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Abstract: Identifying or constructing a fine-grained microscopic theory that will emerge under specific
conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics
is perhaps one of the most powerful theories and best understood examples of emergence in
physical sciences, which can be used for understanding the characteristics and mechanisms of
emergent processes, both in terms of emergent structures and the emergent laws governing the
effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better
understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as
thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics.
We will show why even with this minimal demand, there are many new issues which need be
addressed and new rules formulated. The thermodynamics of small quantum many-body systems
strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements,
such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized
in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical
reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of
the thermodynamic functions, the viability of the thermodynamic relations and the validity of the
thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the
quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of
Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials,
the expectation values of which provide the familiar thermodynamic variables. Constructing the
operator thermodynamic functions and verifying or modifying their relations is a necessary first
step in the establishment of a viable thermodynamics theory for quantum systems. We mention
noteworthy subtleties for quantum thermodynamics at strong coupling, such as in issues related to
energy and entropy, and possible ambiguities of their operator forms. We end by indicating some
fruitful pathways for further developments.
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1. Quantum and Thermodynamics—Why?

Why is a paper on this subject matter appearing in this special issue of Entropy? The short
answer is the same reason why EmQM appears in this journal Entropy, which is generally considered
as treating topics in statistical mechanics: emergence. The long answer, serving as a justification
for our dwelling on quantum thermodynamics in the realm of emergent quantum mechanics, is as
follows. One way to see quantum mechanics as emergent is by analogy with hydrodynamics and
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thermodynamics, probably the two best known emergent theories because we know exactly what the
collective variables are (thermodynamic functions and relations), the laws they obey (the four laws),
how they are related to the basic constituents (molecular dynamics) and the mediating theory from
which we can derive both the fundamental and the emergent theories (kinetic theory).

In analogy to emergent gravity [1–5], one of the present authors has championed the thesis
of “general relativity as geometro-hydrodynamics” [6,7]. Since Verlinde’s “gravity is entropic force”
popularization of Jacobson’s “Einstein equation of state” thesis [8–10], gravity as thermodynamics
has caught a wider attention in the quantum gravity community. However, a new challenge arises.
The question one of us posed for enthusiasts of this theme is the following: Since both gravity and
thermodynamics are old subjects established centuries before the advent of quantum mechanics,
and both can make sense and stand alone at the classical level without quantum theory, well, what
exactly is quantum doing here?—What is the role of quantum in emergent gravity? Do we really need
quantum if we view “gravity as thermodynamics”?

1.1. Quantum in “Gravity as Thermodynamics”

This question, “Wither the Quantum?”, as Hu calls it, puts the spotlight on quantum, in how it
contributes to the emergent phenomena which gives us both gravity and thermodynamics. One answer
to this is to also consider quantum mechanics as emergent. For example, in the emergent theories
of Adler and ’t Hooft [11,12] probability theory, stochastic and statistical mechanics as a slate play a
pivotal role, just as they do for thermodynamics and hydrodynamics arising from molecular dynamics.
The same applies to emergent gravity: classical gravity captured by general relativity is an effective
theory emergent from some fundamental theories of the basic constituents of spacetime functioning at
the sub-Planckian scale. How these basic constituents interact, how their interaction strength varies
with energy, how at some specific scale(s) some set(s) of collective variables and the law(s) governing
them emerge, and in succession, leading to the physics at the lowest energy as we know it in today’s
universe is perhaps just as interesting as the manifestation of the relevant physics at the different scales
familiar to us—from molecules to atoms to nucleons to quarks and below. Putting aside gravity for
now in this investigation, we wish to see a deeper connection between micro and macro, quantum
and thermo.

1.2. David Bohm: Quantum in Classical Terms

Here, Bohm’s philosophical influence is evident. His pilot wave theory may not offer a better
description or explanation of quantum phenomena, but the view that quantum mechanics is not a
fundamental theory any more than a classical wave theory is, provides an inspiration for asking a
deeper layer of questions: If we view quantum theory functioning in the capacity as thermodynamics,
we should ask: What are the fundamental constituents, the laws governing them, and how quantum
mechanics emerges from the sub-structures and theories depicting them (Long before we get to this
point, many readers may have raised this objection: This is obviously nonsense: The second law
of thermodynamics ostensibly shows the effects of an arrow of time, while quantum mechanics
is time-reversal invariant. Well, if the mechanical processes which we can observe are in the
underdamped regime where the dissipative effects are not strong enough, they would appear to
obey time-reversal symmetry. This is not an outlandish explanation: For most physical systems,
in the open system perspective, quantum phenomena in the system appears within the decoherence
time which is many orders of magnitude shorter than the relaxation time, as is the case in many
well-controlled environments (e.g., cavity QED). Or, if the system is near a nonequilibrium critical
point. On this issue, cosmology, despite its seemingly remote bearing, may actually enter in a basic
way, in terms of the origin of the arrow of time, and the mere fact that nonequilibrium conditions
prevail in an expanding universe.).
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1.3. Quantum as Thermodynamics?

In quantum thermodynamics, we may not see much in terms of what fundamental theory
quantum mechanics emerges from (Adler and ’t Hooft may have their answers: trace dynamics
and cellular automaton, for instance, respectively), but even the juxtaposition or crossing of what is
traditionally considered as governing the two opposite ends in the macro/micro and classical/quantum
spectrum may reveal some deeper meaning in both. Macroscopic quantum phenomena is another such
arena. For example, in small quantum systems, at low temperatures, or when the system is strongly
coupled to its environment, is there a lower limit to the validity of the laws of thermodynamics, which
play such an important role in our understanding of the macro world? Under what conditions will
macroscopic entities show quantum phenomena? Is there an upper limit to quantum mechanics
governing the meso domain? Is there a limit to quantum commanding the macro world? The above
explains the philosophical issues which motivated us to take up a study of quantum thermodynamics.
We are also of the opinion that useful philosophical discourses of any subject matter should be based on
the hard-core scientific knowledge of that subject, down to all the nitty-gritty details of each important
topic that makes up that body of knowledge. Thus we start with the basic demands in the formulation
of quantum thermodynamics and try to meet them in a rigorous, no-nonsense way. The specific goal of
this paper is to define the operator thermodynamic quantities and spell out their relations for quantum
many-body systems in thermal equilibrium.

Quantum Thermodynamics

Quantum thermodynamics is a fast developing field, emergent from quantum many body physics
and nonequilibrium statistical mechanics. Simply, it is the study of the thermodynamic properties
of quantum many-body systems. Quantum now refers not just to the particle spin-statistics (boson
vs. fermion) aspects in traditional quantum statistical mechanics, but also includes in the present
era the quantum phase aspects, such as quantum coherence, quantum correlations, and quantum
entanglement, where quantum information enters. The new challenges arise from several directions
not falling under the assumptions of traditional classical thermodynamics: finding the quantum
properties of small systems, at zero or very low temperature, strongly coupled to an environment,
which could have non-ohmic spectral densities and colored noise, while the system evolves following
a non-Markovian dynamics (with memory).

1.4. This Work

In this paper we discuss the issues and the technical challenges encountered in the first stage in
the construction of a viable theory of quantum thermodynamics, where the system is strongly coupled
with a heat bath. We wish to present in a systematic way how to introduce the operator thermodynamic
functions and construct their relations. Here, we treat this problem in an equilibrium setting. There are
other ways to construct such a theory, such as pursued in the so-called “eigenvalue thermalization”
program [13–22], which treats the system and the environment as a closed system, or along the lines
expounded in the fluctuation theorems [23–25] where the system under an external drive is allowed
to evolve in a nonequilibrium albeit controlled manner [26,27], or in a fully nonequilibrium open
quantum system dynamics program (see, e.g., [28,29] and references therein).

2. Quantum Thermodynamics at Strong Coupling: Background

2.1. New Challenges in Quantum Thermodynamics

Small quantum many-body systems strongly coupled to a heat reservoir at low temperatures
are the new focuses of interest for quantum thermodynamics [30–32]. Under these hitherto
lesser explored conditions, one needs to re-examine the meaning of the thermodynamic functions,
the viability of the thermodynamic relations and the validity of the thermodynamic laws anew.
Traditional thermodynamics is built on large systems weakly coupled to a reservoir [33], and for
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quantum systems, only the spin-statistics aspect is studied, as in quantum statistical mechanics,
leaving the important factors of quantum coherence, correlations, entanglement and fluctuations as
new challenges for quantum thermodynamics. To see the difference strong coupling makes, we take
as an example the definition of heat, the energy transferred between the system and the reservoir,
for systems strongly coupled to a bath. Esposito et al. [34], for example, show that any heat definition
expressed as an energy change in the reservoir energy plus any fraction of the system-reservoir
interaction is not an exact differential when evaluated along reversible isothermal transformations,
except when that fraction is zero. Even in that latter case the reversible heat divided by temperature,
namely entropy, does not satisfy the third law of thermodynamics and diverges in the low temperature
limit. For quantum systems, as pointed out by Ankerhold and Pekola [35], in actual measurements,
especially for solid state structures, quantum correlations between system and reservoir may be
of relevance not only far from but also close to and in thermal equilibrium. Even in the weak
coupling regime, this heat flow is substantial at low temperatures and may become comparable to
typical predictions for the work based on conventional weak coupling approaches. It further depends
sensitively on the non-Markovian features of the reservoir. These observations exemplify the intricacies
involved in defining heat for strongly-coupled systems and added complexities for quantum systems,
especially at low temperatures.

