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Abstract: The complex vague soft set (CVSS) model is a hybrid of complex fuzzy sets and soft
sets that have the ability to accurately represent and model two-dimensional information for
real-life phenomena that are periodic in nature. In the existing studies of fuzzy and its extensions,
the uncertainties which are present in the data are handled with the help of membership degree
which is the subset of real numbers. However, in the present work, this condition has been relaxed
with the degrees whose ranges are a subset of the complex subset with unit disc and hence handle
the information in a better way. Under this environment, we developed some entropy measures of
the CVSS model induced by the axiomatic definition of distance measure. Some desirable relations
between them are also investigated. A numerical example related to detection of an image by the
robot is given to illustrate the proposed entropy measure.

Keywords: vague entropy; distance induced vague entropy; distance; complex fuzzy set; complex
vague soft set

1. Introduction

Classical information measures deal with information which is precise in nature, while
information theory is one of the trusted ways to measure the degree of uncertainty in data. In our
day-to-day life, uncertainty plays a dominant role in any decision-making process. In other words,
due to an increase of the system day-by-day, decision makers may have to give their judgments in an
imprecise, vague and uncertain environment. To deal with such information, Zadeh [1] introduced the
theory of fuzzy sets (FSs) for handling the uncertainties in the data by defining a membership function
with values between 0 and 1. In this environment, Deluca and Termini [2] proposed a set of axioms
for fuzzy entropy. Liu [3] and Fan and Xie [4] both studied information measures related to entropy,
distance, and similarity for fuzzy sets. With the growing complexities, researchers are engaged in
extensions such as intuitionistic fuzzy set (IFS) [5], vague set (VS) [6], interval-valued IFS [7] to deal
with the uncertainties. Under these extensions, Szmidt and Kacprzyk [8] extended the axioms of
Deluca and Termini [2] to the IFS environment. Later on, corresponding to Deluca and Termini’s [2]
fuzzy entropy measure, Vlachos and Sergiadis [9] extended their measure in the IFS environment.
Burillo and Bustince [10] introduced the entropy of intuitionistic fuzzy sets (IFSs), as a tool to measure
the degree of intuitionism associated with an IFS. Garg et al. [11] presented a generalized intuitionistic
fuzzy entropy measure of order α and degree β to solve decision-making problems. In addition to the
mentioned examples, other authors have also addressed the problem of decision-making by using the
different information measures [12–25].
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All the above-defined work is successfully applied to the various disciplines without considering
the parameterization factor during the analysis. Therefore, under some certain cases, these existing
theories may be unable to classify the object. To cope with such situations, many researchers are paying
more attention to soft set (SS) theory [26]. After its discovery, researchers are engaged in its extensions.
For instance, Maji et al. [27,28] combined the theory of SSs with FSs and IFSs and came up with a
new concept of the fuzzy soft set (FSS) and intuitionistic fuzzy soft set (IFSS). Further, the concept of
the hybridization of the SSs with the others, such as generalized fuzzy soft set [29,30], generalized
intuitionistic fuzzy soft set [31,32], distance measures [33–36], and fuzzy number intuitionistic fuzzy
soft sets [37] plays a dominant role during the decision making process. IFSS plays a dominant
role in handling the uncertainties in the data by incorporating the idea of the expert as well as the
parametric factors. In that environment, Arora and Garg [38,39] presented some aggregation operators
for intuitionistic fuzzy soft numbers. Garg and Arora [40] presented some non-linear methodology
for solving decision-making problems in an IFSS environment. In terms of the information measures,
Garg and Arora [34] developed various distance and similarity measures for dual hesitant FSS. Recently,
Garg and Arora [41] presented Bonferroni mean aggregation operators for an IFSS environment.
Apart from these, vague soft set [42] is an alternative theory which is the hybridization of the vague
set [6] and soft set [26]. In this field, Chen [43] developed some similarity measures for vague
sets. Wang and Qu [44] developed some entropy, similarity and distance measures for vague sets.
Selvachandran et al. [45] introduced distance induced entropy measures for generalized intuitionistic
fuzzy soft sets.

The above theories using FSs, IFSs, IFSSs, VSs, FSSs are widely employed by researchers but they
are able to handle only the uncertainty in the data. On the other hand, none of these models will be able
to handle the fluctuations of the data at a given phase of time during their execution, but in today’s life,
the uncertainty and vagueness of the data changes periodicity with the passage of time and hence the
existing theories are unable to consider this information. To overcome this deficiency, Ramot et al. [46]
presented a complex fuzzy set (CFS) in which the range of membership function is extended from
real numbers to complex numbers with the unit disc. Ramot et al. [47] generalized traditional fuzzy
logic to complex fuzzy logic in which the sets used in the reasoning process are complex fuzzy sets,
characterized by complex valued membership functions. Later on, Greenfield et al. [48] extended the
concept of CFS by taking the grade of the membership function as an interval-number rather than
single numbers. Yazdanbakhsh and Dick [49] conducted a systematic review of CFSs and logic and
discussed their applications. Later on, Alkouri and Salleh [50] extended the concepts of CFS to complex
intuitionistic fuzzy (CIF) sets (CIFSs) by adding the degree of complex non-membership functions
and studied their basic operations. Alkouri and Salleh [51] introduced the concepts of CIF relation,
composition, projections and proposed a distance measure between the two CIFSs. Rani and Garg [52]
presented some series of distance measures for a CIFS environment. Kumar and Bajaj [53] proposed
some distance and entropy measures for CIF soft sets. In these theories, a two-dimensional information
(amplitude and phase terms) are represented as a single set. The function of the phase term is to model
the periodicity and/seasonality of the elements. For instance, when dealing with an economics-related
situation, the phase term represents the time taken for the change in an economic variable to impact
the economy. On the other hand, in robotics, the phase term can represent direction, whereas in image
processing, the phase term can represent the non-physical attributes of the image.

As an alternative to these theories, the concept of the complex vague soft set (CVSS) [54]
handles the two-dimensional information by combining the properties of CFSs [46], soft sets [26]
and vague sets [6]. The CVSSs differs from the existing sets with the features that they contain: (1) an
interval-based membership structure that provides users with the means of recording their hesitancy
in the process of assigning membership values for the elements; (2) the ability to handle the partial
ignorance of the data; (3) adequate parameterization abilities that allow for a more comprehensive
representation of the parameters. Selvachandran et al. [54,55] investigated complex vague soft sets
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(CVSSs). Selvachandran et al. [56] presented similarity measures for CVSSs and their applications to
pattern recognition problems.

