complement. We use ln to denote the natural logarithm, whereas log denotes the logarithm
base two. Let X be a random variable taking values in X , and let qx and px be two different
distributions with support X , then D(qx, px) and V(qx, px) denote the Kullback-Leibler divergence
and the total variation distance, respectively. Finally, h2(p) denotes the binary entropy function, i.e.,
h2(p) = −p log p− (1− p) log(1− p), and we define the indicator function 1{u} such that it equals
one if the predicate u is true and zero otherwise.

1.4. Organization

The remainder of this paper is organized as follows. In Section 2, the channel models DBC-NLD-LS
and DBC-LD-NLS are introduced formally, and their secrecy-capacity regions are characterized.
In Section 3, the fundamentals theorems of polar codes are revisited. In Sections 4 and 5, two polar
coding schemes are proposed for the DBC-NLD-LS and DBC-LD-NLS, respectively, and we prove
that both are asymptotic secrecy-capacity achieving. In Section 6, practical polar code constructions
are discussed for both models, and the performances of the polar codes are evaluated by means of
simulations. Finally, the concluding remarks are presented in Section 7.

2. System Model and Secrecy-Capacity Region

Formally, a DBC (X , pYK ...Y1ZM ...Z1|X ,YK × · · · × Y1 ×ZM × · · · × Z1) with K legitimate receivers
and M eavesdroppers is characterized by the probability transition function pYK ...Y1ZM ...Z1|X,
where X ∈ X denotes the channel input, Yk ∈ Yk denotes the channel output corresponding to
the legitimate receiver k ∈ [1, K] and Zm ∈ Zm denotes the channel output corresponding to the
eavesdropper m ∈ [1, M]. The broadcast channel is assumed to gradually degrade in such a way that
each legitimate receiver has a better channel than any eavesdropper, that is:

X−YK − · · · −Y1 − ZM − · · · − Z1 (1)

forms a Markov chain. Although we consider physically degradation, the polar coding schemes
proposed in this paper are also suitable for stochastically degraded channels (see Remark 2).
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2.1. Degraded Broadcast Channel with Non-Layered Decoding and Layered Secrecy

In this model (see Figure 1), the transmitter wishes to send M messages {Wm}M
m=1 to the K

legitimate receivers. The non-layered decoding structure requires the legitimate receiver k ∈ [1, K]
to reliably decode all M messages, and the layered secrecy structure requires the eavesdropper
m ∈ [1, M] to be kept ignorant about messages {Wi}M

i=m. Consider a (d2nR1e, . . . , d2nRMe, n) code for
the DBC-NLD-LS, where Wm ∈ [d2nRme] for any m ∈ [1, M]. The reliability condition to be satisfied by
this code is measured in terms of the average probability of error at each legitimate receiver and is
given by:

lim
n→∞

P
[
(Ŵ1, . . . , ŴM) 6= (W1, . . . , WM)

]
= 0, for any legitimate receiver k ∈ [1, K]. (2)

On the other hand, the strong secrecy condition to be satisfied by the code is measured in terms of
the information leakage at each eavesdropper and is given by:

lim
n→∞

I(Wm, Wm+1, . . . , WM; Zn
m) = 0, for the eavesdropper m ∈ [1, M]. (3)

A tuple of rates (R1, . . . , RM) ∈ RM
+ is achievable for the DBC-NLD-LS if there exists a sequence

of (d2nR1e, . . . , d2nRMe, n) codes satisfying Equations (2) and (3).

Encoder

DBC
pYK ...Y1ZM ...Z1|X

satisfying
Equation (1)

Eavesdropper 1

Eavesdropper 2

Eavesdropper M

Leg. Receiver K

Leg. Receiver 1

...

...

��HHWM ,���XXXWM−1, . . . ,��ZZW2,��ZZW1

��HHWM ,���XXXWM−1 . . . ,��ZZW2, W1

��HHWM , WM−1, . . . , W2, W1

WM , WM−1, . . . , W2, W1

WM , WM−1, . . . , W2, W1

W1, . . . , WM Xn

Yn
K

Yn
1

Zn
M

Zn
2

Zn
1

Figure 1. DBC with Non-Layered Decoding and Layered Secrecy (DBC-NLD-LS).

Proposition 1 (Adapted from [4,5]). The achievable region of the DBC-NLD-LS is the union of all M-tuples
of rates (R1, . . . , RM) ∈ RM

+ satisfying the following inequalities,

M

∑
i=m

Ri ≤ I(X; Y1)− I(X; Zm), m = 1, . . . , M,

where the union is taken over all distributions pX .

The proof for the case of only one legitimate receiver in the context of the fading wiretap channel
is provided in [5], where the information-theoretic achievable scheme is based on embedded coding,
stochastic encoding and rate sharing. Due to the degradedness condition of Equation (1), by applying
the data processing inequality and Fano’s inequality, an achievable scheme ensuring the reliability
condition in Equation (2) for the legitimate Receiver 1 will satisfy it for any legitimate receiver k ∈ [2, K].

Corollary 1. The achievable subregion of the DBC-NLD-LS without considering rate sharing is a K-orthotope
defined by the closure of all K-tuples of rates (R1, . . . , RM) ∈ RM

+ satisfying:

Rm ≤ I(X; Zm+1)− I(X; Zm), m = 1, . . . , M− 1,

RM ≤ I(X; Y1)− I(X; ZM).
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2.2. Degraded Broadcast Channel with Layered Decoding and Non-Layered Secrecy

In this model (see Figure 2), the transmitter wishes to send K messages {W`}K
`=1 to the K legitimate

receivers. The layered decoding structure requires the legitimate receiver k ∈ [1, K] to reliably decode
the messages {W`}k

`=1, and the non-layered secrecy structure requires the eavesdropper m ∈ [1, M]

to be kept ignorant of all K messages. Consider a (d2nR1e, . . . , d2nRKe, n) code for the DBC-LD-NLS,
where W` ∈ [d2nR`e] for any ` ∈ [1, K]. The reliability condition to be satisfied by this code is:

lim
n→∞

P
[
(Ŵ1, . . . , Ŵk−1, Ŵk) 6= (W1, . . . , Wk−1, Wk)

]
= 0, for the legitimate receiver k ∈ [1, K], (4)

and the strong secrecy condition is given by:

lim
n→∞

I(W1, . . . , WK; Zn
m) = 0, for any eavesdropper m ∈ [1, M]. (5)

A tuple of rates (R1, . . . , RK) ∈ RK
+ is achievable for the DBC-LD-NLS if there exists a sequence of

(d2nR1e, . . . , d2nRKe, n) codes such that they satisfy Equations (4) and (5).

Encoder

DBC
pYK ...Y1ZM ...Z1|X

satisfying
Equation (1)

Eavesdropper 1

Eavesdropper M

Leg. Receiver K

Leg. Receiver 2

Leg. Receiver 1

...

...

��ZZW1,��ZZW2, . . . ,��HHWK

��ZZW1,��ZZW2, . . . ,��HHWK

W1, W2, . . . , WK

W1, W2, . . . , WK

W1, W2, . . . , WK
W1, . . . , WK Xn

Yn
K

Yn
2

Yn
1

Zn
M

Zn
1

Figure 2. DBC with Layered Decoding and Non-Layered Secrecy (DBC-LD-NLS).

Proposition 2 ( Adapted from [4,6]). The achievable region of the DBC-LD-NLS is the union of all K-tuples
of rates (R1, . . . , RK) ∈ RK

+ satisfying the following inequalities,

k

∑
`=1

R` ≤
k

∑
`=1

I(V`; Y`|V`−1)− I(Vk, ZM), k = 1, . . . , K,

where V0 , ∅ and VK , X, and the union is taken over all distributions pV1 ...VK such that V1 −V2 − · · · −VK
forms a Markov chain.

The proof for the case of only one eavesdropper is provided in [6], where the information-theoretic
achievable scheme is based on superposition coding, stochastic encoding and rate sharing. Due to
the degradedness condition of Equation (1), note that any achievable scheme ensuring the strong
secrecy condition in Equation (5) for the eavesdropper M will also satisfy it for any eavesdropper
m ∈ [1, M− 1].

Corollary 2. The achievable subregion of the DBC-LD-NLS without considering rate sharing is a K-orthotope
defined by the closure of all K-tuples of rates (R1, . . . , RK) ∈ RK

+ satisfying:

R` ≤ I(V`; Y`|V`−1)− I(V`; ZM|V`−1), ` = 1, . . . , K.
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3. Review of Polar Codes

Let (X × Y , pXY) be a Discrete Memoryless Source (DMS), where X ∈ {0, 1} (see
Endnote [24]—which refers to References [25,26]) and Y ∈ Y . The polar transform over the n-sequence
Xn, n being any power of two, is defined as Un , XnGn, where Gn ,

[
1 1
1 0
]⊗n is the source polarization

matrix [27]. Since Gn = G−1
n , then Xn = UnGn.

The polarization theorem for source coding with side information [27] (Theorem 1) states that the
polar transform extracts the randomness of Xn in the sense that, as n→ ∞, the set of indices j ∈ [n]
can be divided practically into two disjoint sets, namelyH(n)

X|Y and L(n)X|Y, such that U(j) for j ∈ H(n)
X|Y

is practically independent of (U1:j−1, Yn) and uniformly distributed, i.e., H(U(j)|U1:j−1, Yn) → 1,
and U(j) for j ∈ L(n)X|Y is almost determined by (U1:j−1, Yn), i.e., H(U(j)|U1:j−1, Yn)→ 0. Formally, let:

H(n)
X|Y ,

{
j ∈ [n] : H

(
U(j)

∣∣U1:j−1, Yn) ≥ 1− δn
}

,

L(n)X|Y ,
{

j ∈ [n] : H
(
U(j)

∣∣U1:j−1, Yn) ≤ δn
}

,

where δn , 2−nβ
for some β ∈ (0, 1

2). Then, by [27] (Theorem 1), we have limn→∞
1
n |H

(n)
X|Y| = H(X|Y)

and limn→∞
1
n |L

(n)
X|Y| = 1 − H(X|Y), which imply that limn→∞

1
n |(H

(n)
X|Y)

C ∩ (L(n)X|Y)
C| = 0, i.e.,

the number of elements that have not been polarized is asymptotically negligible in terms of
rate. Furthermore, [27] (Theorem 2) states that given U[(L(n)X|Y)

C] and Yn, U[L(n)X|Y] can be reconstructed
using SC decoding with error probability in O(nδn). Alternatively, the previous sets can be defined
based on the Bhattacharyya parameters {Z(U(j)

∣∣U1:j−1, Yn)}n
j=1 because both parameters polarize

simultaneously [27] (Proposition 2). It is worth mentioning that both the entropy terms and the
Bhattacharyya parameters required to define these sets can be obtained deterministically from pXY
and the algebraic properties of Gn [21–23].

Similarly toH(n)
X|Y and L(n)X|Y, the setsH(n)

X and L(n)X can be defined by considering that observations
Yn are absent. A discrete memoryless channel (X , pY|X,Y) with some arbitrary pX can be seen as

a DMS (X × Y , pX pY|X). In channel polar coding, first, we define H(n)
X|Y, L(n)X|Y, H(n)

X and L(n)X from
the target distribution pX pY|X (polar construction). Then, based on the previous sets, the encoder
somehow constructs Ũn and applies the inverse polar transform X̃n = ŨnGn, with distribution
q̃Xn (since the polar-based encoder will construct random variables that must approach the target
distribution of the DMS, throughout this paper, we use a tilde above the random variables to emphasize
this purpose). Afterwards, the transmitter sends X̃n over the channel, which induces Ỹn ∼ q̃Yn .
If V(q̃XnYn , pXnYn)→ 0, then the receiver can reliably reconstruct Ũ[L(n)X|Y] from Ỹn and Ũ[(L(n)X|Y)

C] by
using SC decoding [28].

To conclude this part, the following lemma provides a useful property of polar codes for the DBC.

Lemma 1 ( Subset property, adapted from [14] (Lemma 4)). Let (X, Y2, Y1) be random variables such that
X−Y2 −Y1 forms a Markov chain. Then, the following property holds for the polar transform Un = XnGn,

H
(
U(j)

∣∣U1:j−1) ≥ H
(
U(j)

∣∣U1:j−1, Yn
1
)
≥ H

(
U(j)

∣∣U1:j−1, Yn
2
)
∀j ∈ [n], which implies

L(n)X ⊆ L(n)X|Y1
⊆ L(n)X|Y2

, and H(n)
X|Y2
⊆ H(n)

X|Y1
⊆ H(n)

X .

Remark 1. The subset property also holds if the sets are defined based on the Bhattacharyya parameters because,
under the previous Markov chain condition, Z

(
U(j)

∣∣U1:j−1) ≥ Z
(
U(j)

∣∣U1:j−1, Yn
1
)
≥ Z

(
U(j)

∣∣U1:j−1, Yn
2
)
.

Remark 2. According to [14] (Lemma 4), the subset property also holds if the channels are stochastically
degraded. Therefore, since the construction of the polar codes proposed in the following sections is based basically
on Lemma 1, the polar coding schemes are suitable for physically- and stochastically-degraded channels.
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4. Polar Coding Scheme For the DBC-NLD-LS

The polar coding scheme provided in this section is designed to achieve the supremum of
the achievable rates given in Corollary 1 (secrecy-capacity without rate sharing). Thus, consider
the DMS

(
X ×YK × · · · × Y1 ×ZM × · · · × Z1, pXYK ...Y1ZM ...Z1

)
that represents the input and output

random variables involved in the achievable subregion of Corollary 1, where X = {0, 1}.
Let (Xn, Yn

K, . . . , Yn
1 , Zn

M, . . . , Zn
1 ) be an i.i.d. n-sequence of this source. We define the polar transform

Un , XnGn, whose distribution is pUn(un) = pXn(unGn) (due to the invertibility of Gn), and we write:

pUn(un) ,
n

∏
j=1

pU(j)|U1:j−1(u(j)
∣∣u1:j−1). (6)

4.1. Polar Code Construction

Let δn , 2−nβ
, where β ∈ (0, 1

2). Based on pXYK ...Y1ZM ...Z1 , we define:

H(n)
X ,

{
j ∈ [n] : H

(
U(j)

∣∣U1:j−1) ≥ 1− δn
}

, (7)

L(n)X ,
{

j ∈ [n] : H
(
U(j)

∣∣U1:j−1) ≤ δn
}

, (8)

L(n)X|Yk
,
{

j ∈ [n] : H
(
U(j)

∣∣U1:j−1, Yn
k
)
≤ δn

}
, k = 1, . . . , K, (9)

H(n)
X|Yk

,
{

j ∈ [n] : H
(
U(j)

∣∣U1:j−1, Yn
k
)
≥ 1− δn

}
, k = 1, . . . , K, (10)

H(n)
X|Zm

,
{

j ∈ [n] : H
(
U(j)

∣∣U1:j−1, Zn
m
)
≥ 1− δn

}
, m = 1, . . . , M. (11)

Then, based on the previous sets, we define the following partition of the universal set [n],

I(n)M , H(n)
X|ZM

∩
(
H(n)

X|Y1

)C, (12)

I(n)m , H(n)
X|Zm
∩
(
H(n)

X|Zm+1

)C, m = 1, . . . , M− 1, (13)