This incertitude regarding heat translates to ambiguity in the definition of thermodynamic
functions and the thermodynamic relations. For example, it was shown [36–41] that the expressions
for the specific heat derived from the internal energies of a quantum-mechanical harmonic oscillator
bilinearly coupled to a harmonic bath calculated by two different approaches can have dramatically
different behavior in the low temperature regime. To illustrate this point, Gelin and Thoss [42]
compared these two approaches of calculating the internal energy of the system, which give identical
results if the system-bath coupling is negligible, but predict significantly differently for finite
system-bath coupling. In the first approach, the mean energy of the system given by the expectation
value of the system Hamiltonian is evaluated with respect to the total (system + bath) canonical
equilibrium distribution. The second approach is based on the partition function of the system,
Zs, which is postulated to be given as the ratio of the total (system + bath) and the bath partition
functions. Gelin and Thoss [42] introduce a bath-induced interaction operator ∆̂s, which would account
for the effects of finite system-bath coupling and analyze the two approaches for several different
systems including several quantum and classical point particles and nonlinear system bath coupling.
They found that Approach II leads to very different results from Approach I, their differences exist
already within classical mechanics, provided the system-bath interaction is not bilinear and/or the
system of interest consists of more than a single particle.

Similar ambiguity appears in the entropy of the quantum system in the same setup. In the first
approach, the von Neumann entropy is chosen to be the entropy of the system, while in the second
approach, the entropy is given by the derivative of the system’s free energy with respect to the inverse
temperature. Both definitions are equivalent in the limit of weak system-bath coupling. However,
at finite coupling strength, it has been noticed that [36,37,43,44] the von Neumann entropy may not
vanish when the bath temperature is close to zero, even for a simple quantum system that consists
of harmonic oscillators. This nonvanishing behavior of the von Neumann entropy is related to the
quantum entanglement between the system and the bath [45–48]. On the other hand, the entropy
defined in the second approach of the same system gives an expected vanishing result, consistent
with the physical picture described by [49]. These disparities between different choices of the same
thermodynamic function of the system can be traced to the degree in which the system-bath interaction
enters into or counted as the system.

In a small quantum system, quantum fluctuations of a physical observable of the system can grow
to the same order of magnitude as its average value. Thus a description of the thermodynamics of
such a system based on the mean value is insufficient. To include the effects of quantum fluctuations
of the thermodynamic variables, we need their corresponding quantum operators, from which we can
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calculate its higher moments. Likewise for quantities related to the quantum correlations and quantum
coherence of such a system. Constructing the operator form of a thermodynamic variable is nontrivial
and ambiguous at times. Take as an example the internal energy of the system. As is mentioned
earlier, it can be given either as the expectation value of the system’s Hamiltonian operator, or as the
partial derivative of the (effective) partition function of the system. In the former case, the operator
of the internal energy is already chosen but with arbitrariness, while in the latter case, as will be
discussed in Section 7.3, our capabilities of identifying the corresponding operator is limited by our
knowledge of the thermodynamic variables based on either its expectation or its classical counterpart.
Either way there exists non-uniqueness in the introduction of the thermodynamic operator form of the
system variables.

Even with a successful extraction and identification of the operator form from the expectation
value or the partial derivative of the system’s partition, such a thermodynamic operator for the reduced
system in general acts on the Hilbert space of the full composite (system + environment). This is not
always a desirable feature because most of the time we are interested in what happens to the system
under the influence of the environment, whose details are of no particular concern. A description of
the full composite does not easily translate to useful information about the system. Thus it is more
preferable to derive operators of the system which solely act on the Hilbert space of the system, without
reference to the environment. This is what we try to accomplish here; it is different from what has been
reported in the literature.

2.2. Goal and Findings of Present Work

In traditional weak coupling thermodynamics, knowing the thermodynamic potentials and their
relations enables one to construct a theory of thermodynamics. We believe they are also necessary
for the establishment of a theory of thermodynamics for quantum systems. The new challenge is
twofold: constructing operator thermodynamic potentials and treating quantum systems strong
coupled to their baths. This is our goal in this paper. We shall provide a quantum formulation
of Jarzynski’s [27] classical thermodynamics at strong coupling. In contrast to the study of the
nonequilibrium dynamics of an open quantum system (called ONEq in [29,50,51]), the combined
system + environment studied here is a closed system, called the composite, which is assumed to stay
in a global thermal state. In such a configuration, even though the interaction between the system
and the bath is non-negligible, the partition function of the composite can be defined. This facilitates
the introduction of thermodynamic potentials in a way similar to the traditional vanishing-coupling
thermodynamics. We will focus on thermodynamic functions such as internal energy, enthalpy, entropy,
and free energies, but exclude the consideration of heat and work in this paper, as quantum work is
not well understood and requires a separate treatment.

This paper is organized as follows: In Section 3, we give a quick summary of the familiar
thermodynamic relations, which we call traditional or weak-coupling thermodynamics, if only to
establish notations. We then consider interacting quantum systems with the help of the Hamiltonian
of mean force [52–58] and discuss some conceptual and technical difficulties we may face when the
coupling strength becomes strong. In Sections 4–6, we overview the equilibrium quantum formulations
of thermodynamics at strong coupling, based on Gelin & Thoss’ and Seifert’s work. In Section 7,
we present a equilibrium quantum formulation of Jarzynski’s thermodynamics in the “bare” and
“partial molar” representations, respectively in the same setting. We conclude in Section 8 with a short
summary, a brief discussion of two issues involved and a suggestion for further developments.

3. Thermodynamic Functions, Hamiltonian of Mean Force

We first summarize the familiar traditional thermodynamic relations, if only to establish notations.
We then consider interacting quantum systems with the help of the Hamiltonian of mean force
(Hamiltonian of mean force is a useful yet not indispensable concept for this purpose. It is
useful because in the same representation, the formal expressions associated with it resemble the
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counterparts in the traditional weak coupling thermodynamics). We outline two quantum formulations
of thermodynamic functions and relations; one based on Gelin and Thoss [42] and the other on
Seifert [26]. With the abundance of thermodynamic quantities, a word about notations is helpful:
quantum expectation values or classical ensemble averages are denoted by math calligraphic, quantum
operators associated with the variable O will carry an overhat Ô.

3.1. Traditional (Weak-Coupling) Equilibrium Thermodynamic Relations

The pre-conditions for the traditional weak-coupling thermodynamic theory to be well-defined
and operative for a classical or quantum system are very specific despite their wide ranging
applicability: (a) A system S of relatively few degrees of freedom is in contact with a thermal bath of
a large number or infinite degrees of freedom (We shall consider only heat but no particle transfer
here and thus the thermodynamics refers only to canonical, not grand canonical ensembles); (b) the
coupling between the system and the bath is vanishingly small; and (c) the system is eternally
in a thermal equilibrium state by proxy with the bath which is impervious to any change in the
system. In weak-coupling thermodynamics, the bath variables are not dynamical variables (Dynamical
variables are those which are determined consistently by the interplay between the system and the
bath through their coupled equations of motion); they only provide weak-coupling thermodynamic
parameters such as a temperature in canonical ensemble, or, in addition, a chemical potential, in grand
canonical ensemble.

The classical thermodynamic relations among the internal energy U , enthalpy H, Helmholtz free
energy F and Gibbs free energy G in conjunction with the temperature T, entropy S , pressure P and
volume V are well-known. From the first law, dU = T dS − P dV . With U = U (S ,V), we have

T =

(
∂U
∂S

)
V

, P = −
(

∂U
∂V

)
S

. (1)

By virtue of the differential form of the internal energy, the enthalpy H = U + PV obeys
dH = T dS + V dP. Since it is a function of the entropy and pressure, we can identify

T =

(
∂H
∂S

)
P

, V =

(
∂H
∂P

)
S

. (2)

Likewise, for the Helmholtz free energy F = U − TS , we have

dF = −S dT − P dV , whence , S = −
(

∂F
∂T

)
V

, P = −
(

∂F
∂V

)
T

, (3)

so the Helmholtz free energy is a function of the temperature and the volume, F = F (T,V). Finally,
the Gibbs free energy, defined by G = H− TS , obeys

dG = −S dT + V dP , whence , S = −
(

∂G
∂T

)
P

, V =

(
∂G
∂P

)
T

. (4)

Thus G = G(T, P). Many more relations can be derived from these three basic relations. These
relations are mutually compatible based on differential calculus.