Thus, motivated from the concept of CVSS, the focus of this work is to explore the structural
characteristics of CVSSs and to present some information measures for handling the uncertainties
in the data. Per our knowledge, in the aforementioned studies, the information measures cannot be
utilized to handle the CVSS information. Thus, in order to achieve this, we develop the axiomatic
definition of the distance and entropy measures between CVSSs and hence propose some new entropy
measures. Some of the algebraic properties of these measures and the relations between them are also
verified. The proposed measures have the following characteristics: (1) they serve as a complement to
the CVSS model and its relations in representing and modeling time-periodic phenomena; (2) they
have elegant properties that increase their reach and applicability; (3) they have important applications
in many real-world problems in the areas of image detection, pattern recognition, image processing;
(4) they add to the existing collection of methodologies and techniques in artificial intelligence and
soft computing, where it is often necessary to determine the degree of vagueness of the data, in order
to make optimal decisions. This provides support of the increasingly widespread trend in the use of
mathematical tools to complement scientific theories and existing procedures, in the handling and
solving of real-life problems that involve vague, unreliable and uncertain two-dimensional information.
Furthermore, an effort has been put forth to solve the classification problem in multi-dimensional
complex data sets. To elaborate the proposed method, we will be focusing on the representation and
recognition of digital images defined by multi-dimensional complex data sets using the properties of
CVSSs and a new distance and entropy measure for this model.

The rest of the manuscript is organized as follows: in Section 2, we briefly review the basic
concepts of SSs and CVSSs. In Section 3, we define the axiomatic definition of the distance and entropy
measures for CVSSs. In Section 4, some basic relationships between the distance and entropy measures
are defined. In Section 5, the utility of the CVSS model and its entropy measure is illustrated by
applying it in a classification of the digital image with multi-dimensional data. Finally, conclusions
and future work are stated in Section 6.

2. Preliminaries

In this section, we briefly reviewed some basic concepts related to the VSs, SSs, CVSSs defined
over the universal set U.

Definition 1 [6]. A vague set (VS) V in U is characterized by the truth and falsity membership functions tV,
fV: U→[0.1] with tV(x) + fV(x) ≤ 1 for any x ∈ U. The values assigned corresponding to tV(x) and fV(x) are the
real numbers of [0, 1]. The grade of membership for x can be located in [tV(x), 1 − fV(x)] and the uncertainty of
x is defined as (1 − fV(x)) − tV(x).

It is clearly seen from the definition that VSs are the generalization of the fuzzy sets. If we
assign 1 − fV(x) to be 1 − tV(x) then VS reduces to FS. However, if we set 1 − tV(x) to be νA(x) (called
the non-membership degree) then VS reduces to IFS. On the other hand, if we set tV(x) = µL

V(x)
and 1− fV(x) = µU

V (x) then VS reduces to interval-valued FS. Thus, we conclude that VSs are the
generalization of the FSs, IFSs and interval-valued FSs.

Definition 2 [6]. Let A = {< x, [tA(x), 1− fA(x)] >: x ∈ U} and B = {< x, [tB(x), 1− fB(x)] >: x ∈ U}
be two VSs defined on U then the basic operational laws between them are defined as follows:

(i) A ⊆ B if tA(x) ≤ tB(x) and 1 − fA(x) ≤ 1 − fB(x) for all x.
(ii) Complement: AC = {<x, [fA(x), 1 − tA(x)]>: x ∈ U}.
(iii) Union: A∪B = {<x, [max(tA(x), tB(x)),max(1 − fA(x),1 − fB(x))]>: x ∈ U}
(iv) Intersection: A∩B = {<x, [min(tA(x), tB(x)), min(1 − fA(x),1 − fB(x))]>: x ∈ U}
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Definition 3 [26]. Let P(U) denote the power set of U. A pair (F, A) is called a soft set (SS) over V where F is
a mapping given by F : A→ P(U) .

Definition 4 [42]. Let V(U) be the power set of VSs over U. A pair (F̂, A) is called a vague soft set (VSS) over
U, where F̂ is a mapping given by F̂ : A→ V(U). Mathematically, VSS can be defined as follows:

(F̂, A) =
{
〈x,

[
tF̂(e)

(x), 1− f F̂(e)
(x)
]
〉 : x ∈ U, e ∈ A

}
It is clearly seen that this set is the hybridization of the SSs and VSs.

Definition 5 [57]. A complex vague set (CVS) is defined as an ordered pair defined as

A = {〈x, [tA(x), 1− fA(x)]〉 : x ∈ U}

where tA : U → {a : a ∈ C, |a| ≤ 1}, fA : U → {a : a ∈ X, |a| ≤ 1} are the truth and falsity membership
functions with unit disc and are defined as tA(x) = rtA(x).eiwr

tA
(x) and 1 − fA(x) =(

1− k fA(x)
)

.ei(2π−wk
fA
(x)) where i =

√
−1.

Definition 6 [54]. Let P(U) denote the complex vague power set of U and E be the set of parameters. For any
A ⊂ E, a pair (F, A) is called a complex vague soft set (CVSS) over U, where F : A→ P(U) , defined as:

F
(

xj
)
=

{(
xj,
[
rtFa

(
xj
)
, 1− ktFa

(
xj
)]

. e
i [wr

tFa
(xj), 2π−wk

fFa
(xj)]

)
: xj ∈ U

}
where j = 1, 2, 3, . . . is the number of parameters,

[
rtFa

(x), 1− ktFa
(x)
]

are real-valued ∈ [0, 1], the phase

terms
[
wr

tFa
(x), 2π − wk

fFa
(x)
]

are real-valued in the interval (0, 2π], 0 ≤ rtFa
(x) + kFa(x) ≤ 1 and

i =
√
−1.

The major advantages of the CVSS are that it represents two-dimensional information in a single
set and each object is characterized in terms of its magnitude as well as its phase term. Further, the soft
set component in CVSS provides an adequate parameterization tool to represent the information.

Definition 7 [54]. Let two CVSSs (F, A) and (G, B) over U, the basic operations between them are defined as

(i) (F, A) ⊂ (G, B) if and only if the following conditions are satisfied for all x ∈ U :

(a) rtFa
(x) ≤ rtGb

(x) and k fGb
(x) ≤ k fFa

(x);

(b) wr
tFa
(x) ≤ wr

tGb
(x) and wk

fGb
(x) ≤ wk

fFa
(x).

(ii) Null CVSS: (F, A) = φ if rtFa
(x) = 0, k fFa

(x) = 1 and wr
tFa
(x) = 0π, wk

fFa
(x) = 2π for all x ∈ U.

(iii) Absolute CVSS: (F, A) = 1 if rtFa
(x) = 1, k fFa

(x) = 0 and wr
tFa
(x) = 2π, wk

fFa
(x) = 0π for all

x ∈ U.

3. Axiomatic Definition of Distance Measure and Vague Entropy

Let E be a set of parameters and U be the universe of discourse. In this section, we present some
information measures namely distance and entropy for the collections of CVSSs, which are denoted
by CVSS(U).