F (n) , H(n)
X|Y1

, (14)

C(n) , H(n)
X ∩

(
H(n)

X|Z1

)C, (15)

T (n) ,
(
H(n)

X
)C, (16)

which is graphically represented in Figure 3. Roughly speaking, in order to ensure reliability and strong
secrecy, the distribution of Ũn after the encoding process must be close in terms of statistical distance
to the distribution given in Equation (6) corresponding to the original DMS. Hence, the elements U(j)
such that j ∈ H(n)

X will be suitable for storing uniformly-distributed random sequences. On the other
hand, U[T (n)] will not, and the elements U(j) such that j ∈ T (n) will be constructed somehow from
U1:j−1 and the distribution pU(j)|U1:j−1 . The set I(n)m (m ∈ [1, M]) belongs to H(n)

X|Zm
, and by Lemma 1,

we haveH(n)
X|Zm

⊆ H(n)
X|Zm′

for any m′ < m. Thus, U[I(n)m ] will be suitable for storing information to be

secured from Eavesdroppers 1–m. Since C(n) ⊆ (H(n)
X|Zm

)C for any m ∈ [1, M], the sequence U
[
C(n)

]
cannot contain information to be secured from any eavesdropper, and it will be used to store the local
randomness [8] required to confuse the eavesdroppers (the local randomness in polar codes plays
the same role as the stochastic encoding used in [1,2]). According to [27] (Theorem 2), the legitimate
Receiver 1 will be able to reliably infer U[L(n)X|Y1

] given Yn
1 and U[(L(n)X|Y1

)C]. Hence, if the polar

coding scheme somehow make the entries U(j) such that j belongs to F (n) and (H(n)
X|Y1

)C ∩ (L(n)X|Y1
)C

(hatched areas in Figure 3) available to the legitimate Receiver 1, this receiver will be able to reliably
infer the entire sequence Un. In this sense, U[F (n)] will be used to store the uniformly-distributed
random sequence provided by a source of common randomness that will be available to all parties.
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Since F (n) ⊆ H(n)
X|Zm

for any m ∈ [1, M], the knowledge of U[F (n)] of the eavesdroppers will not

compromise the strong secrecy condition. On the other hand, U[(H(n)
X|Y1

)C ∩ (L(n)X|Y1
)C] will contain

secret information or elements that cannot be known directly by all the eavesdroppers. Therefore,
the transmitter somehow will secretly send it to the legitimate receivers. Nevertheless, as will be seen,
this additional transmission will incur an asymptotically negligible rate penalty. Finally, by Lemma 1,
we have (L(n)X|Y1

)C ⊇ (L(n)X|Yk
)C for any k > 1. Hence, given U[(L(n)X|Y1

)C], all the legitimate receivers will
be able to reliably infer the entire sequence Un from their own channel observations.

H(n)
X

(
H(n)

X
)C

H(n)
X|Y1

(
H(n)

X|Y1

)C

H(n)
X|ZM

(
H(n)

X|ZM

)C

...
...

H(n)
X|Z2

(
H(n)

X|Z2

)C

H(n)
X|Z1

(
H(n)

X|Z1

)C

F (n) I (n)M · · · I (n)2 I (n)1 C(n) T (n)

Figure 3. Polar code construction for DBC-NLD-LS. The hatched area represents those indices j ∈
(H(n)

X|Y1
)C ∩ (L(n)X|Y1

)C, which can belong to the sets I (n)m (m ∈ [1, M]), C(n), F (n) or T (n).

Remark 3. The goal of the polar code construction is to obtain the entropy terms {H(U(j)
∣∣U1:j−1)}n

j=1,

{H(U(j)
∣∣U1:j−1, Yn

1 )}n
j=1 and {H(U(j)

∣∣U1:j−1, Zn
m)}n

j=1 for all m ∈ [1, M] required to define the sets in
Equations (7)–(11) and, consequently, to obtain the partition of [n] given in Equations (12)–(16). In Section 6,
we discuss further how to construct polar codes under both reliability and secrecy constraints.

4.2. Polar Encoding

The polarization-based encoder aims to construct the sequence Ũn and, consequently, X̃n = ŨnGn.
Let Wm for all m ∈ [1, M] and C be uniformly-distributed random vectors of size |I (n)m | and |C(n)|,
respectively, where C represents the local randomness required to confuse the eavesdroppers, and recall
that Wm represents the message m that is intended for all legitimate receivers. Let F be a given
uniformly-distributed random |F (n)|-sequence, which represents the source of common randomness
that is available to all parties. The encoder constructs the sequence ũn as follows. Consider the
realizations wm for all m ∈ [1, M], c and f , whose elements have been indexed by the set of indices
I (n)m , C(n) and F (n), respectively. The encoder draws ũn from the distribution:

q̃U(j)|U1:j−1(ũ(j)|ũ1:j−1) ,



1
{

ũ(j) = wm(j)
}

if j ∈ I (n)m , m = 1, . . . , M,
1
{

ũ(j) = c(j)
}

if j ∈ C(n),
1
{

ũ(j) = f (j)
}

if j ∈ F (n),

pU(j)|U1:j−1
(
ũ(j)|ũ1:j−1) if j ∈

(
H(n)

X
)C ∩

(
L(n)X

)C,

1
{

ũ(j) = ξ(j)(ũ1:j−1)
}

if j ∈ L(n)X ,

(17)

where:

ξ(j)(ũ1:j−1) , arg max
u∈X

pU(j)|U1:j−1(u|ũ1:j−1), (18)

pU(j)|U1:j−1 being the distribution induced by the original DMS. Note that T (n) = ((H(n)
X )C ∩ (L(n)X )C)∪

L(n)X , and according to Equation (17), Ũ[L(n)X ] is constructed deterministically by adapting the SC

encoding algorithm in [20], while Ũ[(H(n)
X )C ∩ (L(n)X )C] is constructed randomly. By [27] (Theorem 1),
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we have that the amount of randomness for SC encoding will be asymptotically negligible in
terms of rate. Then, the encoder computes X̃n = ŨnGn and transmits it over the DBC, inducing
(ỸK, . . . , Ỹ1, Z̃M, . . . , Z̃1).

Finally, besides the sequence X̃n, the encoder outputs the following additional secret sequence,

Φ , Ũ
[(
H(n)

X|Y1

)C ∩
(
L(n)X|Y1

)C
]
. (19)

This sequence Φ must be additionally transmitted to all legitimate receivers keeping it masked
from the eavesdroppers. To do so, the transmitter can perform a modulo-two addition between
Φ and a uniformly-distributed secret key that is privately shared with the legitimate receivers and
somehow additionally send it to them. Nevertheless, by [27] (Theorem 1), we know that this additional
transmission is asymptotically negligible in terms of rate.

Remark 4. The additional secret sequence Φ can be divided into two parts: Ũ[H(n)
X ∩ (H(n)

X|Y1
)C ∩ (L(n)X|Y1

)C],
which will be uniformly distributed according to Equation (17), and the remaining part that will not. The
transmitter could make the uniformly-distributed part available to the legitimate receivers by using a chaining
structure as the one presented in [9]. However, such a scheme requires the transmission to take place over several
blocks of size n. Moreover, it requires having a large memory capacity on either the transmitter or the legitimate
receivers, which can make the polar coding scheme unpractical in communication systems.

4.3. Polar Decoding

Before the decoding process, consider that the realization of the source of common randomness F
is available to all parties and the sequence Φ has been successfully received by the legitimate receivers.

The legitimate receiver k ∈ [1, K] forms an estimate Ûn of the sequence Ũn as follows. Given that
Φ and F are available, notice that it knows Ũ[(L(n)X|Y1

)C]. Moreover, by Lemma 1, (L(n)X|Y1
)C ⊇ (L(n)X|Yk

)C

for any k > 1. Thus, the k-th legitimate receiver performs SC decoding for source coding with
side information [27] to construct Ũn from Ũ[(L(n)X|Y1

)C] and its channel output observations Ỹk.
In Section 4.5.3, we show formally that the reliability condition in Equation (2) is satisfied at each
legitimate receiver k ∈ [1, K].

4.4. Information Leakage

Besides the observations Z̃n
m, the eavesdropper m ∈ [1, M] has access to the common randomness

F = Ũ[F (n)]. Thus, the information about the messages {Wi}M
i=m leaked to this eavesdropper is:

I(Wm, . . . , WM; F, Z̃n
m) = I

(
Ũ
[
∪M

i=m I
(n)
i
]
; Ũ
[
F (n)], Z̃n

m
)
. (20)

In Section 4.5.4, we prove that (Wm, Wm+1, . . . , WM) is asymptotically statistically independent
of (F, Z̃n

m).

4.5. Performance of the Polar Coding Scheme

The analysis of the polar coding scheme described previously leads to the following theorem.

Theorem 1. Consider an arbitrary DBC
(
X , pYK ...Y1ZM ...Z1|X,YK × · · · × Y1 ×ZM × · · · × Z1

)
such that

X ∈ {0, 1} and pYK ...Y1ZM ...Z1|X satisfies the Markov chain condition X − YK − · · · − Y1 − ZM − · · · − Z1.
The polar coding scheme described in Sections 4.1–4.4 achieves any rate tuple of the region defined in Corollary 1,
satisfying the reliability and strong secrecy conditions given in Equations (2) and (3), respectively.

Corollary 3. Since Ũ[I (n)m ] for some m ∈ [1, M] can contain information to be secured from Eavesdroppers
1–m, the polar coding scheme described in Sections 4.1–4.4 can achieve the entire region considering rate sharing
of Proposition 1 by storing part of any message Wm′ such that m′ < m into Ũ[I (n)m ] instead of part of Wm.
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Corollary 4. If we consider a communication scenario requiring transmissions over several blocks of size n, the
same realization of the source of common randomness F that is known by all parties could be used at each block,
and the reliability and the strong secrecy conditions would still be ensured.

The proof of Theorem 1 follows in four steps with similar reasoning as in [13] and is provided in
Sections 4.5.1–4.5.4. The proof of Corollary 3 is immediate, and the proof of Corollary 4 is provided in
Section 4.5.5.

4.5.1. Transmission Rates

In this step, we prove that the polar coding scheme approaches the corner point of the subregion
defined in Corollary 1. For any m ∈ [1, M− 1], the rate Rm corresponding to the message Wm satisfies:

lim
n→∞

Rm = lim
n→∞

1
n
∣∣I (n)m

∣∣ (a)
= lim

n→∞

1
n

∣∣∣H(n)
X|Zm

∩
(
H(n)

X|Zm+1

)C
∣∣∣

(b)
= lim

n→∞

1
n

(∣∣H(n)
X|Zm

∣∣− ∣∣H(n)
X|Zm+1

∣∣)
(c)
= I(X; Zm+1)− I(X; Zm),

where (a) follows from the definition of the set I(n)m in Equation (13), (b) holds because, by Lemma 1,
H(n)

X|Zm
⊇ H(n)

X|Zm+1
, and (c) follows from [27] (Theorem 1). Similarly, according to Equation (12), we obtain:

lim
n→∞

RM = lim
n→∞

1
n
∣∣I(n)M

∣∣ = lim
n→∞

1
n

∣∣∣H(n)
X|ZM

∩
(
H(n)

X|Y1

)C
∣∣∣ = I(X; Y1)− I(X; ZM).

4.5.2. Distribution of the DMS after the Polar Encoding

Let q̃Un be the distribution of Ũn after the encoding in Section 4.2. The following lemma
shows that q̃Un and the distribution pUn in Equation (6) of the original DMS are nearly statistically
indistinguishable for sufficiently large n and, consequently, so are the overall distributions
q̃XYK ...Y1ZM ...Z1 and pXYK ...Y1ZM ...Z1 .

Lemma 2. Let δn = 2−nβ
for some β ∈ (0, 1

2). Then,

V(q̃Un , pUn) ≤ δ
(n)
nld-ls,

V(q̃XnYn
K ...Yn

1 Zn
M ...Zn

1
, pXYK ...Y1ZM ...Z1) = V(q̃Un , pUn) ≤ δ

(n)
nld-ls,

where δ
(n)
nld-ls , n

√
4
√

nδn ln 2(2n− log(2
√

nδn ln 2)) + δn +
√

2nδn ln 2.

Proof. See Appendix A, setting L = 1.

Remark 5. The first term of δ
(n)
nld-ls bounds the impact on the total variation distance of using the deterministic

SC encoding in Equation (18) for the entries Ũ[L(n)X ], while the second term bounds the impact of storing
uniformly-distributed random sequences (messages, local randomness and common randomness) into the
entries Ũ[H(n)

X ].

As will be seen in the following subsections, an encoding process satisfying Lemma 2 is crucial
for the reliability and the secrecy performance of the polar code.
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4.5.3. Reliability Performance

Consider the probability of incorrectly decoding all messages {Wm}M
m=1 at the legitimate receiver

k ∈ [1, K]. Let q̃XnYn
k

and pXnYn
k

be the marginal distributions of q̃XnYn
K ...Yn

1 Zn
M ...Zn

1
and pXnYn

K ...Yn
1 Zn

M ...Zn
1
,

respectively. Consider an optimal coupling [29] (Proposition 4.7) between q̃XnYn
k

and pXnYn
k

such that:

P
[
EXnYn

k

]
= V(q̃XnYn

k
, pXnYn

k
),

where EXnYn
k
, {(X̃n, Ỹn

k ) 6= (Xn, Yn
k )} or, equivalently, EXnYn

k
, {(Ũn, Ỹn

k ) 6= (Un, Yn
k )} because of the

invertibility of Gn. Thus, for the legitimate receiver k ∈ [1, K], we obtain:

P
[
(Ŵ1, . . . ŴM) 6= (W1, . . . , WM)

]
≤ P

[
Ûn 6= Ũn]

= P
[
Ûn 6= Ũn

∣∣EC
XnYn

k

]
P
[
EC

XnYn
k

]
+ P

[
Ûn 6= Ũn

∣∣EXnYn
k

]
P
[
EXnYn

k

]
≤ P

[
Ûn 6= Ũn

∣∣EC
XnYn

k

]
+ P

[
EXnYn

k

]
(a)
≤ ∑j∈L(n)X|Y1

Z
(
U(j)

∣∣U1:j−1, Yn
k
)
+ P

[
EXnYn

k

]
(b)
≤ n
√

δn + P
[
EXnYn

k

]
(c)
≤ n
√

δn + δ
(n)
nld-ls,

(21)

where (a) holds by [27] (Theorem 2) because Ũ[(L(n)X|Y1
)C] is available to all receivers, (b) holds by

Lemma 1, that is, Z(U(j)|U1:j−1, Yn
k ) ≤ Z(U(j)|U1:j−1, Yn

1 ) for any k > 1, and by the definition of L(n)X|Y1
in

Equation (9) and [27] (Proposition 2), that is Z(U(j)|U1:j−1, Yn
1 ) ≤ (H(U(j)|U1:j−1, Yn

1 ))
1/2, and (c) holds

by the optimal coupling and Lemma 2 because V(q̃XnYn
k

, pXnYn
k
) ≤ V(q̃XnYn

K ...Yn
1 Zn

M ...Zn
1
, pXnYn

K ...Yn
1 Zn

M ...Zn
1
).

Therefore, the polar coding scheme satisfies the reliability condition given in Equation (2).