Next we turn to the weak-coupling thermodynamics of quantum systems (Hereafter, we will
choose the units such that the Boltzmann constant kB = 1 and the reduced Planck constant h̄ = 1.
In addition, to distinguish them from strong-coupling thermodynamics, all quantities defined in the
context of traditional (weak-coupling) thermodynamics are identified with a subscript Θ). The state
of a quantum system in contact with a heat bath at temperature T = β−1 with vanishing coupling
is described by the density matrix ρ̂s = e−βĤs /ZΘ where ZΘ = Trs e−βĤs is the canonical partition
function. Here Ĥs is the Hamiltonian of the system and is assumed to be independent of the inverse
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temperature β = T−1. The notation Tr with a subscript s or b represents the sum over the states of the
system or the bath respectively. The density matrix ρ̂s is a time-independent Hermitian operator and is
normalized to unity, i.e., Trs ρ̂s = 1 to ensure unitarity.

The free energy FΘ of a quantum system in a canonical distribution is FΘ = −β−1 lnZΘ.
The quantum expectation value 〈Ĥs〉 is identified with the internal energy UΘ of the quantum system,
and can be found by

UΘ = 〈Ĥs〉 =
1
ZΘ

Trs
{

Ĥs e−βĤs
}
= − ∂

∂β
lnZΘ = FΘ + ∂βFΘ . (5)

If we define the entropy SΘ of the system by

SΘ = β2∂βFΘ , (6)

then it will be connected with the internal energy by the relation FΘ = UΘ − T SΘ. These two
expressions imply that the entropy of the quantum system can be expressed in terms of the density
matrix SΘ = −Trs

{
ρ̂s ln ρ̂s

}
, which is the von Neumann entropy. The von Neumann entropy plays an

important role in quantum information as a measure of quantum entanglement, and can be used to
measure the non-classical correlation in a pure-state system. (Beware of issues at zero temperature as
discussed in Section 6.) Here we note that both internal energy and the entropy of the system can be
equivalently defined in terms of the expectation values of the quantum operators, or as the derivative
of the free energy.

The heat capacity CΘ = ∂UΘ/∂T = −β2∂βUΘ is given by

CΘ = −2β2∂βFΘ − β3∂βFΘ = −β ∂βSΘ = β2
[
〈Ĥ2

s 〉 − 〈Ĥs〉2
]
≥ 0 . (7)

It is always semi-positive. Up to this point, under the vanishing system-bath coupling assumption,
all the quantum thermodynamic potentials and relations still resemble their classical counterparts.

3.2. Quantum System in a Heat Bath with Nonvanishing Coupling

In formulating the quantum thermodynamics at strong coupling, we immediately face some
conceptual and technical issues. At strong coupling, the interaction energy between the system and
the bath is not negligible, so the total energy cannot be simply divided as the sum of the energies of the
system and the bath. This introduces an ambiguity in the definition of, for example, internal energy.
We may have more than one way to distribute the interaction energy between the system and the bath.
The same ambiguity also arises in the other thermodynamic functions such as enthalpy and entropy,
thus affecting the relations among the thermodynamic functions. On the technical side, in the course of
formulating quantum thermodynamics, the non-commutative natures of the quantum operators make
formidable what used to be straightforward algebraic manipulations in the classical thermodynamics.

Let us illustrate the previous points by an example. Consider in general an interacting quantum
system C whose evolution is described by the Hamiltonian Ĥc = Ĥs + Ĥi + Ĥb, where Ĥs, Ĥb are the
Hamiltonians of the system S and the bath B, respectively and Ĥi accounts for the interaction between
them. Suppose initially the composite C = S + B is in a global thermal equilibrium state which is
stationary, and thus has reversible dynamics, described by the density matrix ρ̂c = e−βĤc /Zc at the
inverse temperature β−1. The quantity Zc = Trsb e−βĤc is the partition function of the composite for
the global thermal state.

In the case of vanishing coupling between the system and the bath, we may approximate the total
Hamiltonian Ĥc to the leading order by Ĥc ' Ĥs + Ĥb. Since [Ĥs, Ĥb] = 0, we notice that

1
Zb

Trb e−βĤc ' 1
Zb

Trb
{

e−βĤs e−βĤb
}
= e−βĤs , (8)
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with the partition function of the free bath being given by Zb = Trb e−βĤb . Equation (8) implies that
the reduced state ρ̂r = Trb ρ̂c, which is also stationary, will assume a canonical form

ρr =
e−βĤs

Zs
=

1
Zc

Trb e−βĤc , with Zs = Trs e−βĤs , (9)

that is, Zc ' ZsZb in the limit of vanishing system-bath coupling. In addition, (9) ensures the proper
normalization condition Trs ρr = 1. Thus in the weak limit of the system-bath interaction, the reduced
density matrix of the interacting composite system in the global thermal state will take the canonical
form, hence it to some degree justifies the choice of the system state in the context of quantum
thermodynamics in the textbooks [59,60]. Hereafter we will denote the reduced density matrix of the
system by ρ̂s.

When the interaction between the system and the bath cannot be neglected, the righthand side
of (8) no longer holds. In addition, non-commutating nature among the operators Ĥs, Ĥi and Ĥb
prevents us from writing e−β(Ĥs+Ĥi+Ĥb) 6= e−β(Ĥs+Ĥb)e−βĤi , due to [Ĥs, Ĥi] 6= 0 and [Ĥb, Ĥi] 6= 0
in general. In fact, according to the Baker-Campbell-Haussdorff (BCH) formula, the previous
decomposition will have the form

e−β(Ĥs+Ĥb)e−βĤi = exp
{
−β(Ĥs + Ĥi + Ĥb) +

β2

2!
[
Ĥs + Ĥb, Ĥi

]
(10)

− β3

3!

(1
2
[[

Ĥs + Ĥb, Ĥi
]
, Ĥi
]
+

1
2
[
Ĥs + Ĥb,

[
Ĥs + Ĥb, Ĥi

]])
+ · · ·

}
.

The exponent on the righthand side typically contains an infinite number of terms. This makes
algebraic manipulation of the strongly interacting system rather complicated, in contrast to its classical
or quantum weak-coupling counterpart.

3.3. Hamiltonian of Mean Force

To account for non-vanishing interactions (in this paper, we apply the Hamiltonian of mean
force to a quantum system in the global thermal state setup without any time-dependent driving
force. See [53–55] for its use in nonequilibrium systems at strong coupling), one can introduce the
Hamiltonian of mean force H∗s for the system defined by [56–58]

e−βĤ∗s ≡ 1
Zb

Trb e−βĤc . (11)

It depends only on the system operator but has included all the influences from the bath. In the
limit Ĥi is negligible Ĥ∗s ' Ĥs; otherwise, in general Ĥ∗s 6= Ĥs. The corresponding partition function
Z∗ is then given by Z∗ = Trs e−βĤ∗s = Z−1

b Trsb e−βĤc = Zc/Zb.
If one followed the procedure of traditional weak-coupling thermodynamics to define the free

energy as F = −β−1 lnZ , then the total free energy Fc of the composite system can be given by a
simple additive expression Fc = F ∗ +Fb, with F ∗ = −β−1 lnZ∗ and Fb = −β−1 lnZb. In addition,
one can write the reduced density matrix ρ̂s in a form similar to (9), with the replacement of Ĥs by Ĥ∗s ,

ρ̂s =
1
Zc

Trb e−βĤc =
e−βĤ∗s

Z∗ , (12)

in the hope that the conventional procedures of weak-coupling thermodynamics will follow. However,
in Section 7 or in [42], we see that at strong coupling even though we already have the (reduced)
density matrix and the free energy of the system, we can introduce two different sets of thermodynamic
potentials for the system. The thermodynamic potentials in each set are mathematically self-consistent,
but they are not compatible with their counterparts in the other set, in contrast to the weak coupling
limit, where both definitions are equivalent.
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Two earlier approaches to introduce the thermodynamic potentials in a strongly interacting
system had been proposed by Gelin and Thoss [42], and by Seifert [26]. We shall summarize the
approach I in Gelin and Thoss’ work below and present a more detailed quantum formulation of
Seifert’s approach following, both for a configuration that the composite is initially in a global thermal
state without any external force. A recent proposal by Jarzynski [27] for classical systems will be
formulated quantum-mechanically in the same setting in Section 7.

