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Abstract: This paper presents a nonparametric regression model of categorical time series in
the setting of conditional tensor factorization and Bayes network. The underlying algorithms are
developed to provide a flexible and parsimonious representation for fusion of correlated information
from heterogeneous sources, which can be used to improve the performance of prediction tasks
and infer the causal relationship between key variables. The proposed method is first illustrated by
numerical simulation and then validated with two real-world datasets: (1) experimental data, collected
from a swirl-stabilized lean-premixed laboratory-scale combustor, for detection of thermoacoustic
instabilities and (2) publicly available economics data for causal inference-making.

Keywords: Bayesian nonparametric; information fusion; causal inference; conditional tensor
factorization; Bayes factor; sequential classification; thermoacoustic instability

1. Introduction

Modeling and decision-making in complex dynamical systems (e.g., distributed physical
processes [1], macro-economy [2] and human brain [3]) often rely on time series collected from
heterogeneous sources. Fusion of the information extracted from an ensemble of time series is a critical
ingredient for better prediction and causal inference.

In many dynamical systems, the characteristic time of the physical process under consideration
is small (e.g., around 2 ms in a typical combustion process) relative to the time-scale of respective
decision-making (e.g., tenths of a second for active combustion control). Therefore, fast and accurate
prediction of the system states and estimation of the associated parameters is essential for online
monitoring and active control of the dynamical system; for example, real-time prediction of future states
can significantly improve active control of thermoacoustic instabilities [4]. One way to achieve this is
to make predictions based on different but correlated information sources. Although several methods
have been proposed for prediction based on fusion of heterogeneous time series (e.g., [5–7]), they lack
a coherent probabilistic interpretation and may not be able to accommodate more general interactions
between current measurements and the measurement history. Furthermore, these methods may not be
sequentially implementable and hence they may not be very useful for real-time applications.

Identification of causal relationships is essential for understanding the consequences of transitions
from empirical findings to actions and thus forms a significant part of knowledge discovery. Various
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analytical techniques (e.g., [8–10]) have been proposed for causal inference-making; among these
techniques, the concept of causality introduced by Granger [11], hereafter called Granger causality,
is apparently one of the most widely used in time series analysis [12]. Granger causality does not rely
on the specification of a scientific model and thus is particularly applicable to investigation of empirical
cause-effect relationships. It is noted that Granger causality is especially suited for continuous-valued
data based on frequentist hypothesis testing.

The goal of this paper is to develop a flexible and parsimonious model of categorical time series
in a Bayesian nonparametric setting for fusion of correlated information from heterogeneous sources
(e.g., sensors of possibly different modalities), which can be used for sequential classification and
causal inference. From this perspective, major contributions of the paper are delineated as follows:

1. By introducing latent variables and sparsity inducing priors, a flexible and parsimonious model
is developed for fusion of correlated information from heterogeneous sources (e.g., sensors of
possibly different modalities), which can be used to improve the performance of sequential
classification tasks.

2. By testing the dimension of latent variables in the setting of Bayes factor analysis [13], Granger
causality [11] is extended to categorical time series.

3. Validation of the above concept with experimental data, generated from a swirl-stabilized
lean-premixed laboratory-scale combustor [14], for real-time detection of thermoacoustic instabilities.

4. Testing of the underlying algorithm with public economics data to infer the causal relationship
between two categorical time series.

The paper is organized into eight sections including the current section. Section 2 introduces the
concept of Granger causality and develops the model. Section 3 discusses the algorithm for posterior
computation using Gibbs sampling, and hypothesis testing using Bayes factor analysis. Section 4
presents the sequential classification algorithm with the proposed model. The underlying algorithms
are tested with simulation data in Section 5 while Section 6 validates the proposed method with
some experimental data, collected from a swirl-stabilized lean-premixed laboratory-scale combustor,
for thermoacoustic instabilities early detection. Section 7 validates the proposed concept on publicly
available economics data. Section 8 concludes the paper and provides a few recommendations for future
research. The nomenclature and list of acronyms are provided at the end before the list of references.

2. Model Development

This section first introduces the concept of Granger causality and the corresponding regression
model. Next, the underlying model’s algebraic and statistical specifications are elaborated.