4.5.4. Secrecy Performance

Consider the information leakage at the eavesdropper m ∈ [1, M] given in Equation (20). We obtain:

I(Wm, . . . , WM; F, Z̃n
m) = H

(
Ũ
[
∪M

i=m I
(n)
i
])

+ H
(
Ũ
[
F (n)]∣∣Z̃n

m
)
− H

(
Ũ
[(
∪M

i=m I
(n)
i
)
∪F (n)]∣∣Z̃n

m
)

≤ ∑M
i=m

∣∣I(n)i

∣∣+ ∣∣F (n)
∣∣− H

(
Ũ
[(
∪M

i=m I
(n)
i
)
∪F (n)]∣∣Z̃n

m
)
.

(22)

Now, we provide a lower-bound for the conditional entropy term of Equation (22). First, for large
enough n, ∣∣∣H(Ũ[(∪M

i=m I
(n)
i
)
∪F (n)]∣∣Z̃n

m
)
−H

(
U
[(
∪M

i=m I
(n)
i
)
∪F (n)]∣∣Zn

m
)∣∣∣

(a)
≤
∣∣H(Z̃n

m
)
−H

(
Zn

m
)∣∣+ ∣∣∣H(Ũ[(∪M

i=m I
(n)
i
)
∪F (n)], Z̃n

m
)
−H

(
U
[(
∪M

i=m I
(n)
i
)
∪F (n)], Zn

m
)∣∣∣

(b)
≤ V(q̃Zn

m , pZn
m) log 2n

V(q̃Zn
m

,pZn
m
)

+V(q̃
U[(∪M

i=mI
(n)
i )∪F (n)]Zn

m
, p

U[(∪M
i=mI

(n)
i )∪F (n)]Zn

m
) log 2(n+|(∪

M
i=mI

(n)
i )∪F(n)|)

V(q̃
U[(∪M

i=mI
(n)
i )∪F(n)]Zn

m
,p

U[(∪M
i=mI

(n)
i )∪F(n)]Zn

m
)

(c)
≤ 3nδ

(n)
nld-ls − 2δ

(n)
nld-ls log δ

(n)
nld-ls,

(23)

where (a) holds by the chain rule of entropy and the triangle inequality, (b) holds by [30] (Lemma 2.9)
and (c) holds because the function x 7→ x log x is decreasing for x > 0 small enough and by
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Lemma 2 because V(q̃Zn
m , pZn

m) ≤ V(q̃XnYn
K ...Yn

1 Zn
M...Zn

1
, pXnYn

K ...Yn
1 Zn

M...Zn
1
), as well as by the invertibility of

Gn, V(q̃
U[(∪M

i=mI
(n)
i )∪F (n)]Zn

m
, p

U[(∪M
i=mI

(n)
i )∪F (n)]Zn

m
) ≤ V(q̃XnYn

K ...Yn
1 Zn

M...Zn
1
, pXnYn

K ...Yn
1 Zn

M...Zn
1
). Hence, we have:

H
(
Ũ
[(
∪M

i=m I
(n)
i
)
∪F (n)]∣∣Z̃n

m
)
≥ H

(
U
[(
∪M

i=m I
(n)
i
)
∪F (n)]∣∣Zn

m
)
− (3nδ

(n)
nld-ls − 2δ

(n)
nld-ls log δ

(n)
nld-ls)

(a)
≥ ∑j∈

(
∪M

i=mI
(n)
i

)
∪F (n)H

(
U(j)

∣∣U1:j−1, Zn
m
)
− (3nδ

(n)
nld-ls − 2δ

(n)
nld-ls log δ

(n)
nld-ls)

(b)
≥
(

∑M
i=m

∣∣I(n)i

∣∣+ ∣∣F (n)
∣∣) (1− δn)− (3nδ

(n)
nld-ls − 2δ

(n)
nld-ls log δ

(n)
nld-ls),

(24)

where (a) holds because conditioning does not increase the entropy and (b) holds because, according
to Equations (12)–(14) and Lemma 1, (∪M

i=mI
(n)
i )∪F (n) ⊆ H(n)

X|Zm
, as well as by the definition ofH(n)

X|Zm
in Equation (11).

Finally, by substituting Equation (24) into Equation (22), for n sufficiently large, we obtain:

I(Wm, . . . , WM; F, Z̃n
m) ≤ nδn + 3nδ

(n)
nld-ls − 2δ

(n)
nld-ls log δ

(n)
nld-ls, (25)

Hence, the polar code satisfies the strong secrecy condition in Equation (3), and the proof of
Theorem 1 is concluded.

4.5.5. Reuse of the Source of Common Randomness

Consider that the transmission takes place over B blocks of size n. We use the subscript b ∈ [1, B]
between parentheses to denote random variables associated with the block b. From Lemma 2, we have
V(q̃Un

(b)
, pUn) ≤ δ

(n)
nld-ls for any b ∈ [1, B] because we use the same encoding of Equation (17) at each

block. Hence, by the union bound, the polar code satisfies the reliability condition given in Equation (2)
because:

P
[
∪B

b=1
{

Ûn
(b) 6= Ũn

(b)
}]
≤

B

∑
b=1

P
[
Ûn
(b) 6= Ũn

(b)
]
≤ B(n

√
δn + δ

(n)
nld-ls),

where the last inequality follows from the fact that, since F and Φ(b) are perfectly known, P
[
Ûn
(b) 6= Ũn

(b)

]
only depends on the decoding at block b and, consequently, can be bounded as in Equation (21).

With a slight abuse of notation, let Wm:M,(b1:b2)
, where 1 ≤ b1 ≤ b2 ≤ B, denote the messages

{(Wm,(b), . . . , WM,(b))}
b2
b=b1

. It remains to show that Wm:M,(1:B) is asymptotically statistically independent
of (F, Z̃n

m,(1:B)). Since F is reused at each block, we have to consider the dependencies between the
random variables of different blocks that are involved in the secrecy analysis. According to these
dependencies, which are represented in the Bayesian graph of Figure 4, we obtain:

I(Wm:M,(1:B); Z̃n
m,(1:B), F)

(a)
= I(Wm:M,(1:B); Z̃n

m,(1:B)|F)

=
B−1

∑
b=0

I(Wm:M,(1:B); Z̃n
m,(b+1)|F, Z̃n

m,(1:b))

(b)
≤ B

(
nδn + 3nδ

(n)
nld-ls − 2δ

(n)
nld-ls log δ

(n)
nld-ls

)
,
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where (a) follows from the independence between Wm:M,(1:B) and F, and (b) holds because:

I(Wm:M,(1:B); Z̃n
m,(b+1)|F, Z̃n

m,(1:b))

= I(Wm:M,(1:b+1); Z̃n
m,(b+1)|F, Z̃n

m,(1:b)) + I(Wm:M,(b+2:B); Z̃n
m,(b+1)|F, Z̃n

m,(1:b), Wm:M,(1:b+1))

≤ I(Wm:M,(1:b+1), F, Z̃n
m,(1:b); Z̃n

m,(b+1)) + I(Wm:M,(b+2:B); Z̃n
m,(1:b+1), F, Wm:M,(1:b+1))

(a)
= I(Wm:M,(1:b+1), F, Z̃n

m,(1:b); Z̃n
m,(b+1))

≤ I(Wm:M,(b+1), F; Z̃n
m,(b+1)) + I(Wm:M,(1:b), Z̃n

m,(1:b); Z̃n
m,(b+1)|Wm:M,(b+1), F)

(b)
≤
(
nδn + 3nδ

(n)
nld-ls − 2δ

(n)
nld-ls log δ

(n)
nld-ls

)
+ I(Wm:M,(1:b), Z̃n

m,(1:b); Wm:M,(b+1), Z̃n
m,(b+1)|F)

(c)
= nδn + 3nδ

(n)
nld-ls − 2δ

(n)
nld-ls log δ

(n)
nld-ls,

where (a) holds because the messages at blocks b + 2–B are independent of F and all the random
variables of the previous blocks, (b) follows from Equation (25) and (c) holds by applying
d-separation [31] over the graph of Figure 4 because (Wm:M,(1:b), Z̃n

m,(1:b))← F→ (Wm:M,(b+1), Z̃n
m,(b+1))

forms a common cause and, consequently, (Wm:M,(1:b), Z̃n
m,(1:b)) and (Wm:M,(b+1), Z̃n

m,(b+1)) are
independent given F.

Block (b− 1) Block (b) Block (b + 1)

F

Un
(b−1) Un

(b) Un
(b+1)

Z̃n
m,(b−1) Z̃n

m,(b) Z̃n
m,(b+1)

Wn
1:M,(b−1) Wn

1:M,(b) Wn
1:M,(b+1)

Figure 4. Bayesian graph plotting the dependencies between the random variables of different blocks
that are involved in the secrecy analysis when we consider a transmission over several blocks of size n.

5. Polar Coding Scheme for the DBC-LD-NLS

The polar coding scheme provided in this section is designed to achieve the supremum of the
achievable rates given in Corollary 2 (secrecy-capacity without rate sharing). In this model, there are K
input random variables {V`}K

`=1 (where VK , X), each one corresponding to a different superposition
layer. Consider the DMS

(
V1 × · · · × VK × YK × · · · × Y1 × ZM × · · · × Z1, pV1 ...VKYK ...Y1ZM ...Z1

)
that represents the input and output random variables involved in the achievable subregion of
Corollary 2, where V` = {0, 1} for any ` ∈ [1, K]. Let (Vn

1 , . . . , Vn
K , Yn

K , . . . , Yn
1 , Zn

M, . . . , Zn
1 ) be an i.i.d.

n-sequence of this source. Then, we define the K polar transforms Un
` , Vn

` Gn, where ` ∈ [1, K].
Since V1 −V2 − · · · −VK and, consequently, U1 − U2 − · · · − UK (by the invertibility of Gn) form
a Markov chain, the joint distribution of (Un

1 , . . . , Un
K) satisfies”

pUn
1 ...Un

K
(un

1 , . . . , un
K) ,

K

∏
`=1

n

∏
j=1

p
U`(j)|U1:j−1

` Vn
`−1

(
u`(j)

∣∣u1:j−1
` , un

`−1Gn
)
. (26)
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5.1. Polar Code Construction

Based on pV1 ...VKYK ...Y1ZM ...Z1 , the construction is carried out similarly at each superposition layer.
Consider the polar construction at layer ` ∈ [1, K]. Let δn , 2−nβ

, where β ∈ (0, 1
2 ). For the polar

transform Un
` = Vn

` Gn associated with the `-th layer, we define the sets:

H(n)
V` |V`−1

,
{

j ∈ [n] : H
(
U`(j)

∣∣U1:j−1
` , Vn

`−1
)
≥ 1− δn

}
, (27)

L(n)V` |V`−1
,
{

j ∈ [n] : H
(
U`(j)

∣∣U1:j−1
` , Vn

`−1
)
≤ δn

}
, (28)

L(n)V` |V`−1Yk
,
{

j ∈ [n] : H
(
U`(j)

∣∣U1:j−1
` , Vn

`−1, Yn
k
)
≤ δn

}
, k = `, . . . , K, (29)

H(n)
V` |V`−1Yk

,
{

j ∈ [n] : H
(
U`(j)

∣∣U1:j−1
` , Vn

`−1, Yn
k
)
≥ 1− δn

}
, k = `, . . . , K, (30)

H(n)
V` |V`−1Zm

,
{

j ∈ [n] : H
(
U`(j)

∣∣U1:j−1
` , Vn

`−1, Zn
m
)
≥ 1− δn

}
, m = 1, . . . , M, (31)

where we recall that V0 = ∅ when ` = 1 and VK , X when ` = K. At each layer ` ∈ [1, K], based on
these previous sets, we define the following partition of the universal set [n],

I (n)` , H(n)
V` |V`−1ZM

∩
(
H(n)

V` |V`−1Y`

)C, (32)

F (n)
` , H(n)

V` |V`−1Y`
, (33)

C(n)` , H(n)
V` |V`−1

∩
(
H(n)

V` |V`−1ZM

)C, (34)

T (n)
` ,

(
H(n)

V` |V`−1

)C, (35)

which is graphically represented in Figure 5. The way we define this partition at the `-th layer follows
similar reasoning as the one to define the partition in Section 4.1 for the DBC-NLD-LS. In this sense,
U`[H

(n)
V` |V`−1

] will be suitable for storing uniformly-distributed random sequences. Otherwise, U`[T
(n)
` ]

will not and U`(j) such that j ∈ T (n)
` will be constructed somehow from (U1:j−1

` , V`−1) and the

distribution p
U`(j)|U1:j−1

` Vn
`−1

. Now, U`[I
(n)
` ] will be suitable for storing information to be secured from

all eavesdroppers because I (n)` belongs toH(n)
V` |V`−1ZM

, and by Lemma 1,H(n)
V` |V`−1ZM

⊆ H(n)
V` |V`−1Zm′

for

any m′ ∈ [1, M− 1]. Since C(n)` ⊆ (H(n)
V` |V`−1ZM

)C, U[C(n)` ] will be used to store the local randomness
required to confuse all eavesdroppers about the secret information carried on this layer. According
to [27] (Theorem 2), the legitimate receiver k ∈ [1, K] will be able to reliably infer U`[L

(n)
V` |V`−1Yk

] given

Yn
k and U`[(L

(n)
V` |V`−1Yk

)C]. By Lemma 1, we have (L(n)V` |V`−1Y`
)C ⊇ (L(n)V` |V`−1Yk

)C for any ` < k. Therefore,

given U`[(L
(n)
V` |V`−1Y`

)C], the legitimate receivers `–K will be able to reliably reconstruct Un
` from its

own channel observations. In this sense, U`[F
(n)
` ] will be used to store the random sequence provided

by the source of common randomness. Since F (n)
` ⊆ H(n)

V` |V`−1ZM
, the strong secrecy condition will not

be compromised. On the other hand, U[(H(n)
V` |V`−1Y`

)C ∩ (L(n)V` |V`−1Y`
)C] (hatched areas in Figure 5) will

contain secret information or elements that cannot be known directly by the eavesdroppers. Therefore,
the transmitter somehow will make those elements available to the legitimate receivers `–K keeping
them masked from all eavesdroppers by incurring an asymptotically-negligible rate penalty.

As mentioned in Remark 3, the goal of the polar construction is to obtain the entropy
terms associated with the sets in Equations (27)–(31) and then define the partition of [n] given in
Equations (32)–(35).
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H(n)
V` |V`−1ZM

(
H(n)

V` |V`−1ZM

)C

H(n)
V` |V`−1Y`

(
H(n)

V` |V`−1Y`

)C

H(n)
V` |V`−1

(
H(n)

V` |V`−1

)C

F (n)
` I (n)` C(n)` T (n)

`

Figure 5. Polar code construction for the DBC-LD-NLS at the `-th layer. The hatched area represents

those indices j ∈ (H(n)
V` |V`−1Y`

)C ∩ (L(n)V` |V`−1Y`
)C, which can belong to the sets I (n)` , C(n)` or T (n)

` .

5.2. Polar Encoding

The superposition-based polar encoder will consist of K encoding blocks operating sequentially
at each superposition layer, the block at layer ` ∈ [1, K] being responsible for the construction of Ũn

` .
In order to construct Ũn

` for some ` ∈ [2, K], the encoder block needs Ṽn
`−1 = Ũn

`−1Gn, which have been
constructed previously by the encoding block operating at the (`− 1)-th layer.