4. Quantum Formulation of Gelin and Thoss’ Thermodynamics at Strong Coupling

The first approach, based on Approach I of Gelin & Thoss [42], is rather intuitive, because their
definitions of the internal energy and the entropy are the familiar ones in traditional thermodynamics.
They define the internal energy Us of the (reduced) system by the quantum expectation value of
the system Hamiltonian operator alone, Us = Trs

{
ρ̂s Ĥs

}
, and choose the entropy to be the von

Neumann (vN) entropy Ss = SvN = −Trs
{

ρ̂s ln ρ̂s
}

. These are borrowed from the corresponding
definitions in weak-coupling thermodynamics.

They write the same reduced density matrix (9) in a slightly different representation to highlight
the difference from the weak-coupling thermodynamics case,

ρ̂s =
1
Zc

e−β(Ĥs+∆̂s) = e−β(Ĥs+∆̂s−Fc) , with Zc = Trs e−β(Ĥs+∆̂s) = e−βFc (13)

where ∆̂s depends only on the system variables but includes all of the influence from the bath from
their interaction. Comparing this with (11), we note that ∆̂s is formally related to the Hamiltonian of
mean force by ∆̂s = Ĥ∗s − Ĥs + Fb. Finally, they let the partition function of the system take on the
value Zc, which is distinct from Z∗. Thus the corresponding free energy will be given by Fc which
contains all the contributions from the composite C.

Although in this approach the definitions of internal energy and entropy of the system are quite
intuitive, these two thermodynamic quantities do not enjoy simple relations with the partition function
Zc, as in (5). From (13), we can show (Here some discretion is advised in taking the derivative with
respect to β because in general an operator will not commute with its own derivative. See details in
Appendix A)

− ∂

∂β
lnZc = −

1
Zc

∂

∂β
Trs e−β(Ĥs+∆̂s) = 〈Ĥs〉+ 〈∆̂s〉+ β 〈∂β∆̂s〉 6= Us , (14)

with the corresponding free energy Fc = Us + 〈∆̂s〉+ β 〈∂β∆̂s〉 − β ∂βFc. Here 〈· · · 〉 represents the
expectation value taken with respect to the density matrix ρ̂c of the composite. For a system operator
Ôs, this definition yields an expectation value equal to that with respect to the reduced density matrix
ρ̂s, namely,

〈Ôs〉s = Trs
{

ρ̂s Ôs
}
= Trsb

{
ρ̂c Ôs

}
= 〈Ôs〉 . (15)

Likewise, the von Neumann entropy SvN can be expressed in terms of the free energy Fc by

SvN = β2∂βFc − β2〈∂β∆̂s〉 , (16)

which does not resemble the traditional form in (3). Additionally, we observe the entropy so defined is
not additive, that is,

SvN + Sb = −Trs
{

ρ̂s ln ρ̂s
}
− Trb

{
ρ̂s ln ρ̂b

}
6= −Trsb

{
ρ̂c ln ρ̂c

}
= Sc . (17)

Here Sc and Sb are the von Neumann entropies of the composite and the free bath, respectively.
Note that the ρ̂b in this formulation is the density matrix of the free bath, not the reduced density matrix
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of the bath, namely, ρ̂b 6= Trs ρ̂c. The reduced density matrix of the bath will contain an additional
overlap with the system owing to their coupling.

When the internal energy of the system given by the expectation value of the system Hamiltonian
operator Ĥs, the specific heat Cs will take the form,

Cs = −β2∂β〈Ĥs〉 = −β ∂βSvN − β2
[
〈∂β∆̂s〉 − ∂β〈∆̂s〉

]
. (18)

In general 〈∂β∆̂s〉 6= ∂β〈∆̂s〉 since the reduced density matrix ρ̂s also has a temperature dependence.
We thus see in this case the heat capacity cannot be directly given as the derivative of the (von Neumann)
entropy with respect to β, as in (7).

In short, in this formulation, the thermodynamic potentials of the system are defined in a direct
and intuitive way. They introduce an operator ∆̂s to highlight the foreseen ambiguity when the system
is strongly coupled with the bath. Formally we see that ∆̂s = −β−1 ln Trb e−β(Ĥs+Ĥi+Ĥb) − Ĥs. In the
limit of weak coupling, Ĥi ≈ 0, the operator ∆̂s reduces to

∆̂s ≈ −β−1 ln Trb e−β(Ĥs+Ĥb) − Ĥs = −β−1 lnZb . (19)

Hence in this limit, ∆̂s reduces to a c-number and plays the role of the free energy Fb of the free
bath. Observe ∆̂s ≈ Fb in the weak coupling limit annuls the expression in the square brackets in (18)
and restores the traditional relation (7) between the heat capacity and the entropy. However, even in
the weak coupling limit, the internal energy still cannot be given by (5). The disparity lies in the
identification of Zc as the partition function of the system. As is clearly seen from (14), in the weak
coupling limit, we have

− ∂

∂β
lnZc ≈ −

1
Zc

∂

∂β
Trs

{
e−βĤsZb

}
= 〈Ĥs〉s + 〈Ĥb〉b . (20)

This implies that Zc is not a good candidate for the partition function of the system. A more
suitable option would be Zc/Zb.

5. Quantum Formulation of Seifert’s Thermodynamics at Strong Coupling

If we literally follow (11) and identify Ĥ∗s as the effective Hamiltonian operator of the (reduced)
system, we will nominally interpret that the reduced system assumes a canonical distribution. Thus it
is natural to identify Z∗ as the partition function associated with the reduced state of the system.

Suppose we maintain the thermodynamic relations regardless of the coupling strength between
the system and the bath. From (5) to (6), we will arrive at expressions of the internal energy and
entropy of the system. This is essentially Seifert’s approach [26] to the thermodynamics at strong
coupling. Here we will present the quantum-mechanical version of it for a equilibrium configuration
without the external drive, that is, λ = 0 in Seifert’s notion.

First, from (11), we have the explicit form of the Hamiltonian of mean force Ĥ∗s

Ĥ∗s = −β−1 ln Trb

{
exp

[
−βĤs − βĤi − β

(
Ĥb −Fb

)]}
. (21)

This is the operator form of H(ξs, λ) in Equation (5) of [26]. Noting the non-commutative
characters of the operators. Since [Ĥs, Ĥi] 6= 0,

e−β(Ĥs+Ĥi+Ĥb) 6→ e−βĤs e−β(Ĥi+Ĥb) . (22)

If one prefers factoring out e−βĤs from e−β(Ĥs+Ĥi+Ĥb), one can use the Baker-Campbell-Haussdorff
formula, outlined in Appendix A, to expand out the operator products to a certain order commensurate
with a specified degree of accuracy.
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Second, it is readily seen that peq(ξs|λ= 0) in Equation (4) of [26] is the reduced density matrix ρ̂s

of the system (12). The (Helmholtz) free energy F in Seifert’s Equation (7) is exactly the free energy of
the reduced system F ∗ in Section 3.3.

With these identifications, it is easier to find the rest of the physical quantities in Seifert’s strong
coupling thermodynamics for the equilibrium configuration. We now proceed to derive the entropy
and the internal energy, i.e., Equations (8) and (9) of [26], for quantum systems in his framework in the
equilibrium setting.

In general, an operator does not commute with its derivative, so taking the derivative of an
operator-valued function or performing integration by parts on an operator-valued function can
be nontrivial. Their subtleties are discussed in Appendix A, where we show that the derivative of
an operator function is in general realized by its Taylor’s expansion in a symmetrized form (A5).
However, when such a form appears in the trace, the cyclic property of the trace allow us to manipulate
the derivative of a operator-valued function as that of a c-number function thus sidestepping the
symmetrized ordering challenge. Hence from the thermodynamic relation (6), we have

Ss = −βF ∗ + β Trs
{

ρ̂s
(

Ĥ∗s + β ∂β Ĥ∗s
)}

. (23)

Here we recall that even though the operators Ĥ∗s and ∂β Ĥ∗s in general do not commute, the trace
operation allowing for cyclic permutations of the operator products eases the difficulties in their
manipulation. Since (12) implies the operator identity βĤ∗s = βF ∗ − ln ρ̂s, we can recast (23) to

Ss = Trs
{

ρ̂s
(
− ln ρs + β2∂β Ĥ∗s

)}
= SvN + β2〈∂β H∗s 〉 6= −Trs

{
ρ̂s ln ρ̂s

}
= SvN . (24)

This is the quantum counterpart of Seifert’s entropy, Equation (8) of [26]. This entropy is often
called the “thermodynamic” entropy in the literature. Note that it is not equal to the von Neumann
(“statistical”) entropy SvN of the system.