Definition 1. (Granger Causality) Let {yt}T
t=1 and {θt}T

t=1 be two (statistically) stationary categorical time
series. Then, the variable θ Granger-causes the variable y if the past values of θ contain statistically significant
information for predictions of y besides those contained in the past values of y. Similarly, y Granger-causes θ if
the past values of y contain statistically significant information for predictions of θ besides those contained in the
past values of θ.

Remark 1. The following are four types of Granger causality relationship between θ and y:

1. θ Granger-causes y but not the vice versa;
2. y Granger-causes θ but not the vice versa;
3. θ and y Granger-cause each other;
4. θ does not Granger-cause y and vice versa.

However, in practice, only finitely many past values of y and θ are considered. To test the null
hypothesis that θ does not Granger-cause y, the following regression model is constructed:
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p(yt | yt−1, . . . , yt−Dy , θt−1, . . . , θt−Dθ
) (1)

where in this model, predictors yt−1 to yt−Dy represent variable y’s time lags; and predictors θt−1

to θt−Dθ
represent variable θ’s time lags. In the sequel, for simplicity of notations, predictors

zt ≡ (z1,t, . . . , zq,t) are substituted for (yt−1, . . . , yt−Dy , θt−1, . . . , θt−Dθ
).

Remark 2. If the explanatory power of θt−1, . . . , θt−Dθ
to the regression is significant, then the null hypothesis

(that θ does not Granger-cause y) is rejected and the alternative hypothesis (that θ Granger-causes y) is accepted.
Hypothesis tests on the significance of time-lags are elaborated later in Equation (15) (see Section 3.2).

Remark 3. If y and θ are correlated in the sense of Granger causality, the information contained in one source
can be used to predict the future values in another source. Accordingly, information fusion of different sources
enables fast and accurate prediction because of Granger-causality. It is noted that if the information contained in
two sources is statistically independent, then information fusion cannot enhance prediction accuracy.

2.1. Conditional Tensor Factorization

This subsection addresses fusion of different sources of information by making use of the concept
of conditional probability tensor that was first reported in [15], a formal definition of conditional
probability tensor follows.

Definition 2. (Conditional probability tensor) Let C0 denote the number of categories of the (one-dimensional)
variable, yt, and let Cj denote the number of categories of zj,t for j = 1, . . . , q, where is the number of predictors.
The quantity p(yt | zt) is treated as a (q + 1)th order tensor in the C0 × C1 · · · × Cq dimensional space,
hereafter called the conditional probability tensor.

Let Cy and Cθ respectively denote the numbers of categories of the variables, y and θ. It follows
from Definition 2 that C1 = · · · = CDy = Cy and CD+1 = · · · = Cq = Cθ . Then, each one of these
conditional probability tensors has a higher order singular value decomposition (HOSVD) of the
following form [15]:

p(yt | zt) =
k1

∑
s1=1
· · ·

kq

∑
sq=1

λs1,...,sq(yt)
q

∏
j=1

ω
(j)
sj (zj,t) (2)

where 1 ≤ k j ≤ Cj for j = 1, . . . , q; and each of the parameters λs1 ...sq(yt) and ω
(j)
sj (zj,t) is non-negative

while the following constraints are satisfied:

C0

∑
yt=1

λs1,...,sq(yt) = 1, for each (s1, . . . , sq) (3)

kj

∑
sj=1

ω
(j)
sj (zj,t) = 1, for each (j, zj,t) (4)

Remark 4. Since there exists a factorization as in Equation (2) for each one of the conditional probability
tensors, the two constraints Equations (3) and (4) are not restrictive. Furthermore, it is ensured that
∑C0

yt=1 p(yt | zt) = 1.