Consider the encoding procedure at layer ` ∈ [1, K]. Let W` and C` be uniformly-distributed
random vectors of size |I (n)` | and |C(n)` |, respectively, where W` represents the message intended for
receivers `–K and C` the local randomness required at the `-th layer to confuse all eavesdroppers about
this message. Let F` be a given uniformly-distributed random |F (n)

` |-sequence, which represents the
source of common randomness that is available to all parties. The `-th encoding block constructs the
sequence ũn

` as follows. Given the realizations w`, c` and f`, whose elements have been indexed by

the set of indices I (n)` , C(n)` and F (n)
` , respectively, and given ṽn

`−1 = ũn
`−1Gn provided by the previous

encoding block (recall that ṽn
0 , ∅ at the first layer), the `-th encoding block draws ũn

` from:

q̃
U`(j)|U1:j−1

` Vn
`−1

(
ũ`(j)|ũ1:j−1

` , ṽn
`−1
)

,



1
{

ũ`(j) = w`(j)
}

if j ∈ I (n)` ,

1
{

ũ`(j) = c`(j)
}

if j ∈ C(n)` ,

1
{

ũ`(j) = f`(j)
}

if j ∈ F (n)
` ,

p
U`(j)|U1:j−1

` Vn
`−1

(
ũ`(j)|ũ1:j−1

` , ṽn
`−1

)
if j ∈

(
H(n)

V` |V`−1

)C ∩
(
L(n)V` |V`−1

)C,

1
{

ũ`(j) = ξ
(j)
` (ũ1:j−1

` , ṽn
`−1)

}
if j ∈ L(n)V` |V`−1

,

(36)

where:

ξ
(j)
`

(
ũ1:j−1
` , ṽn

`−1
)
, arg max

u∈V`
p

U`(j)|U1:j−1
` Vn

`−1

(
u
∣∣ũ1:j−1

` , ṽn
`−1
)
, (37)

p
U`(j)|U1:j−1

` Vn
`−1

being the distribution induced by the original DMS. Notice that T (n)
` = ((H(n)

V` |V`−1
)C ∩

(L(n)V` |V`−1
)C) ∪ L(n)V` |V`−1

, and similarly to the previous model, Ũ[L(n)V` |V`−1
] is constructed in

a deterministic way by adapting the SC encoding algorithm in [20]; and Ũ[(H(n)
V` |V`−1

)C ∩ (L(n)V` |V`−1
)C] is

constructed randomly. By [27] (Theorem 1), the rate of the amount of randomness for SC encoding will
be asymptotically negligible. After constructing Ũn

` , the `-th encoding block computes the sequence
Ṽn
` = Ũn

` Gn and delivers it to the next encoding block. If ` = K, then Ṽn
K , X̃n, and the encoder

transmits it over the DBC, which induces the channel outputs (Ỹn
K , . . . , Ỹn

1 , Z̃n
M, . . . , Z̃n

1 ).
Finally, besides the sequence X̃n, the encoder outputs the following additional secret sequences,

Φ` , Ũ`

[(
H(n)

V` |V`−1Y`

)C ∩
(
L(n)V` |V`−1Y`

)C
]
, ` = 1, . . . , K, (38)



Entropy 2018, 20, 467 16 of 35

The sequence Φ` corresponding to the layer ` ∈ [1, K] must be additionally transmitted to the
legitimate receivers `–K keeping it masked from the eavesdroppers. To do so, the transmitter can
perform a modulo-two addition between {Φ`}K

`=1 and a uniformly-distributed secret key privately
shared with the legitimate receivers and somehow additionally send it to them. If K � n,
by [27] (Theorem 1), we have that the overall rate required to transmit these additional secret
sequences is asymptotically negligible, i.e., limn→∞ ∑K

`=1
|Φ` |

n = 0. As for the previous model, the
uniformly-distributed part of any Φ` could be made available to the corresponding legitimate receivers
by using a chaining structure as in [9]. However, this approach will present the same disadvantages as
those mentioned in Remark 4.

5.3. Polar Decoding

Consider that the realizations of {F`}K
`=1 are available to all parties, and the sequences {Φ`}K

`=1
have been successfully received by the corresponding legitimate receivers before the decoding process.

Consider the decoding at the legitimate receiver k ∈ [1, K]. This receiver forms the estimates
{Ûn

` }
k
`=1 of the sequences {Ũn

` }
k
`=1 in a successive manner from Ûn

1 -Ûn
k , and the procedure to estimate

Ũn
` for some ` ∈ [1, k] is as follows. First, given that Φ` and F` are available, the receiver knows

Ũ`[(L
(n)
V` |V`−1Y`

)C]. Moreover, by Lemma 1, (L(n)V` |V`−1Yk

)C ⊆
(
L(n)V` |V`−1Y`

)C for any ` < k. Thus, given

Ũ`[(L
(n)
V` |V`−1Y`

)C], the k-th legitimate receiver performs SC decoding for source coding with side

information [27] to construct Û`[L
(n)
V` |V`−1Y`

] from Ỹn
k , and from V̂n

`−1 = Ûn
`−1Gn estimated previously.

In Section 5.5.3, we show formally that the polar coding scheme satisfies the reliability condition in
Equation (4).

5.4. Information Leakage

Besides the observations Z̃n
m, the eavesdropper m ∈ [1, M] has access to the common randomness

{F`}K
`=1. Therefore, the information about all messages leaked to the m-th eavesdropper is:

I(W1, . . . , WK; F1, . . . , FK, Z̃n
m) = I

(
Ũ1
[
I (n)1

]
, . . . , ŨK

[
I (n)K

]
; Ũ1

[
F (n)

1
]
, . . . , ŨK

[
F (n)

K
]
, Z̃n

m
)
. (39)

In Section 5.5.4, we prove that (W1, . . . , WK) is asymptotically statistically independent of
(F1, . . . , FK, Z̃n

m).

5.5. Performance of the Polar Coding Scheme

The analysis of the polar coding scheme leads to the following theorem.

Theorem 2. Consider an arbitrary DBC
(
X , pYK ...Y1ZM ...Z1|X,YK × · · · × Y1 ×ZM × · · · × Z1

)
such that

X ∈ {0, 1} and pYK ...Y1ZM ...Z1|X satisfies the Markov chain condition X − YK − · · · − Y1 − ZM − · · · − Z1.
The polar coding scheme described in Sections 5.1–5.4 achieves any rate tuple of the achievable region defined in
Corollary 2, satisfying the reliability and strong secrecy conditions in Equations (4) and (5), respectively.

Corollary 5. Since Ũ`[I
(n)
` ] for some ` ∈ [1, K] can contain any information to be reliably decoded by the

legitimate receivers `–K, the coding scheme in Sections 5.1–5.4 can achieve the entire region considering the rate
sharing of Proposition 2 by storing part of any message W`′ such that `′ > ` into Ũ`[I

(n)
` ] instead of part of W`.

Corollary 6. If we consider a communication scenario requiring transmissions over several blocks of size n, the
same realization of the source of common randomness (F1, . . . , FK) that is known by all parties could be used at
each block, and the reliability and the strong secrecy conditions would still be ensured.

As in Theorem 1, the proof of Theorem 2 follows in four steps and is provided in
Sections 4.5.1–4.5.4. The proof of Corollary 5 is immediate. The proof of Corollary 6 is omitted
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because it follows similar reasoning as in Corollary 4. Despite that in this model, we have different
superposition layers, the dependencies between the random variables at different blocks have the
same structure of those graphically represented in Figure 4.

5.5.1. Transmission Rates

We prove that the polar coding scheme approaches the corner point of the subregion defined in
Corollary 2. For any ` ∈ [1, K], the transmission rate R` corresponding to the message W` satisfies:

limn→∞ R` = limn→∞
1
n

∣∣I (n)`

∣∣ (a)
= limn→∞

1
n

∣∣∣H(n)
V` |V`−1ZM

∩
(
H(n)

V` |V`−1Y`

)C
∣∣∣

(b)
= limn→∞

1
n

∣∣H(n)
V` |V`−1ZM

∣∣− limn→∞
1
n

∣∣H(n)
V` |V`−1Y`

∣∣
(c)
= I(V`; Y`|V`−1)− I(V`; ZM|V`−1),

(40)

where (a) follows from the definition of the set I (n)` in Equation (32), (b) holds because, by Lemma 1,

H(n)
V` |V`−1ZM

⊇ H(n)
V` |V`−1Y`

, and (c) holds by [27] (Theorem 1).

5.5.2. Distribution of the DMS after the Polar Encoding

Let q̃Un
1 ...Un

K
be the distribution of (Ũn

1 , . . . , Ũn
K) after the encoding in Section 5.2. The following

lemma shows that q̃Un
1 ...Un

K
and pUn

1 ...Un
K

of the DMS are nearly statistically indistinguishable for
sufficiently large n and, consequently, so are the overall distributions q̃Vn

1 ...Vn
K Yn

K ...Yn
1 Zn

M ...Zn
1

and
pVn

1 ...Vn
K Yn

K ...Yn
1 Zn

M ...Zn
1
.

Lemma 3. Let δn = 2−nβ
for some β ∈ (0, 1

2 ). Then,

V(q̃Un
1 ...Un

K
, pUn

1 ...Un
K
) ≤ δ

(n)
ld-nls,

V(q̃Vn
1 ...Vn

K Yn
K ...Yn

1 Zn
M ...Zn

1
, pVn

1 ...Vn
K Yn

K ...Yn
1 Zn

M ...Zn
1
) = V(q̃Un

1 ...Un
K

, pUn
1 ...Un

K
) ≤ δ

(n)
ld-nls,

where δ
(n)
ld-nls , Kn

√
4
√

nδn ln 2
(
2n− log

(
2
√

nδn ln 2
))

+ δn +
√

K2nδn ln 2.

Proof. See Appendix A setting L = K.

Remark 6. The first term of δ
(n)
ld-nls bounds the impact on the total variation distance of using the deterministic

SC encoding in Equation (37) for Ũ`

[
L(n)V` |V`−1

]
at each layer ` ∈ [1, K]. The second term bounds the impact of

storing uniformly-distributed random sequences that are independent of Ṽn
`−1 into Ũ`

[
H(n)

V` |V`−1

]
.

5.5.3. Reliability Performance

Consider the probability of incorrectly decoding {W`}k
`=1 at the legitimate receiver k ∈ [1, K].

Let q̃Vn
` Yn

k
and pVn

` Yn
k

for any ` ≤ k be marginals of q̃Vn
1 ...Vn

K Yn
K ...Yn

1 Zn
M ...Zn

1
and pVn

1 ...Vn
K Yn

K ...Yn
1 Zn

M ...Zn
1
,

respectively. Consider an optimal coupling [29] (Proposition 4.7) between q̃Vn
` Yn

k
and pVn

` Yn
k

such that:

P
[
EVn

` Yn
k

]
= V(q̃Vn

` Yn
k

, pVn
` Yn

k
),

where EVn
` Yn

k
, {(Ṽn

` , Ỹn
k ) 6= (Vn

` , Yn
k )} or, equivalently, EVn

` Yn
k
, {(Ũn

` , Ỹn
k ) 6= (Un

` , Yn
k )} due to the

invertibility of Gn. Furthermore, for all ` ∈ [1, k], we define the error events EV̂n
`
, {V̂n

` 6= Ṽn
` } or,

equivalently, EV̂n
`
, {Ûn

` 6= Ũn
` }; and we define EV̂n

0
, ∅. Hence, for any ` ∈ [1, k], the average

probability of incorrectly decoding the message W` at the k-th receiver can be upper-bounded as:
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P[Ŵ` 6= W`] ≤ P
[
Ûn
` 6= Ũn

`

]
= P

[
Ûn
` 6= Ũn

`

∣∣EC
Vn
` Yn

k
∩ EC

V̂n
`−1

]
P
[
EC

Vn
` Yn

k
∩ EC

V̂n
`−1

]
+P
[
Ûn
` 6= Ũn

`

∣∣EVn
` Yn

k
∪ EV̂n

`−1

]
P
[
EVn

` Yn
k
∪ EV̂n

`−1

]
≤ P

[
Ûn
` 6= Ũn

`

∣∣EC
Vn
` Yn

k
∩ EC

V̂n
`−1

]
+ P

[
EVn

` Yn
k

]
+ P

[
EV̂n

`−1

]
(a)
≤ ∑j∈L(n)V` |V`−1Y`

Z
(
U`(j)

∣∣U1:j−1
` , Vn

`−1, Yn
k
)
+ P

[
EVn

` Yn
k

]
+ P

[
EV̂n

`−1

]
(b)
≤ n
√

δn + P
[
EVn

` Yn
k

]
+ P

[
EV̂n

`−1

]
(c)
≤ n
√

δn + δ
(n)
ld-nls + P

[
EV̂n

`−1

]

(41)

where (a) holds by [27] (Theorem 2) because Ũ`[(L
(n)
V` |V`−1Y`

)C] for any ` ≤ k is available to the

k-th receiver, (b) holds by Lemma 1, by the definition of the set L(n)V` |V`−1Y1
in Equation (29) and

by applying [27] (Proposition 2) and (c) holds by the optimal coupling and Lemma 3 because
V(q̃Vn

` Yn
k

, pVn
` Yn

k
) ≤ V(q̃Vn

1 ...Vn
K Yn

K ...Yn
1 Zn

M ...Zn
1
, pVn

1 ...Vn
K Yn

K ...Yn
1 Zn

M ...Zn
1
). Thus, by induction, we obtain:

P
[
(Ŵ1, . . . Ŵk) 6= (W1, . . . , Wk)

]
≤

k

∑
`=1

P[Û` 6= Ũ`] ≤
k(k + 1)

2
(
n
√

δn + δ
(n)
ld-nls

)
. (42)

Consequently, if K � n, the polar coding scheme satisfies the reliability condition in Equation (4).