The internal energy can be given by the thermodynamic relation

Us = F ∗ + β−1Ss . (25)

Thus from (23), we obtain,

Us = Trs
{

ρ̂s
(

Ĥ∗s + β ∂βĤ∗s
)}

= 〈Ĥ∗s 〉+ β 〈∂β Ĥ∗s 〉 6= 〈Ĥ∗s 〉 . (26)

This deviation results from the fact that Ĥ∗s , introduced in (11) may depend on β. When we
take this into consideration, we can verify that the internal energy can also be consistently given by
Equation (5)

− ∂

∂β
lnZ∗ = 1

Z∗ Trs

{(
Ĥ∗s + β ∂βĤ∗s

)
e−βĤ∗s

}
= Us . (27)

In fact, we can show, by recognizing Z∗ = Zc/Zb, that

Us = 〈Ĥs〉+
[
〈Ĥi〉+ 〈Ĥb〉 − 〈Ĥb〉b

]
6= 〈Ĥs〉 , (28)

with 〈Ĥb〉b ≡ Trb
{

ρ̂b Ĥb
}

, 〈Ĥb〉 ≡ Trsb
{

ρ̂c Ĥb
}

, and 〈Ĥs〉 ≡ Trsb
{

ρ̂c Ĥs
}

= 〈Ĥs〉s. Equation (28)
implies that the internal energy, defined by (27), accommodates more than mere 〈Ĥs〉s. The additional
pieces contain contributions from the bath and the interaction. In particular, when the coupling
between the system and the bath is not negligible, we have 〈Ĥb〉 6= 〈Ĥb〉b in general. As a matter of
fact, even the internal energy defined by the expectation value of the system Hamiltonian operator
in approach I of Gelin & Thoss’ work also encompasses influence from the bath because the reduced
density matrix ρ̂s includes all the effects of the bath on the system.
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Hitherto, we have encountered three possible definitions of internal energies, namely, 〈Ĥs〉, 〈Ĥ∗s 〉,
and Us. As can be clearly seen from (26) and (28), they essentially differ by the amount of the bath and
the interaction energy which are counted toward the system energy. This ambiguity arises from strong
coupling between the system and the bath. When the system-bath interaction is negligibly small,
we have 〈Ĥi〉 ≈ 0, and since in this limit, the full density matrix of the composite is approximately
given by the product of that of the system and the bath, we arrive at 〈Ĥb〉 ≈ 〈Ĥb〉b, and these three
energies become equivalent.

To explicate the physical content of 〈Ĥ∗s 〉, from (12) we can write 〈Ĥ∗s 〉 as

〈Ĥ∗s 〉 = −
1
β

Trs
{

ρ̂s ln ρ̂s
}
+F ∗ = β−1SvN +F ∗ , or F ∗ = 〈Ĥ∗s 〉 − β−1 SvN . (29)

This offers an interesting comparison with (25), where F ∗ = Us − β−1Ss. It may appear that
we can replace the pair (Us,Ss) by another pair (〈Ĥ∗s 〉,SvN), leaving F ∗ unchanged, thus suggesting
an alternative definition of internal energy by 〈Ĥ∗s 〉 and that of entropy by SvN . However, in so
doing, the new energy and entropy will not satisfy a simple thermodynamic relation like (5) and (6).
This is a good sign, as it is an indication that certain internal consistency exists in the choice of the
thermodynamic variables.

We now investigate the differences between the two definitions of entropy. From (24), we obtain

T
(
Ss − SvN

)
= Trs

{
ρ̂s
(

β ∂β Ĥ∗s
)}

= β ∂β Trs
{

ρ̂s Ĥ∗s
}
− β Trs

{(
∂βρ̂s

)
Ĥ∗s
}

. (30)

The factor ∂βρ̂s can be written as ∂βρ̂s = 〈Ĥc〉 ρ̂s − Trb
{

ρ̂c Ĥc
}

with ∂βZc = −〈Ĥc〉 Zc.
We then obtain

T
(
Ss − SvN

)
= β ∂β〈Ĥ∗s 〉+ β

[
〈Ĥc Ĥ∗s 〉 − 〈Ĥc〉〈Ĥ∗s 〉

]
. (31)

Thus, part of the difference between the two entropies result from the correlation between the
full Hamiltonian Ĥc and the Hamiltonian of mean force Ĥ∗s . This correlation will disappear in the
vanishing coupling limit because there is no interaction to bridge the system and the bath. We also
note that in the same limit, 〈Ĥ∗s 〉 ≈ 〈Ĥs〉 becomes temperature-independent, and both definitions of
the entropy turn synonymous.

Since the von Neumann entropy SvN can be used as a measure of entanglement between the
system and the bath at zero temperature, we often introduce the quantum mutual information Isb to
quantify how they are correlated,

Isb = SvN + S ′b − Sc ≥ 0 , (32)

where S ′b is the von Neumann entropy associated with the reduced density matrix $̂b of the bath,
in contrast to Sb we have met earlier. This mutual information can be related to the quantum relative
entropy S(ρ̂c‖ρ̂s ⊗ $̂b) by

S(ρ̂c‖ρ̂s ⊗ $̂b) = Trsb

{
ρ̂c ln ρ̂c − ρ̂c ln ρ̂s ⊗ $̂b

}
= Isb , (33)

because $̂b = Trs ρ̂c. On the other hand, Equation (23) imply that the thermodynamic entropy Ss is
additive Ss + Sb = Sc, from which we find

Isb =
(
S ′b − Sb

)
+
(
SvN − Ss

)
. (34)

This and (31) provide different perspectives on how the difference between the two system
entropies is related to the system-bath entanglement, and how the system-bath coupling has a role in
establishing such correlations.
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Following the definitions of the internal energy (27) and the entropy (23), the heat capacity of the
system still satisfies a familiar relation Cs = −β2 ∂βUs = β2 ∂2

β lnZ∗ = −β ∂βSs. Compared with (18),
with the help of (28), we clearly see their difference, caused by different definitions of internal energy,
is given by

−β2 ∂β

(
Us − 〈Ĥs〉

)
= −β2 ∂β

[
〈Ĥi〉+ 〈Ĥb〉 − 〈Ĥb〉b

]
. (35)

6. Issues of These Two Approaches: Entropy and Internal Energy

Both equilibrium quantum formulations for thermodynamics at strong coupling are based on
plausible assumptions and are mathematically sound. In Approach I outlined in Section 4, one starts
with intuitive definitions of the thermodynamics quantities, inspired by traditional thermodynamics
for classical systems premised on vanishingly weak coupling between the system and the bath.
This leads to modifications in the thermodynamic relations of the relevant thermodynamics quantities.
In Approach II delineated in Section 5, one opts to maintain the familiar thermodynamic relations but
is compelled to deal with a rather obscure interpretation of the thermodynamic potentials. Although
both approaches in the vanishing system-bath coupling limit are compatible, as shown in Section 3.1,
they in general entail distinct definitions of the thermodynamic functions. This disparity is amplified
with strong system-bath coupling in the deep quantum regime, where quantum coherence plays an
increasingly significant role. Thus, even though both approaches possess the same correct classical
thermodynamic limit, they are not guaranteed to give unique physical results in the deep quantum
regime, even for simple quantum systems, which are areas for interesting further investigations.

To highlight the issues more explicitly, we can apply these two methods to a simple and completely
solvable model, namely, a Brownian oscillator linearly but strongly coupled with a large (or infinitely
large, as modeled by a scalar field) bath. We will see both approaches at some point, or others that
produce ambiguous or paradoxical results. We make a few observations in the following section.

6.1. Entropy

(1) It has been discussed in [36,43,44] that the von Neumann entropy SvN will not approach to zero
for the finite system-bath coupling in the limit of zero temperature, but the thermodynamic
entropy Ss, defined in Approach II, behaves nicely in the same limit.

(2) It has been shown [49] that if the composite is in a global thermal state, the discrete energy
spectrum of the undamped oscillator will become a continuous one with a unique ground level.
This supports physics described by the thermodynamic entropy Ss.

(3) It has been argued [44–46] that the entanglement between the system and the bath prevents
the von Neumann entropy from approaching zero at zero temperature. Without quantum
entanglement between the system and the bath, the lowest energy level of the composite system
will be given by the tensor product of the ground state of the unperturbed system and bath, that
is, a pure state. In this case, the von Neumann entropy will go to zero as expected, and this is
the scenario that occurred in traditional quantum/classical thermodynamics in the vanishing
system-bath coupling limit.

6.2. Internal Energy

• It has been discussed [37–40] that the internal energy defined in Approach II can lead to anomalous
behavior of the heat capacity in the low temperature limit. When the system, consisting of a
quantum oscillator [40] or a free particle [37–39] is coupled to a heat bath modeled by a large
number of quantum harmonic oscillators, the heat capacity of the system can become negative if
the temperature of the bath is sufficiently low. If the internal energy defined in Approach I is used
to compute the heat capacity, then it has been shown that the heat capacity remains positive for
all nonzero temperatures but vanishes in the zero bath temperature limit, for a system with one
harmonic oscillator [37], or a finite number of coupled harmonic oscillators [29]. This discrepancy
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may result from the fact that the internal energy defined in Approach II contains contributions
from the interaction and the bath Hamiltonian.