2.2. Bayesian Nonparametric Modeling

In order to build a statistically interpretable model, two techniques can be used to convert
the tensor factorization in Equation (2) to a Bayes network, i.e., (1) introduce latent allocation-class
variables; (2) assign sparsity-inducing priors. To this end, T pairs of variables and their respective
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predictors are collected in one dataset, and it is rearranged as {yt, zt}T
t=1, where t is an index with

range from 1 to T.
The conditional probability p(yt | zt), factorized as in Equation (2), is then reorganized in the

following form:

p(yt | zt) =
∫

x1,t

· · ·
∫

xq,t
p(yt | xt)

q

∏
j=1

p(xj,t | zj,t) (5)

where xt ≡ (x1,t, . . . , xq,t) denotes the latent class-allocation variables.
For index j = 1, . . . , q and index t = 1, . . . , T, it then follows that

xj,t | ω(j), zj,t ∼ Mult(ω(j)(zj,t)) (6)

yt | λ̃, xt ∼ Mult(λ̃xt) (7)

where Mult(•) is the multinomial distribution [16] and ω(j) ≡ {{ω(j)
s (c)}kj

s=1}
Cj
c=1 is the mixture

probability matrix. The cth row ω(j)(c) ≡ {ω(j)
s (c)}kj

s=1 in this mixture probability matrix is
a probability vector itself (i.e., it sums to 1). Moreover, λ̃ ≡ {λs1,...,sq}(s1 ...sq) is a conditional probability

tensor where λs1,...,sq ≡ {λs1,...,sq(c)}
C0
c=1 is a probability vector for each string (s1, . . . , sq).

The hierarchical reformulation of HOSVD above illustrates the following features of this model in
Equation (5):

• Soft clustering for each one of the predictors zj ≡ {zj,t}T
t=1 is implemented following Equation (6).

This allows for inheritance of statistical strengths across different categories.
• The distribution of variable yt is determined by a probability tensor λ̃ of reduced order, following

Equation (7).
• In order to capture the interactions among different predictors, class assignment variables

xj ≡ {xj,t}T
t=1 are used. They work in an implicit and parsimonious way by allowing the

latent populations with the index of (s1, . . . , sq) to be shared across various state combinations
of predictors.

Remark 5. Here it is very critical to distinguish these two different concepts: (1) the number of clusters k̃ j

generated by the latent class variables xj and (2) the dimensions k j of the probability vector ω(j)(c) from the
mixture probability matrix. The former one represents the number of groups generated by the data, and is smaller
than the latter. It should be noted that k̃ j determines if the predictor zj should be included in the model, because
p(yt | zt) will not change with zj,t if zj has just a single latent cluster. Thus the significance of some particular
predictor could be tested using on k̃ j, which is later elaborated in Section 3.2.

In many real-world applications, the tensor λ̃ often has more components than needed, since
the product ∏

q
j=1 k j can be large even for modest values of q and Cj. To deal with this problem,

tensor λ̃ is then clustered within different combinations of (s1, . . . , sq) nonparametrically by imposing
a Pitman-Yor process prior [17]. Then, by using the stick-breaking representation of the Pitman-Yor
process [18], it follows that

λl | γ ∼ Dir(α), for l = 1, . . . , ∞ (8)

Vk | a, b ∼ Beta(1− b, a + kb), for k = 1, . . . , ∞ (9)

πl = Vl

l−1

∏
k=1

(1−Vk), for l = 1, . . . , ∞ (10)

where the bold symbols Dir(•) and Beta(•) represents the uniform Dirichlet distributions and Beta
distributions [16] respectively, and λl ≡ (λl(1), . . . , λl(C0)). Moreover, 0 ≤ b < 1 and a > −b.
For each combination (s1, . . . , sq), it follows that
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φs1,...,sq | π ∼ Mult(π) (11)

where π ≡ (π1, π2, . . . ). For t = 1, . . . , T,

yt | λ , φ, xt ∼ Mult(λφxt
) (12)

where λ ≡ {λl}∞
l=1 and φ ≡ {φs1,...,sq}(s1,...,sq).

The next step assigns priors to the mixture probability matrix ω(j). Here the dimension of ω(j)

grows linearly as k j increases (unlike the tensor λ̃). Therefore, further clustering of ω(j) is not necessary.
Hence, we assign independent priors to the rows of ω(j) for j = 1, . . . , q in the following way:

ω(j)(c) | k j, β j ∼ Dir(β j), for c = 1, . . . , Cj (13)

Lastly, we assign priors to the dimension of the mixture probability vector k j, i.e., for j = 1, . . . , q,

p(k j = k | µj) ∝ exp(−µjk), for k = 1, . . . , Cj (14)

where µj ≥ 0 and k ≡ {k j}
q
j=1.