5.5.4. Secrecy Performance

Consider the leakage at the eavesdropper m ∈ [1, M] given in Equation (39). As in Equation (22),
we obtain:

I(W1, . . . , WK; F1, . . . , FK, Z̃n
m)≤

K

∑
`=1

∣∣I (n)` ∪F
(n)
`

∣∣−H
(
Ũ1
[
I (n)1 ∪F

(n)
1
]
, . . . , ŨK

[
I (n)K ∪F

(n)
K
]∣∣Z̃n

m
)
. (43)

Following similar reasoning as in Equation (23), for n large enough, we have:∣∣∣H(Ũ1
[
I (n)1 ∪F

(n)
1
]
, . . . , ŨK

[
I (n)K ∪F

(n)
K
]∣∣Z̃n

m
)
− H

(
U1
[
I (n)1 ∪F

(n)
1
]
, . . . , UK

[
I (n)K ∪F

(n)
K
]∣∣Zn

m
)∣∣∣

(a)
≤ V(q̃Zn

m , pZn
m) log 2n

V(q̃Zn
m

,pZn
m
)
+V† log 2(n+∑K

`=1 |I
(n)
`
∪F (n)

`
|)

V†

(b)
≤ (K + 2)nδ

(n)
ld-nls − 2δ

(n)
ld-nls log δ

(n)
ld-nls,

(44)

where (a) holds by defining V† , V(q̃
U1[I

(n)
1 ∪F

(n)
1 ],...,UK [I

(n)
K ∪F

(n)
K ]Zn

m
, p

U1[I
(n)
1 ∪F

(n)
1 ],...,UK [I

(n)
K ∪F

(n)
K ]Zn

m
)

and [30] (Lemma 2.9) and (b) follows from Lemma 2 by using similar reasoning as in Equation (23)
and because the function x 7→ x log x is decreasing for x > 0 small enough. Hence, we obtain:

H
(
Ũ1
[
I (n)1 ∪ F (n)

1
]
, . . . , ŨK

[
I (n)K ∪ F (n)

K
]∣∣Z̃n

m
)

≥ H
(
U1
[
I (n)1 ∪ F (n)

1
]
, . . . , UK

[
I (n)K ∪ F (n)

K
]∣∣Zn

m
)
− ((K + 2)nδ

(n)
ld-nls − 2δ

(n)
ld-nls log δ

(n)
ld-nls)

(a)
≥ ∑K

`=1 ∑j∈I (n)` ∪F
(n)
`

H
(
U`(j)

∣∣U1:j−1
` , Vn

`−1, Zn
m
)
− ((K + 2)nδ

(n)
ld-nls − 2δ

(n)
ld-nls log δ

(n)
ld-nls)

(b)
≥ ∑K

`=1
∣∣I (n)` ∪ F (n)

`

∣∣ (1− 2δn)− ((K + 2)nδ
(n)
ld-nls − 2δ

(n)
ld-nls log δ

(n)
ld-nls),

(45)

where (a) holds because conditioning does not increase the entropy and because Un
1 − · · · −Un

K−1−Un
K

forms a Markov chain and the invertibility of Gn and (b) holds because, according to Equations (32) and
(33), I (n)` ∪F

(n)
` ⊆ H(n)

V` |V`−1ZM
for all ` ∈ [1, K], because by Lemma 1, we haveH(n)

V` |V`−1ZM
⊆ H(n)

V` |V`−1Zm

for any m ∈ [1, M− 1], and by the definition of the setH(n)
V` |V`−1Zm

given in Equation (31).
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Finally, by substituting Equation (45) into Equation (43), we obtain:

I(W1, . . . , WK; F1, . . . , FK, Z̃n
m) ≤ nδn + (K + 2)nδ

(n)
ld-nls − 2δ

(n)
ld-nls log δ

(n)
ld-nls, (46)

Hence, if K � n, the polar code satisfies the secrecy condition in Equation (5), and the proof
is concluded.

6. Polar Construction and Performance Evaluation

In this section, we discuss further how to construct the polar codes for the DBC-NLD-LS and
DBC-LD-NLS proposed in Sections 4 and 5, respectively. Moreover, we evaluate the reliability and the
secrecy performance of both polar coding schemes according to different parameters involved in the
polar code construction. Although the construction of polar codes has been covered in a large number
of references (see, for instance, [21–23]), they only focus on polar codes under reliability constraints.

For the DBC-NLD-LS, we consider the Binary Erasure Broadcast Channel (BE-BC), where each
individual channel of the DBC is a Binary Erasure Channel (BEC). For this model, we propose
a construction of the polar code that is based on the Bhattacharyya parameters instead of the
corresponding entropy terms. The reason is that, for the BE-BC, the Bhattacharyya parameters
associated with the sets in Equations (7)–(11) can be computed exactly [7] (Proposition 5). Then,
we evaluate the reliability and the secrecy performance of the code, and we focus on how different
parameters involved in the proposed polar code construction impact its performance.

On the other hand, for the DBC-LD-NLS, we consider the Binary Symmetric Broadcast Channel
(BS-BC), where each individual channel is a Binary Symmetric Channel (BSC). From [7] (Proposition 5),
we know that the method to compute the exact values of the Bhattacharyya parameters for a BEC
provides an upper-bound on the Bhattacharyya parameters of the BSC. Although this method can
be useful to construct polar codes under reliability constraints [21–23], it fails when the code must
guarantee some secrecy condition based on the information leakage. Indeed, in order to upper-bound
the information leakage in Equation (39), according to Equation (45), notice that we need a lower-bound
on the entropy terms (or Bhattacharyya parameters). Hence, for this model, we focus more on
proposing a new polar code construction that is based directly on the entropy terms associated with
the sets in Equations (27)–(31).

Throughout this section, as in [7], we say that a channel or a conditional distribution pY|X(y|x)
with x ∈ X , {0, 1} and y ∈ Y , {0, . . . , |Y| − 1} is symmetric if the columns of the probability

transition matrix PY|X ,
[

pY|X(0|0) · · · pY|X(|Y| − 1|0)
pY|X(0|1) · · · pY|X(|Y| − 1|1)

]
can be grouped into sub-matrices such that

for each sub-matrix, each row is a permutation of each other row and each column is a permutation of
each other column. Therefore, the individual channels of both BE-BC and the BS-BC are symmetric.

Due to the symmetry of BE-BC, we will see that the distribution induced by the encoding described
in Section 4.2 for the DBC-NLD-LS will approach exactly the optimum distribution of the original DMS
used in the polar code construction. Consequently, the performance of the polar code will depend only
on the parameters involved in the construction. On the other hand, despite the symmetry of the BS-BC,
due to its superposition-based structure, the encoding described in Section 5.2 for the DBC-NLD-LS
only approaches the target distribution asymptotically. Hence, this encoding will impact the reliability
and secrecy performance of the polar code when we consider a finite blocklength.

6.1. DBC-NLD-LS

For this model, we consider BE-BC with two legitimate receivers (K = 2) and two eavesdroppers
(M = 2). Therefore, each individual channel is a BEC with X , {0, 1} and Yk = Zm , {0, 1, E}, E
being the erasure symbol and k, m ∈ {1, 2}. The individual channels are defined simply by their erasure
probability, which is denoted by εYk for the corresponding legitimate receiver k (P[Yk = E] = εYk ) and
εZm for the eavesdropper m (P[Zm = E] = εZm ). Due to the degradedness condition of the broadcast
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channel given in Equation (1), we have εY2 < εY1 < εZ2 < εZ1 . By properly applying [19] (Proposition
3.2), it is easy to shown that the secrecy-capacity achieving distribution p?X for this model is the uniform,
i.e., p?X(x) = 1

2 ∀x ∈ {0, 1}. For the simulations, we consider a BE-BC such that εY2 = 0.01, εY1 = 0.04,
εZ2 = 0.2 and εZ1 = 0.35. According to Corollary 1 and since p?X(x) is uniform, we obtain that the
capacity without considering rate sharing is R?

1 = 0.15 and R?
2 = 0.16.

6.1.1. Practical Polar Code Construction

Given the blocklength n and the distribution p?XY2Y1Z2Z1
= p?X pY2Y1Z2Z1|X, the goal of the polar

code construction is to obtain the partition of the universal set [n] defined in Equations (12)–(16)
and graphically represented in Figure 3. Hence, we need to define first the required sets of
Equations (7)–(11), which means having to compute the entropy terms {H(U(j)|U1:j−1)}n

j=1,

{H(U(j)|U1:j−1, Yn
1 )}n

j=1 and {H(U(j)|U1:j−1, Zn
m)}n

j=1 ∀m ∈ {1, 2} associated with the polar
transform Un = XnGn. Alternatively, as mentioned in Section 3, we can define the sets in
Equations (7)–(11) from the corresponding Bhattacharyya parameters. Indeed, since each individual
channel is a BEC, by [7] (Proposition 5), we can compute with very low complexity the exact values
of {Z(U(j)|U1:j−1)}n

j=1, {Z(U(j)|U1:j−1, Yn
1 )}n

j=1 and {Z(U(j)|U1:j−1, Zn
m)}n

j=1 ∀m ∈ {1, 2}. To do
so, we use the recursive algorithm [22] (PCC-0) adapted to the BEC, which, for instance, will obtain
{Z(U(j)|U1:j−1, Yn

1 )}n
j=1 from the initial value Z(X|Y1) = εY1 (the entire code in MATLAB used for this

section is provided as Supplementary Material—see Endnote [32]). Regarding {Z(U(j)|U1:j−1)}n
j=1,

since p?X is uniform, it is clear that Z(U(j)|U1:j−1) = H(U(j)|U1:j−1) = 1 for all j ∈ [n], which means

H(n)
X = [n]. Consequently, the set T (n) = ∅, and according to Equation (17), neither random, nor

deterministic SC encoding will be needed.
In order to compare the performance of the polar coding scheme according to different

parameters and to provide more flexibility in the design, instead of using only δn to define the

sets in Equations (7)–(11), we introduce the pair (δ(r)n , δ
(s)
n ), where δ

(r)
n , 2−nβ(r)

and δ
(s)
n , 2−nβ(s)

for
some β(r), β(s) ∈ (0, 1

2 ). Let R′1 ∈ [0, R?
1 ] and R′2 ∈ [0, R?

2 ] denote the target rates that the polar coding
scheme must approach. We obtain the partition defined in Equations (12)–(16) as follows. First, we
define

(
H(n)

X|Y1

)C
,
{

j ∈ [n] : H
(
U(j)

∣∣U1:j−1, Yn
1
)
≤ 1− δ

(s)
n
}

, where one can notice that we have used

δ
(s)
n . Then, we choose I (n)2 by taking the dnR′2e indices j ∈

(
H(n)

X|Y1

)C that correspond to the highest

Bhattacharyya parameters {Z(U(j)|U1:j−1, Zn
2 )}n

j=1 for Eavesdropper 2. Second, we choose I (n)1 by

taking the dnR′1e indices j ∈
(
H(n)

X|Y1

)C \ I (n)2 that correspond to the highest Bhattacharyya parameters

{Z(U(j)|U1:j−1, Zn
1 )}n

j=1 for Eavesdropper 1. Finally, we obtain C(n) =
(
H(n)

X|Y1

)C \
(
I (n)1 ∪ I (n)2

)
and

F (n) = H(n)
X|Y1

. Furthermore, in order to evaluate the reliability performance of the code, we define

L(n)X|Y1
,
{

j ∈ [n] : H
(
U(j)

∣∣U1:j−1, Yn
1
)
≤ δ

(r)
n
}

, where one can notice that we have used δ
(r)
n . Since the

additional secret sequence Φ corresponds to those entries belonging to
(
H(n)

X|Y1

)C ∩
(
L(n)X|Y1

)C, its length

will depend on (δ
(r)
n , δ

(s)
n ). According to the polar code construction proposed in this section, notice that

δ
(s)
n must be small enough to guarantee that

∣∣(H(n)
X|Y1

)C∣∣ ≥ R′1 + R′2.

6.1.2. Performance Evaluation

First, notice that the encoding of Section 4.2 will induce a distribution q̃XnYn
2 Yn

1 Zn
2 Zn

1
= p?XnYn

2 Yn
1 Zn

2 Zn
1

because T (n) = ∅ (we do not use SC encoding), and the encoder will store uniformly-distributed
sequences into the entries U(j) that satisfy H(U(j)|U1:j−1) = 1 for all j ∈ H(n)

X = [n]. Hence,
V(q̃XnYn

2 Yn
1 Zn

2 Zn
1
, p?XnYn

2 Yn
1 Zn

2 Zn
1
) = 0, and the performance will only depend on the code construction.
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To evaluate the reliability performance, we obtain an upper-bound Pub(1)
b on the average bit error

probability at the legitimate Receiver 1. Since V(q̃XnYn
2 Yn

1 Zn
2 Zn

1
, p?XnYn

2 Yn
1 Zn

2 Zn
1
) = 0, from Equation (21),

we have:

Pub(1)
b ,

1∣∣L(n)X|Y1

∣∣ ∑
j∈L(n)X|Y1

Z
(
U(j)

∣∣U1:j−1, Yn
1
)
. (47)

Due to the degradedness condition of the BE-BC and, consequently, by Lemma 1, the average bit
error probability at the legitimate Receiver 2 will be always less than the one at the legitimate Receiver
1. Since the legitimate receivers must estimate the entries belonging to L(n)X|Y1

regardless of
(
H(n)

X|Y1

)C

and the target rates (R′1, R′2), the reliability performance only depends on the pair (n, δ
(r)
n ).

In order to evaluate the secrecy performance, we compute an upper-bound on the
information leakage I(W1, W2; F, Z̃n

1 ) and an upper-bound on the information leakage I(W2; F, Z̃n
2 ).

Since V(q̃XnYn
2 Yn

1 Zn
2 Zn

1
, p?XnYn

2 Yn
1 Zn

2 Zn
1
) = 0, from Equations (22) and (24), we obtain:

Iub(W1, W2; F, Z̃n
1 ) ,

2

∑
i=1

∣∣I (n)i

∣∣+ ∣∣F (n)∣∣− ∑
j∈I (n)1 ∪I

(n)
2 ∪F (n)

Z
(
U(j)

∣∣U1:j−1, Zn
1
)2, (48)

Iub(W2; F, Z̃n
2 ) ,

∣∣I (n)2

∣∣+ ∣∣F (n)∣∣− ∑
j∈I (n)2 ∪F (n)

Z
(
U(j)

∣∣U1:j−1, Zn
2
)2, (49)

where we have used [27] (Proposition 2) to express the information leakage in terms of the
Bhattacharyya parameters because H(U(j)|U1:j−1, Zn

m) ≥ Z(U(j)|U1:j−1, Zn
m)

2. According to the
proposed polar code construction, the secrecy performance will depend on (n, δ

(s)
n ) and the rates

(R′1, R′2), but not on δ
(r)
n .

Additionally, we evaluate the rate of the additional sequence Φ simply by computing:

1
n
|Φ| = 1

n

∣∣∣(H(n)
X|Y1

)C ∩
(
L(n)X|Y1

)C
∣∣∣, (50)

which will depend on the triple (n, δ
(r)
n , δ

(s)
n ), but not on (R′1, R′2).

Let ρR be the normalized target rate in which the polar coding scheme operates, that is

ρR ,
R′1
R?

1
=

R′2
R?

2
. In Figure 6A,B, we evaluate the upper-bounds on the information leakage defined

in Equations (48) and (49), respectively, as a function of the blocklength n for different values of
ρR. To do so, we set β(r) = 0.16 and β(s) = 0.30, which defines a particular pair (δ(r)n , δ

(s)
n ) for each

value of n (recall that δ
(r)
n does not impact on the secrecy performance of the polar code). As we

proved in Section 4.5.4, for large enough n, the secrecy performance improves as n increases. Moreover,
to achieve a particular secrecy performance level, the polar code will require a larger blocklength n as
the rates approach the capacity. This happens because, given (n, δ

(s)
n ) and, consequently,

(
H(n)

X|Y1

)C,

the parameter ρR only determines the amount of indices that will belong to I (n)1 ∪ I (n)2 ⊆
(
H(n)

X|Y1

)C.
Since, by construction, we take those indices corresponding to the highest Bhattacharyya parameters
associated with the eavesdroppers, taking more elements always increases the corresponding leakage.
For rates approaching the capacity and small values of n, notice that we obtain a secrecy performance
that is getting worse as n increases (for instance, for ρR = 0.94, we obtain that the information leakage
is increasing from n = 29 to n = 212). This behavior is mainly explained because the elements of Un

have not been polarized enough for small values of n. Consequently, for a given value of β(s), not
all the Bhattacharyya parameters associated with the eavesdroppers corresponding to the sets I (n)1

and I (n)2 are sufficiently close to one. Since, for a given ρR, the cardinality of I (n)1 and I (n)2 increases
with n, then the information leakage can increase with n when n is not large enough. Moreover, since



Entropy 2018, 20, 467 22 of 35

operating at lower rates means taking a fewer number of indices in I (n)1 and I (n)2 , but taking those that
are closest to one, this behavior appears only for large values of ρR.
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Figure 6. Secrecy performance of the polar coding scheme for DBC-NLD-LS over BE-BC as a function
of the blocklength n and the normalized target rate ρR when we set β(r) = 0.16 and β(s) = 0.30.
(A) Upper-bound on the information about (W1, W2) leaked to Eavesdropper 1 defined as in
Equation (48). (B) Upper-bound on the information about W2 leaked to Eavesdropper 2 defined
as in Equation (49).