Definition 8. Let (F, A), (G, B), (H, C) ∈ CVSS(U). A complex-value function d : CVSS(U) ×CVSS(U) →
{a, a ∈ U, |a| ≤ 1} is called a distance measure between CVSSs if it satisfies the following axioms:

(D1) d((F, A), (G, B)) = d((G, B), (F, A))
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(D2) d((F, A), (G, B)) = 0⇐⇒ (F, A) = (G, B)
(D3) d((F, A), (G, B)) = 1⇐⇒ ∀ e ∈ E, x ∈ U, both (F, A) and (G, B) are crisp sets in U, i.e.,

(F, A) =
{(

x, [0, 0]ei[0π, 0π]
)}

and (G, B) =
{(

x, [1, 1]ei[2π, 2π]
)}

,

or (F, A) =
{(

x, [0, 0]ei[2π, 2π]
)}

and (G, B) =
{(

x, [1, 1]ei[0π, 0π]
)}

,

or (F, A) =
{(

x, [1, 1]ei[2π, 2π]
)}

and (G, B) =
{(

x, [0, 0]ei[0π, 0π]
)}

,

or (F, A) =
{(

x, [1, 1]ei[0π, 0π]
)}

and (G, B) =
{(

x, [0, 0]ei[2π, 2π]
)}

.

(D4) If (F, A) ⊆ (G, B) ⊆ (H, C), then d((F, A), (H, C)) ≥ max(d((F, A), (G, B)), d((G, B), (H, C))).

Next, we define the axiomatic definition for the vague entropy for a CVSS.

Definition 9. A complex-valued function M : CVSS(U)→ {a : a ∈ C, |a| ≤ 1} is called vague entropy of
CVSSs, if it satisfies the following axioms for any (F, A), (G, B) ∈ CVSS(U).

(M1) 0 ≤ |M(F, A)| ≤ 1.
(M2) M(F, A) = 0 ⇐⇒ (F, A) is a crisp set on U for all a ∈ A and x ∈ U, i.e., rtFa

(x) = 1, k fFa
(x) = 0

and wr
tFa
(x) = 2π, wk

fFa
(x) = 0π or rtFa

(x) = 1, k fFa
(x) = 0 and wr

tFa
(x) = 0π, wk

fFa
(x) = 2π

or rtFa
(x) = 0, k fFa

(x) = 1 and wr
tFa
(x) = 0π, wk

fFa
(x) = 2π or rtFa

(x) = 0, k fFa
(x) = 1 and

wr
tFa
(x) = 2π, wk

fFa
(x) = 0π.

(M3) M(F, A) = 1⇐⇒ ∀ a ∈ A and x ∈ U, (F, A) is completely vague

i.e., rtFa
(x) = k fFa

(x) and wr
tFa
(x) = wk

fFa
(x).

(M4) M(F, A) = M
(
(F, A)c)

(M5) If the following two cases holds for all a ∈ A and x ∈ U,

Case 1 : rtFa
(x) ≤ rtGb

(x), k fFa
(x) ≥ k fGb

(x)whenever rtGb
(x) ≤ k fGb

(x);

and wr
tFa
(x) ≤ wr

tGb
(x), wk

fFa
(x) ≥ wk

fGb
(x) whenever wr

tGb
(x) ≤ wk

fGb
(x);

Case 2 : rtFa
(x) ≥ rtGb

(x), k fFa
(x) ≤ k fGb

(x)whenever rtGb
(x) ≥ k fGb

(x)

and wr
tFa
(x) ≥ wr

tGb
(x),wk

fFa
(x) ≤ wk

fGb
(x)whenever wr

tGb
(x) ≥ wk

fGb
(x);

then M(F, A) ≤ M(G, B).

Based on this definition, it is clear that a value close to 0 indicates that the CVSS has a very low
degree of vagueness whereas a value close to the 1 implies that the CVSS is highly vague. For all
x ∈ U, the nearer rtFa

(x) is to k fFa
(x), the larger the vague entropy measure and it reaches a maximum

when rtFa
(x) = k fFa

(x). Condition M5 on the other hand, is slightly different as it is constructed using
the sharpened version of a vague soft set as explained in Hu et al. [58], instead of the usual condition
of (F, A) ⊂ (G, B) implies that the entropy of (F, A) is higher than the entropy of (G, B). In [58],
Hu et al. proved that this condition is inaccurate and provided several counter-examples to disprove
this condition. Subsequently, they replaced this flawed condition with two new cases. We generalized
these two cases to derive condition (M5) in this paper, in a bid to increase the accuracy of our proposed
vague entropy. We refer the readers to [58] for further information on these revised conditions.

4. Relations between the Proposed Distance Measure and Vague Entropy

In the following, let U be universal and φ be empty over CVSSs. Then based on the above
definition, we define some of the relationship between them as follows:
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Theorem 1. Let (F, A) be CVSS and d is the distance measure between CVSSs, then the equations M1, M2

and M3 defined as below

(i) M1(F, A) = 1− d
(
(F, A), (F, A)c)

(ii) M2(F, A) = d((F, A) ∪ (F, A)c, U)

(iii) M3(F, A) = 1− d((F, A) ∪ (F, A)c, (F, A) ∩ (F, A)c)

are the valid vague entropies of CVSSs.

Proof. Here, we shall prove only the part (i), while others can be proved similarly.
It is clearly seen from the definition of vague entropies that M1 satisfies conditions (M1) to (M4).

So we need to prove only (M5). For it, consider the two cases stated in Definition 9. We only prove that
the condition (M5) is satisfied for Case 1; the proof for Case 2 is similar and is thus omitted.

From the conditions given in Case 1 of (M5), we obtain the following relationship:

rtFa
(x) ≤ rtGb

(x) ≤ k fGb
(x) ≤ k fFa

(x)

and wr
tFa
(x) ≤ wr

tGb
(x) ≤ wk

fGb
(x) ≤ wk

fFa
(x).

Therefore, we have:

φ ⊂ (F, A) ⊂ (G, B) ⊂ (G, B)c ⊂ (F, A)c ⊂ U.

Hence, it follows that:

((F, A), (F, A)c) ≥ d((G, B), (G, B)c).

Now, by definition of M1, we have:

M1(F, A) = 1− d((F, A), (F, A)c)

≤ 1− d((G, B), (G, B)c)

= M1(G, B).

This completes the proof.

Theorem 2. If d is the distance measure between CVSSs, then:

M4(F, A) =
d((F, A) ∪ (F, A)c, U)

d((F, A) ∩ (F, A)c, U)

is a vague entropy of CVSSs.

Proof. For two CVSSs (F, A) & (G, B), clearly seen that M4 satisfies conditions (M1)–(M4). So, it is
enough to prove that M4 satisfy the condition (M5).