Remark 6. As the parameter µj grows larger, the exponential prior in Equation (14) will assign increasing
probabilities to smaller values of k j, and it becomes a uniform prior distribution on {1, . . . , Cj} when µj is
zero. Commonly, people have prior beliefs that as time lags increase, they will a have vanishing impact on the
distribution of the current response variable. To impose this prior belief, we can assign larger µj to time lags
further back in the history.

By combining Equations (6)–(14) together, a Bayes network representation of the model is created
and Figure 1 illustrates its structures.

= 1,2,… ,

= 1,2,… ,

( )

= 1,2,… ,

,

= 1,2,… ,

,

,

, … ,

,…,

= 1,… ,

= 1,… ,

Figure 1. Bayes network representation of the model in the form of a graph. Deterministic
hyperparameters are those that are enclosed by blue rectangles. Unobserved random variables are
enclosed by transparent (unshaded) circles, and observed random variables are enclosed by shaded circles.

3. Estimation and Inference

This section presents the details of an algorithm for computing posteriors as well as Bayesian
hypothesis testing by using Bayes factors.
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3.1. Posterior Computation

Despite the fact that the posterior distribution does not have any specific analytical form, we can
still perform the inference of the corresponding Bayes network by using Gibbs sampling method.
Because the dimension of ω(j) may vary with k j, constructing a stationary Markov chain by plain
Gibbs sampling is difficult. To infer a model with variable dimensions, a common analytical tool—the
reversible jump Monte Carlo Markov chain (MCMC) [19], which does trans-dimensional exploration
in the model space—is often used.

Product partition modeling [20,21] can help alleviate difficulties occurring in trans-dimensional
modeling by constructing a stationary Markov chain on the clustering space. For this proposed method,
the dimension ω(j) is being integrated out for the sampling of k j directly from p(k j | xj, zj), which will
create a partially collapsed Gibbs sampler [22] that alternates between these two spaces: (1) the space
with all the variables and (2) the space with all the variables but ω = {ω(j)}q

j=1.
To compute the posterior probabilities of the Pitman-Yor process, the infinite-dimensional

tensors π and λ after their Lth component are truncated, as performed in [18]. For achieving
desired accuracy, an appropriate L needs to be chosen. Other than this, the posterior sampling is
rather straightforward. The detailed process is presented in Algorithm 1, in which it is not explicitly
mentioned that x ≡ {xt}T

t=1 and ξ collects the variables.

Algorithm 1 Gibbs sampling for the proposed method

Input: Datasets {yt, zt}T
t=1; hyperparameters a, b, α, {µj}

q
j=1, {β j}

q
j=1; number of truncating components L; number of all

samples N; initial sample (0)φ, (0)π, (0)λ, (0)ω, (0)x, (0)k.

Output: All posterior samples {(n)φ, (n)π, (n)λ, (n)ω, (n)x, (n)k}N
n=1

1: for n = 1 to N do
2: For each one string (s1, . . . , sq), collect a sample φs1 ,...,sq from its multinomial full conditional

p(φs1 ,...,sq = l | ξ) ∝ πl

C0

∏
c=1
{λl(c)}ns1,. . . ,sq (c)

where ns1 ,...,sq (c) = ∑T
1 1{x1,t = s1,. . . ,xq,t = sq ,yt = c}.

3: For l = 1, . . . , L, update πl by the following rules

Vl | ξ ∼ Beta(1− b + nl , a + lb + ∑
k>l

nk), l < L

VL = 1, πl = Vl

l−1

∏
k=1

(1−Vk)

where nl = ∑(s1 ,...,sq) 1{φs1 ,...,sq = l}.
4: For l = 1, . . . , L, collect samples λl from their respective Dirichlet full conditionals

λl | ξ ∼ Dir{α + nl(1), . . . , α + nl(C0)}

where nl(c) = ∑(s1 ,...,sq) 1{φs1 ,...,sq = l}ns1 ,...,sq (c).
5: For j = 1, . . . , q, for c = 1, . . . , Cj, collect samples

ω(j)(c) | ξ ∼ Dir{β j + nj,c(1), . . . , β j + nj,c(k j)}

where nj,c(sj) = ∑T
t=1 1{xj,t = sj, zj,t = c}.