The impact of δ
(s)
n on the secrecy performance is graphically represented in Figure 7A,B,

where the former plots the upper-bound defined in Equation (48) and the latter the upper-bound
in Equation (49) as a function of the blocklength n for different values of β(s). Now, we set
β(r) = 0.16 and ρR = 0.90. As can be seen in Figure 7, the secrecy performance improves as the
value of β(s) increases (or equivalently, as δ

(s)
n decreases). This behavior is as expected because

notice that δ
(s)
n defines the value of the highest Bhattacharyya parameter Z

(
U(j)

∣∣U1:j−1, Yn
1
)

that

will belong to
(
H(n)

X|Y1

)C, that is the set containing the possible candidates for I (n)1 ∪ I (n)2 . Since

the polar construction chooses the indices that will belong to I (n)1 and I (n)2 by taking the ones
corresponding to the highest Bhattacharyya parameters associated with the eavesdroppers and since,
by Lemma 1, Z

(
U(j)

∣∣U1:j−1, Zn
1
)
≥ Z

(
U(j)

∣∣U1:j−1, Zn
2
)
≥ Z

(
U(j)

∣∣U1:j−1, Yn
1
)

for any j ∈ [n], the

sums in Equations (48) and (49) over the indices j ∈ I (n)1 ∪ I (n)2 will be larger as β(s) increases (as

δ
(s)
n decreases), while their cardinality remains the same for a given ρR. Furthermore, notice that δ

(s)
n

also defines F (n) = H(n)
X|Y1

= {j ∈ [n] : Z
(
U(j)

∣∣U1:j−1, Yn
1
)
> 1− δ

(s)
n }. Thus, the larger is the value

of β(s) (the lower is δ
(s)
n ), the smaller is the cardinality of F (n) and the higher are the Bhattacharyya

parameters associated with the eavesdroppers that belong to this set.
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Figure 7. Secrecy performance of the polar coding scheme for DBC-NLD-LS over BE-BC as a function

of n and β(s), which defines δ
(s)
n for each n, when we set β(r) = 0.16 and ρR = 0.90. (A) Upper-bound on

the information about (W1, W2) leaked to Eavesdropper 1 defined as in Equation (48). (B) Upper-bound
on the information about W2 leaked to Eavesdropper 2 defined as in Equation (49).

Figure 8 plots the upper-bound on the average bit error probability at the legitimate Receiver 1
defined in Equation (47) as a function of the blocklength n for different values of β(r) (which defines
a particular δ

(r)
n for each n). For this figure, we set β(s) = 0.30 and ρR = 0.90. As can be seen in Figure 8,

the higher is the value of β(r) (the smaller is the value of δ
(r)
n ), the better is the reliability performance

of the polar code. This is because δ
(r)
n defines the higher Bhattacharyya parameter associated with

the legitimate Receiver 1 whose corresponding index will belong to the set L(n)X|Y1
(recall that this set

contains the indices of those entries that the legitimate receivers have to estimate). Hence, it is clear
that the upper-bound in Equation (47) is decreasing as δ

(r)
n decreases (as β(r) increases). Moreover,

as we have proven in Section 4.5.3, we can see that the reliability performance is always improving as
n increases.

Finally, how the values of the pair (β(r), β(s)), or equivalently, the values of (δ(r)n , δ
(s)
n ), impact the

rate of the additional secret sequence Φ given in Equation (50) is represented graphically in Figure 9.
In Figure 9A, we set ρR = 0.90 and β(r) = 0.16, and we represent the rate of Φ as a function of
the blocklength n for different values of β(s). Otherwise, in Figure 9B, we evaluate the rate of Φ
as a function of n for different values of β(r) when ρR = 0.90 and β(s) = 0.30. As mentioned in
Section 4.2, this rate tends to be negligible for sufficiently large n. Moreover, according to the polar
code construction proposed previously, for a fixed n, the cardinality of the set

(
H(n)

X|Y1

)C ∩
(
L(n)X|Y1

)C

will be higher for larger values of (β(r), β(s)), or equivalently, smaller values of (δ(r)n , δ
(s)
n ). Therefore,

as can be seen in Figure 9, it is clear that higher values of (β(r), β(s)) mean also higher rate of the
additional secret sequence.
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Figure 8. Reliability performance of the polar coding scheme for DBC-NLD-LS over BE-BC as a function

of n and β(r), which defines δ
(r)
n for each n, when we set β(s) = 0.30 and ρR = 0.90. That is, the bound

Pub(1)
b on the average bit error probability at the legitimate Receiver 1 is defined as in Equation (47).
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Figure 9. Rate of the additional secret sequence Φ computed as in Equation (50) for DBC-NLD-LS over

BE-BC as a function of the blocklength n for different values of (β(r), β(s)), which defines (δ(r)n , δ
(s)
n ) for

each n. (A) Rate of Φ for different values of β(s) when β(r) = 0.16 and ρR = 0.90. (B) Rate of Φ for
different values of β(r) when β(s) = 0.30 and ρR = 0.90.

In conclusion, Figures 6–9 show that, for a particular value of the blocklength n, there is a trade-off
between the reliability or the secrecy performance of the polar code and the length of the additional
secret sequence Φ, which can be controlled by the value of β(r) or β(s), respectively, in the polar code
construction. Moreover, for sufficiently large n, the performance of the polar coding scheme always is
improving as n increases. Indeed, these figures show that we can transmit at rates very close to the
capacity, providing good reliability and secrecy performance levels.

6.2. DBC-LD-NLS

For this model, we consider BS-BC with two legitimate receivers (K = 2) and two eavesdroppers
(M = 2). Hence, each individual channel is a BSC where X = Yk = Zm = {0, 1}, and k, m ∈ {1, 2}.
The individual channels are defined simply by their crossover probability, which is denoted by αYk

for the corresponding legitimate receiver k (P[Yk = 0|X = 1] = P[Yk = 1|X = 0] = αYk ) and αZm

for the corresponding eavesdropper m (P[Zm = 0|X = 1] = P[Zm = 0|X = 1] = αZm ). Due to the
degradedness condition of the broadcast channel given in Equation (1), we have αY2 < αY1 < αZ2 < αZ1 .
Due to the symmetry of the channel, it is easy to prove by using similar reasoning as in [33] (Ex. 15.6.5)
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and by properly applying [19] (Proposition 3.2) that the secrecy-capacity achieving distribution p?VX
satisfies p?V(v) = p?X(x) = 1

2 ∀v, x ∈ {0, 1}, and consequently, p?X|V is symmetric. Thus, the distribution

p?X|V can be characterized simply by the crossover probability αX|V , p?X|V(0|1) = p?X|V(1|0), where

αX|V ∈ [0, 1
2 ]. Indeed, the overall rate in Proposition 2 is maximized when αX|V = 1

2 , which implies
that R1 = 0. Then, by taking αX|V < 1

2 , we can transfer part of the rate associated with the message W2

to the rate R1, R2 = 0 and R1 being maximum if αX|V = 0. For the simulations, we consider a BS-BC
with αY2 = 0.01, αY1 = 0.04, αZ2 = 0.2 and αZ1 = 0.35. We set αX|V = 0.1084, which corresponds to the
distribution that maximizes ln(R1) + ln(R2) for this particular channel (proportional fair allocation).
Thus, according to Corollary 2, the maximum achievable rates are R?

1 = 0.2507 and R?
2 = 0.3254.

6.2.1. Practical Polar Code Construction

Given the blocklength n and the distribution p?VXY2Y1Z2Z1
= p?VX pY2Y1Z2Z1|X , the goal of the polar

code construction is to obtain the partition of the universal set [n] defined in Equations (32)–(35) and
graphically represented in Figure 5. Hence, we need to define first the sets in Equations (27)–(31), which
means having to compute the entropy terms {H(U1(j)|U1:j−1

1 )}n
j=1, {H(U1(j)|U1:j−1

1 , Yn
1 )}n

j=1 and

{H(U1(j)|U1:j−1
1 , Zn

2 )}n
j=1 associated with the polar transform Un

1 = VnGn for the first superposition

layer and {H(U2(j)|U1:j−1
2 , Vn)}n

j=1, {H(U2(j)|U1:j−1
2 , Vn, Yn

2 )}n
j=1 and {H(U2(j)|U1:j−1

2 , Vn, Zn
2 )}n

j=1
associated with the polar transform Un

2 = XnGn for the second layer. In the following, we propose
an adaptation of the Monte Carlo method [22] (PCC-1), which is based on the butterfly algorithm
described in [7] for SC decoding, to directly estimate these entropy terms.

Monte-Carlo method to estimate the entropy terms. First, consider the entropy terms associated
with to the first layer. As for the previous model, since p?V(v) = 1

2 , we have H(U1(j)|U1:j−1
1 ) = 1

for all j ∈ [n]. In order to compute {H(U1(j)|U1:j−1
1 , Yn

k )}
n
j=1 and {H(U1(j)|U1:j−1

1 , Zn
m)}n

j=1 for some
k, m ∈ {1, 2}, we run the Monte Carlo simulation as follows. First, due to the symmetry of the channel
and the symmetry of p?X|V , as in [22] (PCC-1), we can set vn = un

1 = 0n at each iteration. For the

realization τ ∈ [1, Nτ ], Nτ being the number of realizations, we randomly generate yn(τ)
k and zn(τ)

m from
p?Yn

k |Vn and p?Zn
m |Vn , respectively (by abuse of notation, we use (τ) in any sequence an(τ) to emphasize

that it is generated at the iteration τ ∈ [1, Nτ ]). Next, we obtain the log-likelihood ratios {L(τ)
Yk |V

(j)}n
j=1

and {L(τ)
Zm |V(j)}n

j=1 by using the algorithm [22] (PCC-1). For instance, consider {L(τ)
Yk |V

(j)}n
j=1. From the

initial values {p?Yk |V
(y(τ)k (j)|0)/p?Yk |V

(y(τ)k (j)|1)}n
j=1, the algorithm recursively computes:

L(τ)
Yk |V

(j) , ln
p?

Yn
k U1:j−1

1 |U1(j)
(yn(τ)

k , 0j−1|0)

p?
Yn

k U1:j−1
1 |U1(j)

(yn(τ)
k , 0j−1|1)

(a)
=

p?
U1(j)|U1:j−1

1 Yn
k

(0|0j−1, yn(τ)
k )

1− p?
U1(j)|U1:j−1

1 Yn
k

(0|0j−1, yn(τ)
k )

,

for all j ∈ [n], where (a) follows from the fact that p?U1(j)(0) = p?U1(j)(1) =
1
2 because H(U1(j)|U1:j−1

1 ) = 1

for all j ∈ [n]. Hence, we can obtain p?
U1(j)|U1:j−1

1 Yn
k

(0|0j−1, yn(τ)
k ) from L(τ)

Yk|V
(j), and since:

H(U1(j)|U1:j−1
1 , Yn

k ) = E
U1:j−1

1 Yn
k

[
h2

(
p?

U1(j)|U1:j−1
1 Yn

k
(0|u1:j−1

1 , yn
k )

)]
,

after Nτ realizations, we can estimate H(U1(j)|U1:j−1
1 , Yn

k ) by computing the empirical mean, that is,

H(U1(j)|U1:j−1
1 , Yn

k ) ≈
1

Nr

Nτ

∑
τ=1

h2

(
p?

U1(j)|U1:j−1
1 Yn

k
(0|0j−1, yn(τ)

k )

)
.



Entropy 2018, 20, 467 26 of 35

Now, consider the Monte Carlo method to estimate {H(U2(j)|U1:j−1
2 , Vn)}n

j=1,

{H(U2(j)|U1:j−1
2 , Vn, Yn

k )}
n
j=1 and {H(U2(j)|U1:j−1

2 , Vn, Zn
m)}n

j=1 for any k, m ∈ {1, 2} associated

with the second layer. To obtain {H(U2(j)|U1:j−1
2 , Vn)}n

j=1, we can see X and V as the input and
output random variables, respectively, of a symmetric channel with distribution p?V|X. Now, although

p?X is uniform and, consequently, H(U2(j)|U1:j−1
2 ) = 1 for all j ∈ [n], notice that H(n)

X|V 6= [n] and

T (n)
1 6= ∅ because H(n)

X|V and its complementary set depend on p?X|V . On the other hand, to obtain

{H(U2(j)|U1:j−1
2 , Vn, Yn

k )}
n
j=1 or {H(U2(j)|U1:j−1

2 , Vn, Zn
m)}n

j=1, we can see (V, Yk) or (V, Zm) as the
output of a symmetric channel with distribution p?VYk|X

or p?VZm|X, respectively, where notice that
p?VYk|X

= p?V|X p?Yk|X
and p?VZm|X = p?V|X p?Zm|X because V − X−Yk − Zm forms a Markov chain. Hence,

due to the symmetry of the previous distributions, we can set xn = un
2 = 0n at each iteration. Then,

for the realization τ ∈ [1, Nτ], we draw vn(τ), yn(τ)
k and zn(τ)

m from the distributions p?Vn|Xn , pYn
k |Xn

and pZn
m|Xn , respectively. Next, we obtain the log-likelihood ratios {L(τ)

V|X(j)}n
j=1, {L(τ)

VYk|X
(j)}n

j=1 and

{L(τ)
VZm|X(j)}n

j=1 by using [22] (PCC-1). Since H(U2(j)|U1:j−1
2 ) = 1 for all j ∈ [n], we have p?U2(j)(u) =

1
2

for all u ∈ {0, 1}, and we can compute p?
U2(j)|U1:j−1

2 Vn
(0|0j−1, vn(τ)), p?

U2(j)|U1:j−1
2 VnYn

k

(0|0j−1, vn(τ), yn(τ)
k )

and p?
U2(j)|U1:j−1

2 VnZn
m
(0|0j−1, vn(τ), zn(τ)

m ) from the corresponding log-likelihood ratios. Finally, after Nτ

realizations, we can estimate the corresponding entropy terms by computing the empirical mean.

Partition of the universal set [n]. In order to provide more flexibility on the design, now we introduce

(δ
(1,r)
n , δ

(1,s)
n ) for the first layer, where δ

(1,r)
n , 2−nβ(1,r)

and δ
(1,s)
n , 2−nβ(1,s)

for some β(1,r), β(1,s) ∈ (0, 1
2).