Consider the case:

rtFa
(x) ≤ rtGb

(x), k fFa
(x) ≥ k fGb

(x) whenever rtGb
(x) ≤ k fGb

(x)

and wr
tFa
(x) ≤ wr

tGb
(x), wk

fFa
(x) ≥ wk

fGb
(x) whenever wr

tGb
(x) ≤ wk

fGb
(x)

which implies that:
rtFa

(x) ≤ rtGb
(x) ≤ k fGb

(x) ≤ k fFa
(x)
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and wr
tFa
(x) ≤ wr

tGb
(x) ≤ wk

fGb
(x) ≤ wk

fFa
(x).

Thus, we obtain:

φ ⊂ (F, A) ∩ (F, A)c ⊂ (G, B) ∩ (G, B)c ⊂ (G, B) ∪ (G, B)c ⊂ (F, A) ∪ (F, A)c ⊂ U.

Therefore, we have:

d((F, A) ∪ (F, A)c, U) ≤ d((G, B) ∪ (G, B)c U)

and d((F, A) ∩ (F, A)c, U) ≤ d((G, B) ∩ (G, B)c U).

Hence, by definition of M4, we have:

M4(F, A) =
d((F, A) ∪ (F, A)c, U)

d((F, A) ∩ (F, A)c, U)

≤ d((G, B) ∪ (G, B)c U)

d((G, B) ∩ (G, B)c U)

= M4(G, B)

Similarly, we can obtain for other case i.e., when rtFa
(x) ≥ rtGb

(x), k fFa
(x) ≤ k fGb

(x) whenever

rtGb
(x) ≥ k fGb

(x) and wr
tFa
(x) ≥ wr

tGb
(x), wk

fFa
(x) ≤ wk

fGb
(x) whenever wr

tGb
(x) ≥ wk

fGb
(x), we have

M4(F, A) ≤ M4(G, B). Hence (M5) satisfied.
Therefore, M4 is a valid entropy measure.

Theorem 3. For CVSS (F, A) and if d is the distance measure between CVSSs, then:

M5(F, A) =
d((F, A) ∩ (F, A)c, φ)

d((F, A) ∪ (F, A)c, φ)

is a vague entropy of CVSSs.

Proof. It can be obtained as similar to Theorem 2, so we omit here.

Theorem 4. For two CVSSs (F, A) and (G, B). If d is a distance measure between CVSSs such that:

d((F, A), (G, B)) = d((F, A)c, (G, B)c),

then the entropies M4 and M5 satisfies the equation M4 = M5.

Proof. By definition of M4 and M5, we have:

M4(F, A) =
d((F, A) ∪ (F, A)c, U)

d((F, A) ∩ (F, A)c, U)

=
d(((F, A) ∪ (F, A)c)

c, Uc)

d(((F, A) ∩ (F, A)c)
c, Uc)

=
d((F, A) ∩ (F, A)c, φ)

d((F, A) ∪ (F, A)c, φ)

= M5(F, A).
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Theorem 5. For a CVSS (F, A), if d is the distance measure between CVSSs and satisfies:

d((F, A), U) = d((F, A), φ),

Then:

M6(F, A) =
d((F, A) ∪ (F, A)c, U)

d((F, A) ∪ (F, A)c, φ)

is a vague entropy of CVSSs.

Theorem 6. If d is the distance measure between CVSSs and satisfies d((F, A), U) = d((F, A), φ), then:

M7(F, A) =
d((F, A) ∩ (F, A)c, φ)

d((F, A) ∩ (F, A)c, U)

is a vague entropy of CVSSs.

Theorem 7. If d is a distance measure between CVSSs that satisfies:

d((F, A), (G, B)) = d((F, A)c, (G, B)c),

then M6 = M7.

Proof. The proof of the Theorems 5–7 can be obtained as similar to above, so we omit here.

Theorem 8. If d is a distance measure between CVSSs, then:

M8(F, A) = 1− d((F, A) ∩ (F, A)c, U) + d((F, A) ∪ (F, A)c, U)

is a vague entropy of CVSSs.

Theorem 9. If d is a distance measure between CVSSs, then:

M9(F, A) = 1− d((F, A) ∪ (F, A)c, φ) + d((F, A) ∩ (F, A)c, φ)

is a vague entropy of CVSSs.

Theorem 10. If d is a distance measure between CVSSs (F, A) and (G, B) such that:

d((F, A), (G, B)) = d((F, A)c, (G, B)c),

then M8 = M9.

Theorem 11. If d is a distance measure between CVSSs, then:

M10(F, A) = 1− d((F, A) ∪ (F, A)c, φ) + d((F, A) ∪ (F, A)c, U)

is a vague entropy of CVSSs.

Theorem 12. If d is a distance measure between CVSSs, then:

M11(F, A) = 1− d((F, A) ∩ (F, A)c, U) + d((F, A) ∩ (F, A)c, φ)

is a vague entropy of CVSSs.
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Theorem 13. If d is a distance measure between CVSSs (F,A) and (G,B) such that:

d((F, A), (G, B)) = d((F, A)c, (G, B)c),

then M10 = M11.

Proof. The proof of these Theorems can be obtained as similar to above, so we omit here.

5. Illustrative Example

In this section, we present a scenario which necessitates the use of CVSSs. Subsequently, we
present an application of the entropy measures proposed in Section 4 to an image detection problem to
illustrate the validity and effectiveness of our proposed entropy formula.

Firstly, we shall define the distance between any two CVSSs as follows:

Definition 10. Let (F, A) and (G, B) be two CVSSs over U. The distance between (F, A) and (G, B) is as
given below:

d((F, A), (G, B)) =
1

4mn

n

∑
j=1

m

∑
i=1

 max
{∣∣∣∣rtF(ai)

(xj)− rtG(bi)
(xj)

∣∣∣∣, ∣∣∣∣k fG(bi)
(xj)− k fF(ai)

(xj)

∣∣∣∣}
+ 1

2π (max
{∣∣∣∣wr

tF(ai)
(xj)− wr

tG(bi)
(xj)

∣∣∣∣, ∣∣∣∣wk
fG(bi)

(xj)− wk
fF(ai)

(xj)

∣∣∣∣})


In order to demonstrate the utility of the above proposed entropy measures Mi(i = 1, 2, . . . , 11),
we demonstrate it with a numerical example. For it, consider a CVSS (F, A) whose data sets are
defined over the parameters e1, e2 ∈ E and x1, x2, x3 ∈ U as follows:

(F, A) =
x1

x2

[
[0.2, 0.8]ei[0.1(2π), 0.2(2π)] [0.3, 0.5]ei[0.2(2π), 0.4(2π)] [0.3, 0.6]ei[0.4(2π), 0.5(2π)]