It seems to imply that in the low-temperature, strong coupling regime, it remains an open question
how to properly define the thermodynamic functions; being able to show the well-known behaviors in
the classical thermodynamic limit is a necessary but not sufficient condition.

7. Quantum Formulation of Jarzynski’s Strong Coupling Thermodynamics

We now provide a quantum formulation of Jarzynski’s classical results [27] but for composite
system C kept under thermal equilibrium. The Hamiltonian operator of the composite C = S + B is
assumed to take the form

Ĥc = Ĥs + Ĥi + Ĥb + J · Âb , (36)

Here in this paper, J will be some external, but constant c-number drive acting on the bath via a
bath operator Âb. It can be a constant pressure, as in Jarzynski’s classical formulation, and then Âb will
be an operator corresponding to Vb, conjugated to P. However, in general, Âb will be the operator of
the quantity conjugated to J. This analogy, though formal, provides an alternative route to introduce
the operator conjugated to J.

If the composite system is in thermal equilibrium at the temperature β−1, its state is described
by the density matrix operator ρ̂c = e−β Ĥc /Zc, where Zc = Trsb

{
e−β Ĥc

}
, a c-number, is the partition

function of the composite. For later convenience, we also define the corresponding quantities for the
bath B when it is coupled to the system S, ρ̂b = e−β (Ĥb+J·Âb)/Zb with the bath partition function
Zb = Trb

{
e−β (Ĥb+J·Âb)

}
. We introduce the Hamiltonian operator of mean force Ĥ∗s by

e−β Ĥ∗s ≡ 1
Zb

Trb

{
e−β Ĥc

}
, (37)

such that the reduced density matrix of the system S takes the form

ρ̂s ≡ Trb ρ̂c =
1
Zs

e−β Ĥ∗s , with Zs =
Zc

Zb
= Trs

{
e−β Ĥ∗s

}
. (38)

The quantity Zs can be viewed as an effective partition function of the system S. This is motivated
by the observation that, in the absence of coupling between S and B, or in the weak coupling limit, the
composite is additive so its partition function is the product of those of the subsystems, i.e., Zc = ZsZb.
The difference Ĥ∗s − Ĥs modifies the dynamics of the system S due to its interaction with the bath B.

In fact, by the construction, e−β H∗s , once sandwiched by the appropriate states of the system S and
expressed in the imaginary-time path integral formalism (for further details regarding the connection
with the influence action, please refer to [28,61,62]), is formally e−SCG , where SCG is the coarse-grained
effective action of the system S, wick-rotated to the imaginary time. Thus formally β(Ĥ∗s − Ĥs) is
equivalent to the influence action in the imaginary time formalism.

Similar to the classical formulations, we may have two different representations of the operator
Âs of the system.

7.1. “Bare” Representation

In the bare representation, we may define Âs = (Ĥ∗s − Ĥs)/J, and the internal energy operator Ûs

and the enthalpy operator Ĥs, respectively, by Ûs = Ĥs and Ĥs = Ĥ∗s , with expectation values given
by Us = Trs

{
ρ̂s Ûs

}
andHs = Trs

{
ρ̂s Ĥs

}
= Us + J · As, corresponding to the internal energy and the

enthalpy we are familiar with, respectively. Here As = Trs
{

ρ̂s Âs
}

. The entropy is chosen to be the
von Neumann entropy of the system

Ss = Trs
{

ρ̂s ln ρ̂s
}
= β

(
Hs − Gs

)
. (39)
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The Gibbs free energy Gs is defined as Gs = −β−1 lnZs. These definitions are in exact parallel to
those in the classical formulation [27].

7.2. “Partial Molar” Representation

In contrast to the bare representation, we can alternatively define the operator Âs of the system
S that corresponds to Âb of the bath B by Âs = ∂

(
Ĥ∗s − Ĥs

)
/∂J = ∂Ĥ∗s /∂J. The last equality results

from the fact that Ĥs has no dependence on the external parameter J. Owing to the non-commutativity
of operators, the micro-physics interpretation of the operator Âs is not so transparent. We first focus
on its quantum expectation value As

As = Trs

{
ρ̂s Âs

}
=

1
Zs

Trs

{
e−β Ĥ∗s ∂Ĥ∗s

∂J

}
. (40)

As stressed earlier, since the operator does not commute with its derivative, care must be taken
when we move the derivative around in an operator expression. However, from (A7), we learn that
the righthand side of (40) can be identified as

Trs

{
e−β Ĥ∗s ∂Ĥ∗s

∂J

}
= −β−1 ∂

∂J
Trs

{
e−β Ĥ∗s

}
, (41)

and thus we have As = −β−1 ∂ lnZs/∂J. The advantage of this expression is that the observation of
Zs = Zc/Zb enables us to writeAs asAs = Ac−Ab, if we have defined the corresponding expectation
values for the composite C and the bath B by Ac = −β−1 ∂ lnZc/∂J and Ab = −β−1 ∂ lnZb/∂J.
In particular we can check that Ab indeed is the expectation value of the operator Âb, that is,
Ab = Trb

{
ρ̂b Âb

}
= Trsb

{
ρ̂b Âb

}
. The latter expression can nicely bridge with Ac for the composite,

Ac = Trsb
{

ρ̂ Âb
}

. Thus the expectation value A is additive. Its value for the combined systems is
equal to the sum of those of the subsystems, Ac = As +Ab. In fact, this additive property holds for
all the thermodynamics potentials introduced afterwards. This is a nice feature in Jarzynski’s partial
molar representation or in Seifert’s approach.

From this aspect, we can interpret As as the change of Ab due to the intervention of the system
S. For example, consider a photon gas inside a cavity box, one side of which is a movable classical
mirror and is exerted by a constant pressure. Assume originally the photon gas and the mirror are
in thermal equilibrium. In this cavity we now place a Brownian charged oscillator and maintain the
new composite system in thermal equilibrium at the same temperature and the same pressure (The
equilibration process in this example can be awfully complicated if we mind the subtleties regarding
whether the photon gas can ever reach thermal equilibrium in a cavity whose walls are perfectly
reflective and so on. For the present argument, we assume equilibration is possible and there is no
leakage of the photons). Then we should note that there is a minute change in the mean position of the
mirror before and after the Brownian charged oscillator is placed into the cavity. This change can also
be translated to an effective or dynamical size of the charged oscillator due to its interaction with the
photon gas, and thus is accounted for in As when J is identified as the constant pressure applied to
the wall.

From this example, it is tempting to identify J · Âs as some quantum work operator (its value
depends on the interaction between the system and the bath and when this interaction is switched on.
It is thus path-dependent in the parameter space of the coupling constant). Alternatively we may view
it or its expectation as some additional “energy content” of the system S due to its interaction with the
bath when the composite is acted upon by an external agent J, since Âs is related to Ĥ∗s − Ĥs [63,64].
Inspired by this observation and taking the hint from the definition of As, we introduce the enthalpy
of the system S by

Hs ≡ −
∂

∂β
lnZs = Hc −Hb , (42)
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where we have identified the enthalpies of the composite C = S + B and the bath B as
Hc = −∂ lnZc/∂β andHb = −∂ lnZb/∂β. We may rewrite them asHc = 〈Ĥs〉+ 〈Ĥi〉+ 〈Ĥb〉+ J · Ac

andHb = 〈Ĥb〉b + J · Ab. It implies that (1) the system enthalpy can be decomposed as

Hs = Hc −Hb =
[
〈Ĥs〉+ 〈Ĥi〉+ 〈Ĥb〉 − 〈Ĥb〉b

]
+ J · As , (43)

and (2) the internal energy Us of the system S can be consistently inferred as

Us = 〈Ĥs〉+ 〈Ĥi〉+
[
〈Ĥb〉 − 〈Ĥb〉b

]
. (44)

This is exactly the same internal energy obtained in Seifert’s approach in the equilibrium setting.
We can define the internal energy of the composite system and of the bath by Uc = 〈Ĥs〉+ 〈Ĥi〉+ 〈Ĥb〉
and Ub = 〈Ĥb〉b, and then we may conclude Us = Uc −Ub. Thus the internal energy Us also includes
contributions that naïvely we will not ordinarily attribute to the system, such as 〈Ĥb〉− 〈Ĥb〉b. Doing so
will complicate the physical connotation of the internal energy of the system.