For the second layer, we introduce (δ
(2,r)
n , δ

(2,s)
n ) and (δ

(2,L)
n , δ

(2,H)
n ), where δ

(2,r)
n , 2−nβ(2,r)

, δ
(2,s)
n ,

2−nβ(2,s)
, δ

(2,L)
n , 2−nβ(2,L)

and δ
(2,H)
n , 2−nβ(2,H)

for some β(2,r), β(2,s), β(2,L), β(2,H) ∈ (0, 1
2).

Consider the partition of [n] for the first layer (` = 1 in Equations (32)–(35)). As mentioned
previously, since p?V(v) =

1
2 , we haveH(n)

V = [n] and T (n)
1 = ∅. Let R′1 ∈ [0, R?

1] denote the target rate
corresponding to the message W1 that the polar coding scheme must approach. We obtain the partition in
Equations (32)–(35) as follows. First, we define (H(n)

V|Y1
)C , {j ∈ [n] : H(U1(j)|U1:j−1

1 , Yn
1 ) ≤ 1− δ

(1,s)
n }.

Then, we choose I(n)1 by taking the dnR′1e indices j ∈ (H(n)
V|Y1

)C that correspond to the highest entropy

terms {H(U1(j)|U1:j−1
1 , Zn

2 )}n
j=1 associated with Eavesdropper 2. Notice that δ

(1,s)
n must guarantee

|(H(n)
V|Y1

)C| ≤ R′1. Finally, we obtain C(n)1 = (H(n)
V|Y1

)C \ I(n)1 and F (n)
1 = H(n)

V|Y1
. Furthermore, in order to

evaluate the reliability performance, we define L(n)V|Y1
, {j ∈ [n] : H(U1(j)|U1:j−1

1 , Yn
1 ) ≤ δ

(1,r)
n }.

Consider the partition of [n] for the second layer (` = 2 in Equations (32)–(35)). SinceH(n)
X|V 6= [n]

and T (n)
1 6= ∅, we define H(n)

X|V , {j ∈ [n] : H(U2(j)|U1:j−1
2 , Vn) ≥ 1− δ

(2,H)
n } and L(n)X|V , {j ∈ [n] :

H(U2(j)|U1:j−1
2 , Vn) ≤ δ

(2,L)
n }, where we have used δ

(2,H)
n and δ

(2,L)
n , respectively. Let R′2 ∈ [0, R?

2] denote

the target rate corresponding to W2. We define (H(n)
X|VY2

)C , {j ∈ H(n)
X|V : H(U2(j)|U1:j−1

2 , Vn, Yn
2 ) ≤

1− δ
(2,s)
n }. Then, we choose I(n)2 by taking the dnR′2e indices j ∈ (H(n)

X|VY2
)C that correspond to the

highest entropy terms {H(U2(j)|U1:j−1
2 , Vn, Zn

2 )}n
j=1 associated with Eavesdropper 2. Thus, notice that

δ
(2,H)
n and δ

(2,s)
n must guarantee |H(n)

X|V | ≥ |(H
(n)
X|VY2

)C| ≥ R′2. Then, we obtain C(n)2 = (H(n)
X|VY2

)C \ I(n)2

and F (n)
2 = H(n)

X|VY2
. Finally, in order to evaluate the reliability performance, we define L(n)X|VY2

, {j ∈

[n] : H(U2(j)|U1:j−1
2 , Vn, Yn

2 ) ≤ δ
(2,r)
n }.
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6.2.2. Performance Evaluation

First, notice that the encoding at the first layer induces a distribution q̃Vn = pVn . For the
second layer, the entries U[H(n)

X|V ] of the original DMS only are almost independent of Vn

because H(U2(j)|U1:j−1
2 , Vn) ≤ 1− δ

(2,s)
n for j ∈ H(n)

X|V . Nevertheless, the encoding will construct

Ũ2[H
(n)
X|V ] by storing uniformly-distributed sequences that are totally independent of Vn. On the

other hand, since L(n)X|V ⊆ T (n)
2 6= ∅, the encoder will use the deterministic SC encoding

in Equation (37) to construct Ũ2[L
(n)
X|V ]. Therefore, according to Lemma 3 and Remark 6,

we will have V(q̃VnXnYn
2 Yn

1 Zn
2 Zn

1
, p?VnXnYn

2 Yn
1 Zn

2 Zn
1
) 6= 0 for finite n. Since, as seen in Section 5.5,

this total variation distance impacts the performance, we obtain first an upper-bound dub
TV on

V(q̃VnXnYn
2 Yn

1 Zn
2 Zn

1
, p?VnXnYn

2 Yn
1 Zn

2 Zn
1
), which is defined as:

dub
TV , dub(L)

TV + dub(H)
TV ,

where dub(L)
TV will measure the impact of using the deterministic SC encoding in Equation (37)

for the entries Ũ2
[
L(n)X|V

]
, and dub(H)

TV is the contribution on the total variation distance of storing

uniformly-distributed random sequences into Ũ2
[
H(n)

X|V
]

that are totally independent of Vn.

Consider dub(L)
TV , which corresponds to the analytic bound found in Lemma A2. For the

simulations, we can use the Monte Carlo method to directly estimate Equation (A4) by computing the
empirical mean,

dub(L)
TV ,

1
Nτ′

Nτ′

∑
τ′=1

[
∑

j∈L(n)X|V

(
1− p?

U2(j)|U1:j−1
2 Vn

(
u∗2(j)

∣∣∣ǔ1:j−1(τ′)
2 , v̌n(τ′)

))]
, (51)

where (v̌n(τ′), ǔn(τ′)
2 ) must be drawn at each iteration τ′ ∈ [1, Nτ′ ] according to Equation (A2),

L(n)X|V has been obtained previously in the polar code construction and, according to Equation (A4),

u∗2(j) , arg maxu∈{0,1} p?
U2(j)|U1:j−1

2 Vn
(u|ǔ1:j−1(τ′)

2 , v̌n(τ′)). Due to the symmetry of p?V|X, the probabilities

p?
U2(j)|U1:j−1

2 Vn
can be obtained with low complexity using the butterfly algorithm described in [7].

Consider now dub(H)
TV , which corresponds to the analytic bound found in Lemma A1. We can

compute exactly the Kullback-Leibler divergence as in Equation (A3) by using the corresponding
entropy terms obtained in the polar code construction. Thus, by applying Pinsker’s inequality, we have:

dub(H)
TV ,

(
2 ln 2 ∑

j∈H(n)
X|V

(
1− H

(
U2(j)

∣∣∣U1:j−1
2 , Vn

)))1/2

. (52)

According to the polar code construction, |L(n)X|V | and |H(n)
X|V | will depend only on the values of

δ
(2,L)
n and δ

(2,H)
n , respectively, for a particular n. Hence, the value of dub

TV can be controlled by adjusting

(β(2,L), β(2,H)). It is clear that higher values of (β(2,L), β(2,H)) mean lower cardinalities of the sets L(n)X|V

andH(n)
X|V and, consequently, lower dub

TV. However, |(H(n)
X|V)

C ∩ (L(n)X|V)
C| increases with (β(2,L), β(2,H)),

and the encoder in Equation (36) requires more randomness to form Ũ2[(H
(n)
X|V)

C ∩ (L(n)X|V)
C].

To evaluate the reliability performance, we obtain the upper-bounds Pub(1)
b and Pub(2)

b on the
average bit error probability at Receivers 1 and 2, respectively. From Equations (41) and (42) and by
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applying [27] (Proposition 2) to upper-bound the Bhattacharyya parameters from the entropy terms,
we have:

Pub(1)
b , dub

TV +
1∣∣L(n)V|Y1

∣∣ ∑
j∈L(n)V|Y1

√
H
(
U1(j)

∣∣U1:j−1
1 , Yn

1
)
, (53)

Pub(2)
b , 2dub

TV+
2∣∣L(n)V|Y1

∣∣ ∑
j∈L(n)V|Y1

√
H
(
U1(j)

∣∣U1:j−1
1 , Yn

2
)
+

1∣∣L(n)X|VY2

∣∣ ∑
j∈L(n)X|VY2

√
H
(
U2(j)

∣∣U1:j−1
2 , Vn, Yn

2
)
. (54)

To evaluate the secrecy performance, we compute an upper-bound Iub(W1, W2; F1, F2, Z̃n
2 ) on the

information leakage I(W1, W2; F1, F2, Z̃n
2 ) for Eavesdropper 2. From Equation (45) we obtain:

Iub(W1, W2; F1, F2, Z̃n
2 ) , 4ndub

TV − 2dub
TV log dub

TV +
2

∑
`=1

∣∣I(n)` ∪F
(n)
`

∣∣
− ∑
j∈I(n)1 ∪F

(n)
1

H
(
U1(j)

∣∣U1:j−1
1 , Zn

2
)
− ∑
j∈I(n)2 ∪F

(n)
2

H
(
U2(j)

∣∣U1:j−1
2 , Vn, Zn

2
)
, (55)

Due to the degradedness condition of BS-BC and, consequently, by Lemma 1, the information
leakage at Eavesdropper 1 will be always less than the one at Eavesdropper 2.

Finally, we evaluate the overall rate of the additional sequences {Φ1, Φ2} by computing:

1
n
(
|Φ1|+ |Φ2|

)
=

1
n

(∣∣∣(H(n)
V|Y1

)C ∩
(
L(n)V|Y1

)C
∣∣∣+ ∣∣∣(H(n)

X|VY2

)C ∩
(
L(n)X|VY2

)C
∣∣∣). (56)

The performance of the polar coding scheme is graphically shown in Figure 10. As for the
previous model, let ρR be the normalized target rate in which the polar coding scheme operates, that is

ρR ,
R′1
R?

1
=

R′2
R?

2
. In Figure 10A, we evaluate the upper-bound Iub

0 (W1, W2; F1, F2, Zn
2 ), which corresponds

to the upper-bound on the information leakage defined in Equation (55) when we consider dub
TV = 0, as a

function of the blocklength n for different values of ρR. For this plot, we set β(1,s) = 0.30 and β(2,s) = 0.36.
Notice that (β(1,r), β(2,r)) and (β(2,L), β(2,H)) if we set dub

TV = 0 will not impact the information leakage.
As we have proven in Section 5.5.4, the secrecy performance is improving as n increases. Moreover, to
satisfy a particular secrecy performance level, the polar code will need higher values of n as the target
rates approach the capacity.

In Figure 10B, we evaluate the upper-bounds Pub(1)
b,0 and Pub(2)

b,0 , which correspond to the bounds
on the average bit error probability at the legitimate Receivers 1 and 2, respectively, when we set
dub

TV = 0, as a function of the blocklength n. For this plot, we set β(1,r) = β(2,r) = 0.24 and notice that
the reliability performance will not depend on the values of (β(1,s), β(2,s)) and ρR. If we set dub

TV = 0,
then it is clear that it will not depend on (β(2,L), β(2,H)) either. As shown theoretically in Section 5.5.3,
the error probability becomes lower as the blocklength n increases.

Figure 10C plots the overall rate of the additional secret sequences computed as in Equation (56)
when we set β(1,r) = β(2,r) = 0.24, β(1,s) = 0.30 and β(2,s) = 0.36. As mentioned in Section 5.2, we can
see that this rate tends to be negligible for n sufficiently large.
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Figure 10. Performance of the polar coding scheme for DBC-LD-NLS over BS-BC as a function of the
blocklength n when β(1,r) = β(2,r) = 0.24, β(1,s) = 0.30, β(2,s) = 0.36 and β(2,H) = β(2,H) = 0.36.
(A) Upper-bound on the information about (W1, W2) leaked to Eavesdropper 2 defined as in
Equation (55) for different normalized target rates ρR when we set dub

TV = 0. (B) Upper-bounds
on the average error probability at legitimate Receivers 1 and 2 defined as in Equations (53) and (54),
respectively, when dub

TV = 0. (C) Overall rate of the sequences {Φ1, Φ2} computed as in Equation (56).
(D) terms dub(H)

TV and dub(L)
TV that contribute to the bound on the total variation distance dub

TV defined as
in Equations (51) and (52), respectively.

Finally, Figure 10D plots the upper-bounds dub(L)
TV and dub(H)

TV defined in Equations (51) and (52),
respectively, when we set β(2,L) = β(2,H) = 0.36. As we have proven theoretically in Lemma 3, notice
that the total variation distance decays with the blocklength n. Precisely, notice that dub(L)

TV is lower than
dub(H)

TV , and therefore, the bound on the total variation distance is practically governed by dub(H)
TV (dub

TV ≈
dub(H)

TV ). This happens because although we can compute exactly the Kullback–Leibler divergence
as in Equation (A3) from the entropy terms estimated in the polar code construction, Pinsker’s
inequality to obtain dub(H)

TV as in Equation (52) can be too loose for n not sufficiently large. Consider
the impact of dub

TV on the reliability performance of the code. The average error probability bounds
in Equations (53) and (54) are modeled as the sum of two terms, one depending directly on dub

TV and

the other depending on the polar construction (which has been plotted in Figure 10B). Since dub(H)
TV is

too loose, what we obtain is that the reliability performance of the code will be governed practically
by the bound dub

TV for small values of the blocklength n. Now, consider the impact of dub
TV on the

secrecy performance of the code. The bound on the information leakage in Equation (55) is modeled
as the sum of two terms, one also depending only on the polar code construction (which has been
plotted in Figure 10A) and the other depending on dub

TV. However, in this situation, dub
TV impacts the
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information leakage approximately as n · dub
TV, which means that this term will totally govern the

secrecy performance. Recall that this term follows from Equation (44), which bounds the impact of the
encoding in Equation (36) on the conditional entropy term of the information leakage as a function of
the total variation distance. Hence, we can conclude that this bound, which follows from applying [30]
(Lemma 2.9), can be too loose for n not sufficiently large.

7. Conclusions

We have described two polar coding schemes for two different models over the degraded
broadcast channel: DBC-NLD-LS and DBC-LD-NLS. For both models, we have proven that the
proposed polar coding schemes are asymptotically secrecy-capacity achieving, providing reliability
and strong secrecy simultaneously. Then, we have discussed how to construct these polar codes in
practice, and we have evaluated their performance for a finite blocklength by means of simulations.
Although several polar code constructions methods have been proposed in the literature, this paper,
as far as we know, is the first to discuss practical constructions when the polar code must satisfy both
reliability and secrecy constraints. In addition, we have evaluated the secrecy performance of the polar
code in terms of the strong secrecy performance, which has been possible by obtaining an upper-bound
on the corresponding information leakage at the eavesdroppers. Indeed, we have shown that the
proposed polar coding schemes can perform well in practice for a finite blocklength.

The criteria we have chosen for designing the polar codes are: to provide reliability and strong
secrecy in one block of size n by using only a secret key that is negligible in terms of rate and to minimize
the amount of random decisions for the SC encoding. For the first purpose, we have introduced the
source of common randomness, and we have avoided the use of the chaining construction given in [9]
(which is possible due to the degraded nature of the broadcast channel); for the second one, we have
adapted the deterministic SC encoding given in [20]. These two types of randomness have different
implications on the practical design: while the common randomness is uniformly distributed and can
be provided by the communication system, the randomness for SC encoding is not and must be drawn
by the encoder. In communication scenarios requiring several transmissions of size n, we have shown
that one realization of the common randomness can be reused without worsening the performance.