[0.3, 0.6]ei[0.4(2π), 0.5(2π)] [0.2, 0.3]ei[0.2(2π), 0.4(2π)] [0.7, 0.9]ei[0.4(2π), 0.5(2π)]

]

and hence the complement of CVSS is:

(F, A)c =
x1

x2

[
[0.2, 0.8]ei[0.8(2π), 0.9(2π)] [0.5, 0.7]ei[0.6(2π), 0.8(2π)] [0.4, 0.7]ei[0.5(2π), 0.6(2π)]

[0.2, 0.5]ei[0.8(2π), 0.9(2π)] [0.7, 0.8]ei[0.6(2π), 0.8(2π)] [0.1, 0.3]ei[0.5(2π), 0.6(2π)]

]

Then, the distance measure based on the Definition 10, we get ((F, A), (F, A)c) = 0.1708,
d((F, A) ∪ (F, A)c, U) = 0.2167, d((F, A) ∪ (F, A)c, (F, A) ∩ (F, A)c) = 0.1708, d((F, A) ∩ (F, A)c, U)

= 0.3875, d((F, A) ∪ (F, A)c, φ) = 0.3875, d((F, A) ∩ (F, A)c, φ) = 0.2167. Therefore, the values of
the entropy measures defined on the Theorem 1 to Theorem 11 are computed as:

(i) M1(F, A) = 1− d((F, A), (F, A)c) = 1 − 0.1708 = 0.8292.
(ii) M2(F, A) = d((F, A) ∪ (F, A)c, U) = 0.2167.
(iii) M3(F, A) = 1− d((F, A) ∪ (F, A)c, (F, A) ∩ (F, A)c) = 1 − 0.1708 = 0.8292.

(iv) M4(F, A) = d((F, A)∪(F, A)c , U)
d((F, A)∩(F, A)c , U)

= 0.2167
0.3875 = 0.5592.

(v) M5(F, A) = d((F, A)∩(F, A)c , φ)
d((F, A)∪(F, A)c , φ)

= 0.2167
0.3875 = 0.5592.

(vi) M6(F, A) = d((F, A)∪(F, A)c , U)
d((F, A)∪(F, A)c , φ)

= 0.2167
0.3875 = 0.5592.

(vii) M7(F, A) = d((F, A)∩(F, A)c , φ)
d((F, A)∩(F, A)c , U)

= 0.2167
0.3875 = 0.5592.

(viii) M8(F, A) = 1− d((F, A)∩ (F, A)c, U) + d((F, A)∪ (F, A)c, U) = 1− 0.3875 + 0.2167 = 0.5592
(ix) M9(F, A) = 1− d((F, A)∪ (F, A)c, φ) + d((F, A)∩ (F, A)c, φ) = 1− 0.3875+ 0.2167 = 0.5592
(x) M10(F, A) = 1− d((F, A)∪ (F, A)c, φ) + d((F, A)∪ (F, A)c, U) = 1− 0.3875+ 0.2167 = 0.5592
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(xi) M11(F, A) = 1− d((F, A)∩ (F, A)c, U) + d((F, A)∩ (F, A)c, φ) = 1− 0.3875+ 0.2167 = 0.5592

Next, we give an illustrative example from the field of pattern recognition which are stated and
demonstrated as below.

5.1. The Scenario

A type of robot has a single eye capable of capturing (and hence memorizing) things it sees as
an 850 × 640, 24 bit bitmap image. The robot was shown an object (a pillow with a smiley), and the
image that was captured by the robot’s eye at that instant is shown in Figure 1. This image was saved
as pic001.bmp in the memory of the robot.

Entropy 2018, 20, x  9 of 19 

 

Then, the distance measure based on the Definition 10, we get ( , ), ( , ) =0.1708, ( , ) ∪ ( , ) , = 0.2167,  ( , ) ∪ ( , ) , ( , ) ∩ ( , ) = 0.1708, ( , ) ∩( , ) , = 0.3875, ( , ) ∪ ( , ) , = 0.3875, ( , ) ∩ ( , ) , = 0.2167. Therefore, the 
values of the entropy measures defined on the Theorem 1 to Theorem 11 are computed as: 

(i) ( , ) = 1 − ( , ), ( , )  = 1 − 0.1708 = 0.8292. 
(ii) ( , ) = ( , ) ∪ ( , ) ,  = 0.2167. 
(iii) ( , ) = 1 − ( , ) ∪ ( , ) , ( , ) ∩ ( , )  = 1 − 0.1708 = 0.8292. 

(iv) ( , ) = ( , )∪( , ) ,( , )∩( , ) , 	= .. = 0.5592. 

(v) ( , ) = ( , )∩( , ) ,( , )∪( , ) , = .. = 0.5592. 

(vi) ( , ) = ( , )∪( , ) ,( , )∪( , ) , = .. = 0.5592. 

(vii) ( , ) = ( , )∩( , ) ,( , )∩( , ) , = .. = 0.5592. 

(viii) ( , ) = 1 − ( , ) ∩ ( , ) , + ( , ) ∪ ( , ) , = 1 − 0.3875 + 0.2167 = 0.5592 
(ix) ( , ) = 1 − ( , ) ∪ ( , ) , + ( , ) ∩ ( , ) , = 1 − 0.3875 + 0.2167 = 0.5592 
(x) ( , ) = 1 − ( , ) ∪ ( , ) , + ( , ) ∪ ( , ) , = 1 − 0.3875 + 0.2167 = 0.5592 
(xi) ( , ) = 1 − ( , ) ∩ ( , ) , + ( , ) ∩ ( , ) , = 1 − 0.3875 + 0.2167 = 0.5592 

Next, we give an illustrative example from the field of pattern recognition which are stated and 
demonstrated as below. 

5.1. The Scenario 

A type of robot has a single eye capable of capturing (and hence memorizing) things it sees as 
an 850 × 640, 24 bit bitmap image. The robot was shown an object (a pillow with a smiley), and the 
image that was captured by the robot’s eye at that instant is shown in Figure 1. This image was saved 
as pic001.bmp in the memory of the robot.  

 
Figure 1. The image of the object captured by the robot. 
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of its field of vision, and then comparing this with the same coordinates from image pic001.bmp 
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The robot was then given a way (in this example, it is done by human input) to recognize the
object, whenever the robot encounters the object again, by retrieving the colors at certain coordinates
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if the objects shown in image A, B and C is the same as the image shown in image pic001.bmp stored 
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Table 1. The coordinates of the clusters for image pic001.bmp from Figure 2.