Up to this moment, we essentially write the thermodynamic quantities by the quantum
expectation value and in terms of the partition functions. Thus it is appropriate to introduce the
Gibbs free energies of the composite C, the system S, and the bath B by Ga = −β−1 lnZa, where a = c,
s and b, and they obey the additive property of the Gibbs energy, Gc = Gs + Gb. Furthermore, in the
composite, we note that

β
(
Hc − Gc

)
= β2 ∂Gc

∂β
= −Trsb

{
ρ̂c ln ρ̂c

}
. (45)

From (45), we can consistently define the entropy S of the composite by Sc = β
(
Hc − Gc

)
and,

similarly, the entropy Sb of the bath:

Sb = β
(
Hb − Gb

)
= β2 ∂Gb

∂β
= −Trb

{
ρ̂b ln ρ̂b

}
. (46)

The additive property of the free energy and the enthalpy implies that the entropy Ss of the
system in this representation is also additive, Ss = Sc − Sb, and is given by

Ss = β
(
Hs − Gs

)
= β2 ∂Gs

∂β
= −Trsb

{
ρ̂c ln ρ̂c

}
+ Trb

{
ρ̂b ln ρ̂b

}
6= −Trs

{
ρ̂s ln ρ̂s

}
, (47)

Note it is not equal to the von Neumann entropy, which is defined as the entropy of the system in
the “bare” representation.

7.3. Operator Forms of the Thermodynamic Functions

In trying to formulate a set of laws to describe the thermodynamics of a quantum system (even
the existence of such a theory, under certain appropriate conditions, is not a matter of presumption or
prescription, but by demonstration and proof) it would be most convenient if we could define operators
of the thermodynamic functions in such a way that the quantum expectation values of those operators
give the familiar expressions for the thermodynamic functions. As we see it, this is the paramount
challenge in the formal establishment of quantum thermodynamics as a viable theory. The laws of
thermodynamics have been understood in terms of the mean values of the relevant operator quantities.
For a system where the fluctuations of the thermodynamic functions become comparable to the
corresponding mean values, the thermodynamic laws governing the mean values need be supplanted
by laws governing their quantum fluctuations or higher order quantum correlations. A case in point
for classical systems where fluctuations are as important as the mean values is near the critical point of
the system. The truly quantum properties would impact on the quantum thermodynamics for small
quantum systems in the regimes of strong couplings to its environment, and at low temperatures,
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where quantum coherence effects take center stage. Having the operator forms of these thermodynamic
potentials allows us to calculate the higher-order quantum correlations of those quantities existent in
larger fluctuations.

In the following sections, we will attempt to identify the operator form of the thermodynamic
function for the reduced system.

7.3.1. Enthalpy and Energy Operators: Caution

In fact, we may deduce the operator form of the quantities introduced earlier. For example,
we may intuitively define the enthalpy operator Ĥ of the composite by Ĥc = Ĥs + Ĥi + Ĥb + J · Âb,
and then it is clear to see that the expectation valueHc is related to this operator byHc = Trsb

{
ρ̂c Ĥc

}
=

〈Ĥc〉. Likewise, the enthalpy operator Ĥb of the bath B can be defined by Ĥb = Ĥb + J · Âb, and its
expectation value givesHb = Trb

{
ρ̂b Ĥb

}
= 〈Ĥb〉b. Moreover, the internal energy operator Ûc of the

composite system and the expectation value can be chosen such that Ûc = Ĥs + Ĥi + Ĥb such that
Uc = Trsb

{
ρ̂c Ûc

}
= 〈Ûc〉. For the bath, the internal energy operator Ûb is, intuitively, Ûb = Ĥb with

expectation values Ub = Trb
{

ρ̂b Ûb
}
= 〈Ûb〉b that is consistent with the expressions of the internal

energy discussed earlier.
Despite their intuitively appealing appearances, these operator forms of the enthalpies and

internal energies are not very useful. Inadvertent use of them may result in errors. For example, we
cannot define the enthalpy operator of system S simply by the difference of Ĥc and Ĥb, since

Ĥs
?
= Ĥc − Ĥb = Ĥs + Ĥi . (48)

This result in (48) is nonsensical because (1) the righthand side still explicitly depends on the bath
degree of freedom; (2) we cannot take its trace with respect to the state of the system, ρ̂s; and thus (3)
the expectation value will not be Hs. This is because the operators defined this way act on Hilbert
spaces different from that of ρ̂s; Ĥc is an operator in the Hilbert space of the composite while Ĥb is an
operator in the Hilbert space of the bath. Neither operator acts exclusively in the Hilbert space of the
system. Thus, extreme care is needed when manipulating the operator forms of the thermodynamical
potentials. What one needs to do is to seek the local forms of these operators, i.e., operators which act
only on the Hilbert space of the system. This can be done in parallel to Jarzynski’s classical formulation.

7.3.2. System Enthalpy Operator: Approved

We first inspect the internal energy operator. Since the averaged internal energy of the composite
system is given by Uc = Trsb

{
e−β Ĥc

(
Ĥs + Ĥi + Ĥb

)}
/Zc, we can rewrite the expressions inside the

trace into

Uc = Trs

{
ρ̂s Ẑ−1

i Trb

[
e+β Ĥs e−β Ĥc

(
Ĥs + Ĥi + Ĥb

)]}
, (49)

in a way analogous to Jarzynksi’s classical formulation. Here we have used the fact that Zc = ZsZb
and the identity for the operator Ẑi

Ẑi ≡ e+β Ĥs Trb

{
e−β

(
Ĥs+Ĥi+Ĥb+J·Âb

)}
= Zb e+β Ĥs e−β Ĥ∗s , ⇔ e+β Ĥ∗s

Zb
= Ẑ−1

i e+β Ĥs .

If we define an internal energy operator Ûi by

Ûi = Ẑ−1
i Trb

[
e+β Ĥs e−β Ĥc

(
Ĥs + Ĥi + Ĥb

)]
= Z−1

b e+β Ĥ∗s Trb

[
e−β Ĥc

(
Ĥs + Ĥi + Ĥb

)]
, (50)
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then we obtain a new representation of Uc

Uc = Trs
{

ρ̂s Ûi
}

. (51)

Equation (50) is an operator expression of the internal energy of the composite system, on account
of the non-commutativity of the operators, but its expectation value is taken with respect to the
system’s density matrix ρ̂s. With the help of (A9), this is equivalent to Equation (28) of [26] in the J = 0
case. In addition, we note that Ẑi is an operator, not a c number. Since Trs ρ̂s = 1, we may define the
operator Ûs by

Ûs = Ûi −Ub , (52)

such that Trs
{

ρ̂s Ûs
}
= Trs

{
ρ̂s Ûi

}
− Trs

{
ρ̂s Ub

}
= Uc − Ub = Us. The advantage of (50), (52) is that,

unlike those introduced in the previous subsection, they are all operators in the Hilbert space of the
system S. Indeed, using the identity operator Îs in the Hilbert space of the system S we can also define
Ûb as Ûb = Ub Îs.

In the same fashion, we may rewrite Ac by

Ac = Trs

{
1
Z

Trs

[
e−β Ĥ Âb

]}
= Trs

{
ρ̂s Ẑ−1

i Trb

[
e+β Ĥs e−β Ĥ Âb

]}
. (53)

Thus we can define
Âi = Ẑ−1

i Trb

[
e+β Ĥs e−β Ĥ Âb

]
, (54)

so that Ac = Trs
{

ρ̂s Âi
}

. We then can have a local form for the Âs given by Âs = Âi − Âb in close
resemblance to its classical expression in [27], if we re-define Âb as Âb = Ab Îs. The expectation value
of Âs is then given by Trs

{
ρ̂s Âs

}
= Trs

{
ρ̂s Âi

}
−Ab = Ac −Ab = As.

Now we proceed with constructing a local form of the enthalpy operator of the system. From (52)
and the definition of the operator Âs, we claim that the local form Ĥs is

Ĥs = Ûs + J · Âs . (55)

We can straightforwardly show that Trs
{

ρ̂s Ĥs
}

= Trs
{

ρ̂s Ûs
}
+ J · Trs

{
ρ̂s Âs

}
= Us + J · As.