Despite the good performance of the polar coding schemes, some issues still persist. How to
avoid the transmissions of the additional secret sequences is a problem that remains open. Despite
the length of the required secret key being asymptotically negligible in terms of rate, these additional
transmissions can be problematic in practical scenarios. As pointed out in Remark 4, one can adopt
the chaining construction in [9] to further reduce the length of these sequences, but this requires
the transmission to take place over several blocks of size n and a very large memory capacity at the
transmitter or receiver side. Furthermore, despite the rate of the amount of randomness required for
SC encoding being negligible, how to replace the random decisions entirely by deterministic ones is
a problem that still remains unsolved. Another problem that remains open is how to avoid the use
of the common randomness, which allows keyless secret communication over a single block of size
n (keyless in the sense that the rate of the required secret key is negligible). Finally, to design polar
codes based on the proposed performance evaluation, it seems necessary to find tighter upper-bounds
on the total variation distance between the distribution induced by the encoder and the original
distribution used in the code construction, particularly for the term that models the impact of storing
uniformly-distributed sequences. Also, for the secrecy performance, it would be interesting to find a
tighter upper-bound to evaluate the impact of the total variation distance on the information leakage.

Lastly, it is worth mentioning that having to know the statistics of the eavesdropper channels
for the polar code construction may seem problematic. Nevertheless, for the polar code construction,
one can consider virtual eavesdroppers with some target channel qualities. For DBC-LD-NLS, we can
design a polar code according to the statistics of this virtual eavesdropper, and due to the degradedness
condition of the channel, this code will perform well if the real eavesdroppers have worse channel
quality (worst-case design). On the other hand, for the DBC-NLD-LS, one can simply consider different
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levels of secrecy depending on different target channel qualities. Depending on the channel quality
of the real eavesdropper with respect to the virtual ones considered for the design, the polar coding
scheme will provide a particular secrecy performance level.

Supplementary Materials: The MATLAB code used in this paper for Section 6 is available at http://www.mdpi.
com/1099-4300/20/6/467/s1.
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Abbreviations

The following abbreviations are used in this manuscript:

DBC Degraded Broadcast Channel
DBC-NLD-LS Degraded Broadcast Channel with Non-Layered Decoding and Layered Secrecy
DBC-LD-NLS Degraded Broadcast Channel with Layered Decoding and Non-Layered Secrecy
SC Successive Cancellation
DMS Discrete Memoryless Source
BEC Binary Erasure Channel
BSC Binary Symmetric Channel
BE-BC Binary Erasure Broadcast Channel
BS-BC Binary Symmetric Broadcast Channel

Appendix A. Proof of Lemmas 2 and 3

Consider a DMS (V1 × · · · × VL ×YK × · · · × Y1 ×ZM × · · · × Z1, pV1 ...VLYK ...Y1ZM ...Z1), the joint
distribution of which satisfies the Markov chain condition V1 − · · · − VL − YK − · · · − Y1 − ZM −
· · · − Z1. Consider an i.i.d. n-sequence (Vn

1 , . . . , Vn
L , Yn

K , . . . , Yn
1 , Zn

M, . . . , Zn
1 ) of this DMS, n being any

power of two. We define the polar transforms (Un
1 , . . . , Un

L), where Un
` , Vn

` Gn for each ` ∈ [1, L],

with joint distribution pUn
1 ...Un

L
. Then, define H(n)

V` |V`−1
and L(n)V` |V`−1

as in Equations (27) and (28),

where V0 = U0 , ∅. Let VL , X; if L , 1, notice that this DMS is the one considered for the code
construction of DBC-NLD-LS. Otherwise, if L , K, it is the one considered for DBC-LD-NLS.

Now, consider the polar encoding procedures described for both models in Sections 4.2 and 5.2.
Let q̃Un

1 ...Un
L

be the joint distribution of (Ũn
1 , . . . , Ũn

L) after the encoding. For both models, we have:

q̃Un
1 ...Un

L
(ũn

1 , . . . , ũn
L) =

L

∏
`=1

n

∏
j=1

q̃
U`(j)|U1:j−1

` Vn
`−1

(
ũ`(j)

∣∣ũ1:j−1
` , ũn

`−1Gn
)
,

where, for all ` ∈ [1, L],

q̃
U`(j)|U1:j−1

` Vn
`−1

(
ũ`(j)

∣∣ũ1:j−1
` , ṽn

`−1
)

=


1
2 if j ∈ H(n)

V` |V`−1
,

p
U`(j)|U1:j−1

` Vn
`−1

(
ũ`(j)

∣∣ũ1:j−1
` , ṽn

`−1

)
if j ∈

(
H(n)

V` |V`−1

)C ∩
(
L(n)V` |V`−1

)C,

1
{

ũ`(j) = ξ(j)(ũ1:j−1
` , ṽn

`−1

)}
if j ∈ L(n)V` |V`−1

,

(A1)

p
U`(j)|U1:j−1

` Vn
`−1

being the distribution induced by the original DMS and ξ(j) being the deterministic

arg max function given in Equation (18) for DBC-NLD-LS or given in Equation (37) for DBC-LD-NLS.
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Additionally, consider another encoding process that constructs (Ǔn
1 , . . . , Ǔn

L) by omitting the use
of the deterministic arg max function, but samples Ǔ1(j) from the distribution:

q̌
U`(j)|U1:j−1

` Vn
`−1

(
ǔ`(j)

∣∣ǔ1:j−1
` , v̌n

`−1
)
=


1
2 if j ∈ H(n)

V` |V`−1
,

p
U`(j)|U1:j−1

` Vn
`−1

(
ǔ`(j)

∣∣ǔ1:j−1
` , v̌n

`−1

)
if j ∈

(
H(n)

V` |V`−1

)C.
(A2)

First, the following lemma shows that the joint distributions pUn
1 ...Un

L
and q̌Un

1 ...Un
L

are nearly
statistically indistinguishable for sufficiently large n.

Lemma A1. Let δn = 2−nβ
for some β ∈ (0, 1

2 ), and define δ
(1)
n ,

√
2nδn ln 2. Then,

V(q̌Un
1 ...Un

L
, pUn

1 ...Un
L
) ≤
√

Lδ
(1)
n .

Proof. The Kullback-Leibler distance between pUn
1 ...Un

L
and q̌Un

1 ...Un
L

is:

D
(

pUn
1 ...Un

L

∥∥q̌Un
1 ...Un

L

) (a)
= ∑L

`=1 ∑n
j=1 Ep

U1:j−1
`

Vn
`−1

[
D
(

p
U`(j)|U1:j−1

` Vn
`−1

∥∥∥q̌
U`(j)|U1:j−1

` Vn
`−1

)]
(b)
= ∑L

`=1 ∑j∈H(n)
V` |V`−1

(
1− H

(
U`(j)

∣∣∣U1:j−1
` , Vn

`−1

))
(c)
≤ Lδn

∣∣H(n)
V` |V`−1

∣∣,
(A3)

where (a) holds by the chain rule, the invertibility of Gn and the fact that Un
1 −Un

2 − · · · −UL (and
Ǔn

1 − Ǔn
2 − · · · − ǓL) forms a Markov chain, (b) follows from Equation (A2) and by applying [14]

(Lemma 10), and (c) holds by the definition ofH(n)
V` |V`−1

in Equation (27). Finally, since |H(n)
V` |V`−1

| ≤ n

and by using Pinsker’s inequality, we obtain V(q̌Un
1 ...Un

L
, pUn

1 ...Un
L
) ≤
√

2Lnδn ln 2.

Now, we show that q̌Un
1 ...Un

L
and q̃Un

1 ...Un
L

are nearly indistinguishable for n large enough.

Lemma A2. Let δn = 2−nβ
for some β ∈ (0, 1

2 ). Then,

V(q̃Un
1 ...Un

L
, q̌Un

1 ...Un
L
) ≤ δ

(2)
n ,

where δ
(2)
n , Ln

√
2
√

2δ
(1)
n
(
2n− log

√
2δ

(1)
n
)
+ δn and δ

(1)
n defined as in Lemma A1.

Proof. The proof follows similar reasoning as the one for [20] (Lemma 2). Hence, define a coupling [29]
for (Ǔn

1 , . . . , Ǔn
L) and (Ũn

1 , . . . , Ũn
L) such that Ǔ`[(L

(n)
V` |V`−1

)C] = Ũ`[(L
(n)
V` |V`−1

)C]. Thus, we have:

V(q̃Un
1 ...Un

L
, q̌Un

1 ...Un
L
)

(a)
≤ P

[(
Ũn

1 , . . . , Ũn
L
)
6=
(
Ǔn

1 , . . . , Ǔn
L
)]

(b)
≤ ∑L

`=1 P
[
Ũn
` 6= Ǔn

`

∣∣∣Ṽn
`−1 = V̌n

`−1

]
(c)
≤ ∑L

`=1 ∑n
j=1 P

[
Ũ`(j) 6= Ǔ`(j)

∣∣∣Ũ1:j−1
` = Ǔ1:j−1

` , Ṽn
`−1 = V̌n

`−1

]
(d)
= ∑L

`=1 ∑j∈L(n)V` |V`−1

E(
Ǔ1:j−1
` ,V̌n

`−1

)[(1− p
U`(j)|U1:j−1

` Vn
`−1

(
u∗` (j)

∣∣∣Ǔ1:j−1
` , V̌n

`−1

))]
,

(A4)

where (a) follows from the coupling lemma [29] (Proposition 4.7), (b) holds by the union
bound, the invertibility of Gn and the fact that Ũn

1 − Ũn
2 − · · · − ŨL (and Ǔn

1 − Ǔn
2 − · · · −

ǓL) forms a Markov chain, (c) also holds by the union bound and (d) follows from
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Equations (A1) and (A2) given that Ǔ`[(L
(n)
V` |V`−1

)C] = Ũ`[(L
(n)
V` |V`−1

)C] and from defining u∗` (j) ,

arg maxu∈{0,1} p
U`(j)|U1:j−1

` Vn
`−1

(u
∣∣Ǔ1:j−1

` , V̌n
`−1).

Next, for any ` ∈ [1, L] and j ∈ [n], for sufficiently large n, we have:∣∣∣H(U`(j)
∣∣U1:j−1

` , Vn
`−1

)
− H

(
U`(j)

∣∣Ǔ1:j−1
` , V̌n

`−1

)∣∣∣
(a)
≤
∣∣∣H(U1:j−1

` , Vn
`−1

)
− H

(
Ǔ1:j−1
` , V̌n

`−1

)∣∣∣+ ∣∣∣H(U1:j
` , Vn

`−1

)
− H

(
U`(j), Ǔ1:j−1

` , V̌n
`−1

)∣∣∣
(b)
≤ 2V

(
q̌

U1:j−1
` Un

`−1
, p

U1:j−1
` Un

`−1

)
log 2n

V
(

q̌
U1:j−1
`

Un
`−1

,p
U1:j−1
`

Un
`−1

)
(c)
≤ 2
√

2δ
(1)
n
(
2n− log

√
2δ

(1)
n
)
,

(A5)

where (a) holds by the chain rule of entropy and the triangle inequality, (b) follows from
applying [30] (Lemma 2.9), the invertibility of Gn and because V(p

U`(j)|U1:j−1
` Un

`−1
q̌

U1:j−1
` Un

`−1
, p

U1:j
` Un

`−1
) =

V(q̌
U1:j−1
` Un

`−1
, p

U1:j−1
` Un

`−1
), and (c) holds because V

(
q̌

U1:j−1
` Un

`−1
, p

U1:j−1
` Un

`−1

)
≤ V(q̌Un

`−1Un
`
, pUn

`−1Un
`
) ≤

√
2δ

(1)
n (by using Lemma A1 and taking L , 2) and because the function x 7→ x log x is monotonically

decreasing for x > 0 small enough.
Thus, for any ` ∈ [1, L] and j ∈ L(n)V` |V`−1

, we have:

2
√

2δ
(1)
n
(
2n− log

√
2δ

(1)
n
)
+ δn

(a)
≥ 2
√

2δ
(1)
n
(
2n− log

√
2δ

(1)
n
)
+ H

(
U`(j)|U1:j−1

` , Vn
`−1

)
(b)
≥ H

(
U`(j)|Ǔ1:j−1

` , V̌n
`−1

)
= E(

Ǔ1:j−1
` ,Ǔn

`−1

) [h2

(
p

U`(j)|U1:j−1
` Vn

`−1

(
u?
` (j)

∣∣∣Ǔ1:j−1
` , V̌n

`−1

))]
≥ E(

Ǔ1:j−1
` ,Ǔn

`−1

) [−(1− p
U`(j)|U1:j−1

` Vn
`−1

(
u?
` (j)

∣∣∣Ǔ1:j−1
` , V̌n

`−1

))
· log

(
1− p

U`(j)|U1:j−1
` Vn

`−1

(
u?
` (j)

∣∣∣Ǔ1:j−1
` , V̌n

`−1

))]
(c)
≥ E(

Ǔ1:j−1
` ,Ǔn

`−1

) [(1− p
U`(j)|U1:j−1

` Vn
`−1

(
u?
` (j)

∣∣∣Ǔ1:j−1
` , V̌n

`−1

))2
]

(d)
≥
(
E(

Ǔ1:j−1
` ,Ǔn

`−1

) [(1− p
U`(j)|U1:j−1

` Vn
`−1

(
u?
` (j)

∣∣∣Ǔ1:j−1
` , V̌n

`−1

))])2
,

(A6)

where (a) holds because, by definition, H
(

U`(j)|U1:j−1
` , Vn

`−1

)
≤ δn if j ∈ L(n)V` |V`−1

, (b) holds by

Equation (A5), (c) holds because p
U`(j)|U1:j−1

` Vn
`−1

(
u?
` (j)

∣∣Ǔ1:j−1
` , V̌n

`−1

)
≥ 1/2 and log(x) < −x if x ∈

[0, 1/2) and (d) follows from Jensen’s inequality.
Finally, by combining Equations (A4) and (A6) and because |L(n)V` |V`−1

| ≤ n, we have

V(q̃Un
1 ...Un

L
, q̌Un

1 ...Un
L
) ≤ Ln

√
2
√

2δ
(1)
n (2n− log

√
2δ

(1)
n ) + δn.

Hence, by Lemma A1, Lemma A2 and by applying the triangle inequality, we obtain:

V(q̃Un
1 ...Un

L
, pUn

1 ...Un
L
) ≤ V(q̃Un

1 ...Un
L
, q̌Un

1 ...Un
L
) +V(q̌Un

1 ...Un
L
, pUn

1 ...Un
L
)

≤ Ln
√

2
√

2δ
(1)
n
(
2n− log

√
2δ

(1)
n
)
+ δn +

√
Lδ

(1)
n . (A7)
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Consequently, since q̃Yn
K ...Yn

1 Zn
M ...Zn

1 |V
n
1 ...Vn

L
= pYn

K ...Yn
1 Zn

M ...Zn
1 |V

n
1 ...Vn

L
and the invertibility of Gn, we

obtain V(q̃Vn
1 ...Vn

L Yn
K ...Yn

1 Zn
M ...Zn

1
, pVn

1 ...Vn
L Yn

K ...Yn
1 Zn

M ...Zn
1
) = V(q̃Un

1 ...Un
L
, pUn

1 ...Un
L
), and this concludes the

proof.
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