1st Position (n = 1) 2nd Position (n = 2) 3rd Position (n = 3)

“Left Eye” (LEn) (323, 226), (324, 226),
(323, 227), (324, 227),

(301, 252), (302, 252),
(301, 253), (302, 253),

(345, 252), (346, 252),
(345, 253), (346, 253),

“Right Eye” (REn) (486, 226), (487, 226),
(486, 227), (487, 227),

(464, 252), (465, 252),
(464, 253), (465, 253),

(509, 252), (510, 252),
(509, 253), (510, 253),

“Left side of Face” (LFn) (284, 119), (285, 119),
(284, 120), (285, 120),

(167, 312), (168, 312),
(167, 313), (168, 313),

(275, 519), (276, 519),
(275, 520), (276, 520),

“Centre of Face” (CFn) (407, 168), (408, 168),
(407, 169), (408, 169),

(406, 262), (407, 262),
(406, 263), (407, 263),

(406, 363), (407, 363),
(406, 364), (407, 364),

“Right side of Face”
(RFn)

(553, 120), (554, 120),
(553, 121), (554, 121),

(671, 307), (672, 307),
(671, 308), (672, 308),

(562, 521), (563, 521),
(562, 522), (563, 522),

“Tongue” (Tn) (581, 404), (582, 404),
(581, 405), (582, 405),

(562, 429), (563, 429),
(562, 430), (563, 430),

(598, 430), (599, 430),
(598, 431), (599, 431),

“Mouth” (Mn) (274, 403), (278, 407),
(282, 411), (286, 415),

(393, 469), (401, 469),
(409, 469), (417, 469),

(553, 395), (556, 389),
(559, 383), (562, 377),

Remark: For a computer image, the top-leftmost pixel is labeled (0, 0).

We now have three images, namely image A, image B and image C. The robot needs to recognize
if the objects shown in image A, B and C is the same as the image shown in image pic001.bmp stored
in the robot’s memory. Images A, B and C are shown in Figures 3–5, respectively. For comparison
purposes, pic001.bmp is shown alongside all the three images.
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Figure 5. Image C (left) and the original image pic001.bmp (right).

From a human perspective, it is clear that the object shown in image A will be recognized as the
same object shown in image pic001.bmp, and it will be concluded that the object is shown in image B
(a red airplane) is not the image pic001.bmp stored in the memory of the robot. No conclusion can be
deduced from image C as it is made up of only noise, and therefore we are unable to deduce the exact
object behind the noise. By retrieving the coordinates from Table 1, we now obtain the following sets
of colors which are given in Table 2.

Table 2. The sets of colors for image A, B, C and image pic001.bmp.

pic001.bmp (Memory) Image A Image B Image C

n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

LE
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Table 3. The values of the luminosity for image A, B, C and image pic001.bmp.

pic001.bmp (Memory),
m = 0

Image A
m = 1

Image B
m = 2

Image C
m = 3

n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

LE
23 23 23 24 24 23 24 27 34 33 32 32 5 6 97 96 74 72 27 128 57 54 180 2
24 24 24 24 24 25 25 28 38 39 31 31 6 6 116 110 81 80 25 82 78 107 120 26

RE
24 23 21 24 23 24 43 44 41 42 47 46 7 7 8 7 8 7 28 112 48 0 2 120
23 24 22 21 24 22 45 46 41 43 48 48 6 6 8 8 7 7 120 64 0 67 0 97

LF
101 99 104 105 90 90 78 79 55 57 96 96 3 3 162 163 122 120 58 63 24 31 62 24
96 100 106 106 91 88 78 78 55 56 95 95 3 3 163 163 125 122 65 67 14 61 40 96

CF
85 88 80 83 78 79 97 102 103 104 102 101 6 5 79 77 24 24 49 28 0 22 109 56
88 89 81 82 78 78 97 98 103 104 99 100 5 5 81 81 33 32 60 81 3 139 27 96

RF
83 82 64 64 60 59 119 119 136 136 139 141 6 6 16 15 62 63 98 40 93 94 56 16
84 84 65 63 59 59 120 119 135 134 138 139 6 6 16 14 61 64 64 0 20 30 45 44

T
60 60 59 59 58 59 142 143 144 144 152 151 116 117 27 27 127 127 74 28 0 75 81 198
59 61 61 62 60 59 144 144 145 144 150 148 120 119 25 24 125 125 120 25 104 3 0 75

M
26 23 15 14 9 9 19 21 34 40 33 35 81 87 175 191 36 42 77 22 112 15 14 24
25 26 13 13 8 8 19 20 43 40 36 36 86 93 181 145 79 66 113 84 121 115 31 33
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Table 4. The values of the hue of the pixels for image A, B, C and image pic001.bmp.

pic001.bmp (Memory),
m = 0

Image A
m = 1

Image B
m = 2

Image C
m = 3

n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

LE
12 12 10 10 12 12 17 17 15 15 18 16 187 160 8 8 6 7 55 80 23 160 226 27
13 12 9 10 13 12 17 17 15 15 18 16 160 160 8 8 6 7 214 173 127 70 168 66

RE
13 13 13 13 12 11 19 19 18 18 20 20 160 160 160 160 160 160 112 64 227 160 220 119
13 13 13 12 12 11 19 19 18 18 19 20 160 160 160 160 160 160 152 150 160 177 160 77

LF
31 31 31 31 31 30 28 28 27 27 31 31 187 187 173 167 7 7 12 167 169 67 57 211
31 30 31 31 31 30 29 28 27 27 31 30 187 187 171 167 9 7 23 237 18 76 186 199

CF
29 29 29 28 29 29 30 29 30 30 31 30 160 160 8 8 224 230 155 86 160 214 177 0
29 29 29 29 29 29 30 29 30 30 30 30 180 180 8 8 213 220 42 51 200 107 97 165

RF
29 30 29 29 31 31 30 30 32 32 33 33 160 160 160 160 139 139 154 5 238 68 94 36
30 30 29 29 31 31 30 30 32 32 32 33 160 160 160 153 137 141 68 160 192 76 131 158

T
11 11 11 12 10 10 12 12 12 12 13 12 13 9 168 165 7 7 119 212 160 45 160 130
11 11 9 9 9 10 12 12 11 12 13 12 9 13 164 160 8 10 29 205 31 67 160 200

M
11 10 13 13 18 14 16 15 18 20 17 16 10 14 19 18 208 183 145 118 195 26 124 160
11 12 13 13 14 18 15 16 21 19 16 17 13 14 17 15 184 5 42 29 49 181 115 220
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5.2. Formation of CVSS and Calculation of Entropies

Let U = {x1, x2, x3}, and A = {LE, RE, LF, CF, RF, T, M}. We now form three CVSSs (F
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Luminosity, 픏						 , , , , where 푘 ∈ {LE, RE, LF, CF, RF, T, M}, b ∈ {0, 1, 2, 3} (cluster of four 
pixels). Hue, 			ℌ							 , , , , where 푘 ∈ {LE, RE, LF, CF, RF, T, M}, b ∈ {0, 1, 2, 3} (cluster of four 
pixels). 