6: For j = 1, . . . , q, for t = 1, . . . , T, collect samples xj,t from their corresponding multinomial full conditionals

p(xj,t = s | ξ, xi,t = si , i 6= j) ∝ ω
(j)
s (zj,t)λφs1,. . . ,s,. . . ,sq (yt)

7: For j = 1, . . . , q, collect samples k j from their respective multinomial full conditionals

p(k j = k | ξ) ∝ exp(−µjk)
Cj

∏
c=1

n
−kβ j
j,c , k j = max

t
{xj,t}, . . . , Cj

where nj,c = ∑T
t=1 1{zj,t = c}.

8: end for
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To successfully run Algorithm 1, certain hyperparameters need to be chosen. The aforementioned
determination of µj and L have been carefully discussed along with their implications, so we focus
on the other hyperparameters. Among those hyperparameters, a and b will determine the clustering
ability of the Pitman-Yor process (which are set to be 1 and 0 in this case), rendering it a Dirichlet
process; this is sufficient for applications discussed in this paper. It should be noted that α and β j are
Dirichlet Distribution’s hyperparamters and serve the role of pseudo-counts. The determination of
these reflects the users’ prior belief. They are often manually chosen to be some small values without
additional information which can justify larger values. In the following sections, they are chosen to be:
α = 1 and β j = 1/Cj across different applications.

3.2. Bayesian Factor and Hypothesis Testing

This subsection discusses hypothesis testing techniques on the significance of all the predictors to
the regression Equation (1). It can be used to make causal inference in order to provide a better
understanding of the model and to better allocate computational resources for the sequential
classification task by including only the important predictors (and discard the unimportant ones).
As previously noted, a particular predictor zj is considered important if and only if the number of
clusters k̃ j formed by their corresponding latent class allocation variables xj is greater than 1.

Let Λ ⊂ {1, . . . , q} be the set of predictors under consideration. To perform the Bayesian
hypothesis testing, we only need to compute the Bayes factor [23] in favor of H1 : k̃ j > 1 for
some j ∈ Λ against H0 : k̃ j = 1 for any j ∈ Λ, given by

BF10 =
p(H1|y, z)/p(H1)

p(H0|y, z)/p(H0)
(15)

where y ≡ {yt}T
t=1, z ≡ {zt}T

t=1; and p(H0|y, z), p(H1|y, z) are numerically computed as the fraction
of samples in which the k̃ j’s conform to H0 and H1, respectively; the prior probabilities p(H0) and
p(H1) can be obtained by the following probability equation:

p(k̃ j = 1) =
Cj

∑
k=1

p(k j = k)
k

∑
l=1

p(xj,t = l ∀ t|k j = k)

=
( Cj

∏
r=1

γ
(nj,c)

j

)( Cj

∑
k=1

p(k j = k)k

∏
Cj
k=1(kγj)

(nj,c)

)
Specifically, to test whether θ Granger-causes y, it is only necessary to choose

Λ = {D1 + 1, . . . , q}.

4. Sequential Classification

In Section 3, a Gibbs sampling algorithm is developed to infer the posterior distribution of model
parameters given the observed data. In this section, a classification algorithm for dynamical systems
based on the posterior predictive distribution, which is derived by marginalizing the likelihood of
unobserved data over the posterior distribution of model parameters, is proposed. This algorithm
consists of two phases: (1) off-line training phase and (2) online testing phase. Suppose there are M
different classes of dynamical systems that are of interest, Ci, i = 1, 2, · · · , M, for each of them we
collect a training set (i)DTi = {(i)yt, (i)zt}Ti

t=1. The requirement for this dataset is that the data are
categorical (e.g., quantized categories from continuous data), and for each class they have an identical
number of categories of predictors and variables.