Thus we have succeeded in constructing the operators that correspond to As, Us,Hs in forms local in
the Hilbert space of the system S. However, as can be seen from their expressions, their meanings are
not transparent a priori. They are determined a posteriori because we would like their expectation
values to take certain forms. This can pose a question about the uniqueness of these operators (A similar
issue is also raised in [58] for the classical formulation. However, in this context it is not clear whether
this ambiguity can be fixed by calculating the cumulants associated with these operators. If there exist
physical, measurable observables that correspond to the expectation values of the moments of these
operators, then one may entertain the possibility of using them to uniquely determine these operators.).
At least for a given reduced density matrix ρ̂s of the system, we can always attach a system operator
Λ̂s that satisfies Trs ρ̂sΛ̂s = 0 to the definitions of those local operators, that is, any system operator
that has a zero mean. The choice of Λ̂s may not be unique in the sense that in the basis {|n〉} that
diagonalizes ρ̂S, we can write Trs{ρ̂SΛ̂S} = 0 as

TrS{ρ̂SΛ̂S} = ∑
m,n
〈n|ρ̂S|m〉〈m|Λ̂S|n〉 = ∑

n

(
ρ̂S

)
nn

(
Λ̂S

)
nn = 0 . (56)

It says that the vectors that are respectively composed of the diagonal elements of ρ̂S and Λ̂S are
orthogonal, but it does not place any restriction on the off-diagonal elements of Λ̂S on this basis.
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8. Conclusions

8.1. Summary

In this paper we provide quantum formulations of equilibrium thermodynamic functions and their
relations for Jarzynski’s classical thermodynamics at strong coupling [27] without the consideration
of heat and work. The combined system + environment, called the composite, is assumed initially to
be in a global thermal state. In such a configuration, even though the interaction between the system
and the bath is non-negligible, the partition function of the composite is well defined. This facilitates
the introduction of thermodynamic potentials in a way similar to the traditional vanishing-coupling
thermodynamics. Such a configuration allows for the introduction of enthalpy by introducing an
external agent (keeping at constant pressure in Jarzynski’s case) acting on the conjugate bath operator.
The effect can be represented by an equivalent effect on the system, which then appears in the
expression of the enthalpy of the system. There are two ways to capture this effect, called the “bare”
and “partial molar” representations by Jarzynski. We have worked out a quantum formulation for
each of these two representations of Jarzynski’s classical thermodynamics. In addition, we attempt
to identify the operator forms of the thermodynamic functions, which can be potentially useful in
directly addressing the effects of quantum fluctuations on thermodynamics at strong coupling, where
the fluctuations can reach the same order of magnitude as the corresponding mean values.

8.2. Issues

We mention two outstanding issues of the two representations or approaches, namely, internal
energy and entropy of the system at strong coupling in the global thermal state. When the quantum
versions of these two approaches are applied to a small quantum system that strongly couples with a
low-temperature bath, some nonintuitive results have been reported in the literature [29,36–40,43,44].
If the von Neumann entropy is adopted as the system entropy, then when the system and the bath are
entangled, this entropy will not approach zero for a simple system such as a harmonic oscillator in
the zero temperature bath, contradicting the result in [49], where it has been shown that the ground
state of such a composite system is non-degenerate in general, thus implying vanishing entropy at
zero temperature. On the other hand, if the system’s internal energy is defined as the derivative
of the partition function of the system, the heat capacity derived therefrom can take on negative
values in the low temperature regime when the system consists of free particles or coupled harmonic
oscillators. This anomalous behavior, not seen when the internal energy defined as the expectation
value of the system Hamiltonian, may be traced to an excessive inclusion of the interaction and the
bath contributions, as shown in (44), in the definition of the internal energy of the system.

8.3. Further Developments

To complete a theory for equilibrium quantum thermodynamics, we need to include the
considerations of heat and work. For understanding quantum work, the physical meaning of
the operator Âs conjugate to J is a key issue. At the next level of investigation, reaching out to
nonequilibrium conditions, also at strong coupling, we posit that the operator ∆̂s, introduced by
Gelin and Thoss, and the Hamiltonian operator of mean force can be related to the influence action
or the coarse-grained effective action [28,61,62] of the system when they are sandwiched by the
states of the system and formulated in the finite temperature imaginary-time path integral method.
This and an earlier observation we made for the partition function point out a way to extend the
present equilibrium quantum thermodynamics at strong coupling for a closed system in a global
thermal state to a nonequilibrium setting, by employing the real-time closed-time-path formalism used
in [28,29,61,62]. This is the goal of our next paper in this series [65].
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Appendix A. Handling Operator Products in Quantum Thermodynamics

In deriving various thermodynamic relations in the context of quantum thermodynamics, we often
come up with expressions involving exponential of the sum of two operators, say λ̂ and µ̂. Unlike its
c-number counterpart, in general such an exponential cannot be written as a product of exponential of
the respective operators, that is,

eλ̂+µ̂ ?
= eλ̂ eµ̂ , (A1)

because these two operators λ̂, µ̂ may not commute. From Baker-Campbell-Haussdorff formulas,
the righthand side of (A1) in fact is given by

eλ̂eµ̂ = exp
(

λ̂ + µ̂ +
1
2!
[
λ̂, µ̂

]
+

1
3!

{1
2
[[

λ̂, µ̂
]
, µ̂
]
+

1
2
[
λ̂,
[
λ̂, µ̂

]]}
+ · · ·

)
, (A2)

for any two operators λ̂, µ̂. However, in the special case that [λ̂, µ̂] = 0, the equality in (A1) indeed is
valid. The other useful expression in the Baker-Campbell-Hausdorff formulas is

eλ̂ µ̂ e−λ̂ = µ̂ +
[
λ̂, µ̂

]
+

1
2
[
λ̂,
[
λ̂, µ̂

]]
+ · · · . (A3)

This is particularly useful in deriving the unitary transformation of µ̂ by the operator eλ̂.
We also often come to a situation that we need to take a derivative of an exponential of the

operator. This is less straightforward than is expected due to the fact that the operator in the exponent
may not commute with its own derivative. For example, consider an operator Ô(χ) of the form
Ô(χ) = α(χ) X̂ + β(χ) P̂, with α, β being functions of χ, but the operators X̂, P̂ of the canonical
variables have no explicit χ dependence. We immediately see the trivial result [Ô(χ), Ô(χ)] = 0,
but

[
Ô(χ), ∂χÔ(χ)

]
=
(
αβ̇− α̇β

) [
X̂, P̂

]
6= 0, where the overhead dot represents the derivative with

respect to χ. This introduces complications in taking the derivative of, say, e−Ô(χ) with respect to χ.
If we realize an operator function in terms of its Taylor’s expansion, then

e−Ô(χ) =
∞

∑
k=0

(−1)k

k!
Ôk(χ) . (A4)

Taking the derivative of (A4) with respective to χ yields

∂χe−Ô

= −
∞

∑
k=1

(−1)k−1

(k− 1)!

{
1
k

[(
∂χÔ

)
Ô · · · · · · Ô︸ ︷︷ ︸
(k−1) terms

+Ô
(
∂χÔ

)
Ô · · · · · · Ô︸ ︷︷ ︸
(k−2) terms

+ · · · · · ·+ Ô · · · · · · Ô︸ ︷︷ ︸
(k−1) terms

(
∂χÔ

)]}
(A5)

= −
[(

∂χÔ
)

e−Ô
]

sym
,

where we define the symmetrized product (Ô1Ô2 · · · Ôk)sym as a generalization of the anti-commutator by

(Ô1Ô2 · · · Ôk)sym =
1

# of perm. ∑
# of perm.

Ôσ1Ôσ2 · · · Ôσk , (A6)
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with σ being the permutations of 1, 2, · · · , k. Thus the expression, say, (∂βĤ∗s ) e−β Ĥ∗s , and similar
derivative expressions will be understood in this manner as a symmetrized product of ∂β Ĥ∗s and the

Taylor-expanded e−β Ĥ∗s , shown in (A5).
However, if the derivative like (A5) is taken within a trace, then the complicated expression (A5)

will reduce to a simple form

Tr
{

∂χe−Ô} = −
∞

∑
k=1

(−1)k−1

(k− 1)!
Tr
{(

∂χÔ
)

Ôk−1
}
= −Tr

{(
∂χÔ

)
e−Ô

}
, (A7)

due to the cyclic property of the trace formula. Hence in general we have ∂χe−Ô = −
[(

∂λÔ
)

e−Ô]
sym,

but its trace gives

Tr
{

∂χe−Ô} = −Tr
{[(

∂λÔ
)

e−Ô
]

sym

}
= −Tr

{(
∂χÔ

)
e−Ô} , (A8)

as if the operator Ô is a c-number. Note here we have assumed the traces applied in (A7) and (A8) are
not a partial trace; otherwise the same symmetrization procedure is still needed.

A special case of (A7) is ∂χe−χ Ô, in which Ô has no explicit dependence on χ. Then it is
straightforward to perform the differentiation, and since [Ô, e−χ Ô] = 0, we obtain

∂χe−χ Ô = −Ô e−χ Ô . (A9)

Next we give an explicit application of (A7). In particular, we focus on the expression

− 1
Zc

∂

∂β
Trs e−β(Ĥs+∆̂s) , with Zc = Trs e−β(Ĥs+∆̂s) . (A10)

Carrying out the differentiation of (A10) gives

=
1
Zc

Trs

{(
Ĥs + ∆̂s + β ∂β∆̂s

)
e−β(Ĥs+∆̂s)

}
= 〈Ĥs〉+ 〈∆̂s〉+ β 〈∂β∆̂s〉 . (A11)

The first two terms after the first equal sign in (A11) is the consequence of (A9), while the third
term results from (A8) due to the trace.
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