5.2. Formation of CVSS and Calculation of Entropies 

Let 푈 = {푥 , 푥 , 푥 }, and 퐴 = {LE, RE, LF, CF, RF, T, M}. We now form three CVSSs (ℱ풷, 퐴),풷 ∈
{1,2,3}, which denote image 퐴, 퐵 and 퐶, respectively using the formula given below: 
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where: 
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휃풷,( , ) = min ℌ풷, , , −ℌ , , , ∶ 	푝, 푞 ∈ {0,1,2,3} , 휗풷,( , ) = max ℌ풷, , , −ℌ , , , ∶ 	푝, 푞 ∈ {0,1,2,3} .  

We choose 휌 = 6400 and 휚 = 6400 for this scenario. The CVSSs that were formed for this 
scenario are as given in Tables 5–7.  
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The luminosity and hue of the pixels are obtained using a picture editing program, and these 
are given in Tables 3 and 4, respectively.  
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We choose 휌 = 6400 and 휚 = 6400 for this scenario. The CVSSs that were formed for this 
scenario are as given in Tables 5–7.  

 

,(k,n) = min
{∣∣∣

Entropy 2018, 20, x  12 of 19 

 

Table 2. The sets of colors for image A, B, C and image pic001.bmp. 

 pic001.bmp (Memory) Image A  Image B Image C 
 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 

LE 
 

    

RE 
 

LF 
 

CF 
 

RF 
 

T 
 

M 

The luminosity and hue of the pixels are obtained using a picture editing program, and these 
are given in Tables 3 and 4, respectively.  

Luminosity, 픏						 , , , , where 푘 ∈ {LE, RE, LF, CF, RF, T, M}, b ∈ {0, 1, 2, 3} (cluster of four 
pixels). Hue, 			ℌ							 , , , , where 푘 ∈ {LE, RE, LF, CF, RF, T, M}, b ∈ {0, 1, 2, 3} (cluster of four 
pixels). 

5.2. Formation of CVSS and Calculation of Entropies 

Let 푈 = {푥 , 푥 , 푥 }, and 퐴 = {LE, RE, LF, CF, RF, T, M}. We now form three CVSSs (ℱ풷, 퐴),풷 ∈
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where: 
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We choose 휌 = 6400 and 휚 = 6400 for this scenario. The CVSSs that were formed for this 
scenario are as given in Tables 5–7.  

 

Entropy 2018, 20, x  12 of 19 

 

Table 2. The sets of colors for image A, B, C and image pic001.bmp. 

 pic001.bmp (Memory) Image A  Image B Image C 
 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 

LE 
 

    

RE 
 

LF 
 

CF 
 

RF 
 

T 
 

M 
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We choose 휌 = 6400 and 휚 = 6400 for this scenario. The CVSSs that were formed for this 
scenario are as given in Tables 5–7.  
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The luminosity and hue of the pixels are obtained using a picture editing program, and these 
are given in Tables 3 and 4, respectively.  
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pixels). Hue, 			ℌ							 , , , , where 푘 ∈ {LE, RE, LF, CF, RF, T, M}, b ∈ {0, 1, 2, 3} (cluster of four 
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We choose 휌 = 6400 and 휚 = 6400 for this scenario. The CVSSs that were formed for this 
scenario are as given in Tables 5–7.  
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The luminosity and hue of the pixels are obtained using a picture editing program, and these 
are given in Tables 3 and 4, respectively.  
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We choose 휌 = 6400 and 휚 = 6400 for this scenario. The CVSSs that were formed for this 
scenario are as given in Tables 5–7.  
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The luminosity and hue of the pixels are obtained using a picture editing program, and these 
are given in Tables 3 and 4, respectively.  

Luminosity, 픏						 , , , , where 푘 ∈ {LE, RE, LF, CF, RF, T, M}, b ∈ {0, 1, 2, 3} (cluster of four 
pixels). Hue, 			ℌ							 , , , , where 푘 ∈ {LE, RE, LF, CF, RF, T, M}, b ∈ {0, 1, 2, 3} (cluster of four 
pixels). 

5.2. Formation of CVSS and Calculation of Entropies 

Let 푈 = {푥 , 푥 , 푥 }, and 퐴 = {LE, RE, LF, CF, RF, T, M}. We now form three CVSSs (ℱ풷, 퐴),풷 ∈
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where: 
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휃풷,( , ) = min ℌ풷, , , −ℌ , , , ∶ 	푝, 푞 ∈ {0,1,2,3} , 휗풷,( , ) = max ℌ풷, , , −ℌ , , , ∶ 	푝, 푞 ∈ {0,1,2,3} .  

We choose 휌 = 6400 and 휚 = 6400 for this scenario. The CVSSs that were formed for this 
scenario are as given in Tables 5–7.  
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The luminosity and hue of the pixels are obtained using a picture editing program, and these 
are given in Tables 3 and 4, respectively.  

Luminosity, 픏						 , , , , where 푘 ∈ {LE, RE, LF, CF, RF, T, M}, b ∈ {0, 1, 2, 3} (cluster of four 
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We choose 휌 = 6400 and 휚 = 6400 for this scenario. The CVSSs that were formed for this 
scenario are as given in Tables 5–7.  
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The luminosity and hue of the pixels are obtained using a picture editing program, and these 
are given in Tables 3 and 4, respectively.  

Luminosity, 픏						 , , , , where 푘 ∈ {LE, RE, LF, CF, RF, T, M}, b ∈ {0, 1, 2, 3} (cluster of four 
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We choose 휌 = 6400 and 휚 = 6400 for this scenario. The CVSSs that were formed for this 
scenario are as given in Tables 5–7.  
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The luminosity and hue of the pixels are obtained using a picture editing program, and these 
are given in Tables 3 and 4, respectively.  

Luminosity, 픏						 , , , , where 푘 ∈ {LE, RE, LF, CF, RF, T, M}, b ∈ {0, 1, 2, 3} (cluster of four 
pixels). Hue, 			ℌ							 , , , , where 푘 ∈ {LE, RE, LF, CF, RF, T, M}, b ∈ {0, 1, 2, 3} (cluster of four 
pixels). 
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We choose 휌 = 6400 and 휚 = 6400 for this scenario. The CVSSs that were formed for this 
scenario are as given in Tables 5–7.  
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The luminosity and hue of the pixels are obtained using a picture editing program, and these 
are given in Tables 3 and 4, respectively.  

Luminosity, 픏						 , , , , where 푘 ∈ {LE, RE, LF, CF, RF, T, M}, b ∈ {0, 1, 2, 3} (cluster of four 
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We choose ρ = 6400 and ρ = 6400 for this scenario. The CVSSs that were formed for this scenario
are as given in Tables 5–7.

Table 5. Tabular representation of (F1, A).

n

1 2 3

k

LE [0.996, 1.000]e2πi[0.996, 0.997] [0.960, 0.987]e2πi[0.994, 0.996] [0.987, 0.994]e2πi[0.994, 0.998]

RE [0.920, 0.945]e2πi[0.994, 0.994] [0.927, 0.955]e2πi[0.994, 0.996] [0.899, 0.927]e2πi[0.987, 0.992]

LF [0.920, 0.955]e2πi[0.998, 0.999] [0.666, 0.708]e2πi[0.997, 0.997] [0.990, 0.997]e2πi[0.999, 1.000]

CF [0.955, 0.990]e2πi[0.999, 1.000] [0.913, 0.939]e2πi[0.999, 0.999] [0.913, 0.939]e2πi[0.999, 0.999]

RF [0.798, 0.825]e2πi[0.999, 1.000] [0.434, 0.475]e2πi[0.998, 0.998] [0.349, 0.386]e2πi[0.999, 0.999]

T [0.323, 0.358]e2πi[0.999, 0.999] [0.314, 0.349]e2πi[0.998, 1.000] [0.251, 0.298]e2πi[0.997, 0.999]

M [0.992, 0.999]e2πi[0.994, 0.998] [0.868, 0.945]e2πi[0.990, 0.996] [0.884, 0.913]e2πi[0.998, 0.999]

Table 6. Tabular representation of (F2, A).

N

1 2 3

k

LE [0.945, 0.955]e2πi[0.008, 0.034] [0.258, 0.444]e2πi[0.999, 0.999] [0.591, 0.708]e2πi[0.992, 0.996]

RE [0.950, 0.960]e2πi[0.034, 0.034] [0.955, 0.973]e2πi[0.032, 0.034] [0.955, 0.969]e2πi[0.031, 0.032]

LF [0.222, 0.258]e2πi[0.021, 0.022] [0.580, 0.612]e2πi[0.042, 0.055] [0.807, 0.876]e2πi[0.913, 0.933]

CF [0.332, 0.377]e2πi[0.028, 0.068] [0.994, 1.000]e2πi[0.933, 0.939] [0.623, 0.728]e2πi[0.001, 0.005]

RF [0.386, 0.405]e2πi[0.068, 0.071] [0.666, 0.708]e2πi[0.068, 0.090] [0.996, 0.999]e2πi[0.150, 0.172]

T [0.559, 0.623]e2πi[0.999, 0.999] [0.798, 0.852]e2πi[0.019, 0.032] [0.475, 0.516]e2πi[0.998, 1.000]

M [0.465, 0.623]e2πi[0.997, 1.000] [0.007, 0.071]e2πi[0.994, 0.999] [0.454, 0.892]e2πi[0.002, 0.987]

Table 7. Tabular representation of (F3, A).

N

1 2 3

k

LE [0.178, 0.999]e2πi[0.001, 0.759] [0.332, 0.868]e2πi[0.028, 0.973] [0.021, 0.999]e2πi[0.000, 0.969]

RE [0.229, 0.997]e2πi[0.048, 0.666] [0.718, 0.933]e2πi[0.000, 0.034] [0.222, 0.939]e2πi[0.001, 0.516]

LF [0.749, 0.876]e2πi[0.001, 0.992] [0.266, 0.749]e2πi[0.051, 0.973] [0.495, 0.996]e2πi[0.005, 0.899]

CF [0.559, 0.997]e2πi[0.083, 0.973] [0.340, 0.612]e2πi[0.004, 0.386] [0.655, 0.955]e2πi[0.032, 0.876]

RF [0.332, 0.969]e2πi[0.068, 0.913] [0.728, 0.884]e2πi[0.001, 0.788] [0.738, 0.998]e2πi[0.080, 0.996]

T [0.559, 0.973]e2πi[0.001, 0.950] [0.548, 0.973]e2πi[0.028, 0.945] [0.046, 0.965]e2πi[0.003, 0.105]

M [0.282, 0.999]e2πi[0.057, 0.955] [0.161, 1.000]e2πi[0.005, 0.973] [0.906, 0.996]e2πi[0.001, 0.229]
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By using Definition 10, the entropy values for images A, B and C are as summarized in Table 8.

Table 8. Summary of the entropy values for image A, B and C.

Entropy Measure Image A
(F 1, A)

Image B
(F 2, A)

Image C
(F 3, A)

M1(Fi, A) 0.571 0.647 0.847
M2(Fi, A) 0.039 0.089 0.328
M3(Fi, A) 0.571 0.647 0.847
M4(Fi, A) 0.084 0.202 0.682
M5(Fi, A) 0.084 0.202 0.682
M6(Fi, A) 0.084 0.202 0.682
M7(Fi, A) 0.084 0.202 0.682
M8(Fi, A) 0.571 0.647 0.847
M9(Fi, A) 0.571 0.647 0.847
M10(Fi, A) 0.571 0.647 0.847
M11(Fi, A) 0.571 0.647 0.847

From these values, it can be clearly seen that Mi(F3, A) > Mi(F2, A) > Mi(F1, A) for all
i = 1, 2, . . . , 11. Hence it can be concluded that Image A is the image that is closest to the original
image pic001.bmp that is stored in the memory of the robot, whereas Image C is the image that is the
least similar to the original pic001.bmp image. The high entropy value for (F3, A) is also an indication
of the abnormality of Image C compared to Images A and B. These entropy values and the results
obtained for this scenario prove the effectiveness of our proposed entropy formula. The entropy values
obtained in Table 8 further verifies the validity of the relationships between the 11 formulas that was
proposed in Section 4.

6. Conclusions

The objective of this work is to introduce some entropy measures for the complex vague soft
set environment to measure the degree of the vagueness between sets. For this, we define firstly the
axiomatic definition of the distance and entropy measures for two CVSSs and them some desirable
relations between the distance and entropy are proposed. The advantages of the proposed measures
are that they are defined over the set where the membership and non-membership degrees are defined
as a complex number rather than real numbers. All of the information measures proposed here
complement the CVSS model in representing and modeling time-periodic phenomena. The proposed
measures are illustrated with a numerical example related to the problem of image detection by a robot.
Furthermore, the use of CVSSs enables efficient modeling of the periodicity and/or the non-physical
attributes in signal processing, image detection, and multi-dimensional pattern recognition, all of
which contain multi-dimensional data. The work presented in this paper can be used as a foundation
to further extend the study of the information measures for complex fuzzy sets or its generalizations.
On our part, we are currently working on studying the inclusion measures and developing clustering
algorithms for CVSSs. In the future, the result of this paper can be extended to some other uncertain
and fuzzy environment [59–68].
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