During the training phase, training set (i)DTi is used to compute the posterior of samples

{(i)
(n)φ, (i)

(n)λ, (i)
(n)ω}

M
n=1
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for each one of the class Ci, as previously described in Algorithm 1. Then, during the test phase, the test
set DT will be classified. Among these M classes, one will be identified as the class to which DT most
likely belongs. In order to do so, the following conditional probability p(DT | (i)DTi ) will be computed:

p(DT | (i)DTi ) =
T

∏
t=1

p(yt | zt; (i)DTi ) (16)

p(yt | zt; (i)DTi ) ≈
1
N

N

∑
n=1

( k1

∑
s1=1
· · ·

kq

∑
sq=1

(i)
(n)λ(i)

(n)φs1,...,sq
(yt)

q

∏
j=1

(i)
(n)ω

(j)
sj (zj,t)

)
(17)

Following the above calculation of conditional probabilities p(DT | (i)DTi ), the posterior
probability of the test data DT belonging to class Ci (denoted as p(Ci | DT)) can be then calculated as:

p(Ci | DT) =
p(DT | (i)DTi )p(Ci)

M
∑

r=1
p(DT | (r)DTr )p(Cr)

(18)

where p(Ci) is the prior probability of the class Ci. Next, the classification result is generated by:

Dclass = arg max
i

p(Ci | DT) (19)

The prior probability p(Ci) reflects user’s subjective beliefs and can also be designed to optimize
some objective criterion. The reason that the detection algorithm is “sequential” is due to the fact the
conditional probability p(DT | (i)DTi ) is evaluated one by one as shown in Equation (16). In real-world
applications, values of p(yt | zt; (i)DTi ) in Equation (17) are often precomputed and stored for various
values of (yt, zt), in order to achieve faster computations.

For the binary classification case, we can construct the likelihood ratio test [24] as:

p(DT | (1)DT1)

p(DT | (0)DT0)

1
≷
0

Θ (20)

where in this equation Θ is a certain threshold. To choose the threshold Θ, one could rely on the
receiver operating characteristic (ROC). ROC curves are often obtained by changing Θ in order to
make a trade-off between the probability of (successful) detection pD = Prob(decide 1 | 1 is true)
and the false alarm probability pF = Prob(decide 1 | 0 is true). Using those ROC curves, an optimal
combination of pD and test set data length for a given pF can be selected, which would then determine
the threshold Θ.

5. Numerical Example

This section presents a numerical example which utilizes the proposed method to infer causal
relationships between two categorical time series. In this example, the data generation model is known
and thus can be compared with the results from the proposed algorithm for evaluation of performance.
The data generation details are given below.

In this particular numerical example, there are two binary sequences of symbols yt and θt. Symbol
sequences yt are generated using a known Markov model p(yt | yt−1, yt−3, yt−4), where only the
time-lags yt−1, yt−2, yt−5 are important predictors. Symbol sequences θt are generated from another
Markov model p(θt | θt−1, θt−2, yt−1, yt−3), where θt−1, θt−2 and yt−1, yt−3 are the key predictors.
In other words, the variable y Granger-causes the variable θ but not the other way around because y
only depends on its own past. Table 1 lists the transition probabilities for yt, where it is seen that the
predictors are yt−1, yt−3, yt−4 only. Table 2 lists the transition probabilities for θt, where the predictors
are yt−1, yt−3, θt−1, and θt−2 only.
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Table 1. Transition Probabilities for yt in the Numerical Example.

yt−1 yt−3 yt−4 p(yt = 1) p(yt = 0)

0 0 0 0.20 0.80
1 0 0 0.75 0.25
0 1 0 0.70 0.30
1 1 0 0.35 0.65
0 0 1 0.40 0.60
1 0 1 0.38 0.62
0 1 1 0.33 0.67
1 1 1 0.71 0.29

Table 2. Transition Probabilities for θt in the Numerical Example.

yt−1 yt−3 θt−1 θt−2 p(θt = 1) p(θt = 0)

0 0 0 0 0.40 0.60
1 0 0 0 0.65 0.35
0 1 0 0 0.70 0.30
1 1 0 0 0.40 0.60
0 0 1 0 0.50 0.50
1 0 1 0 0.47 0.53
0 1 1 0 0.33 0.67
1 1 1 0 0.69 0.31
0 0 0 1 0.45 0.55
1 0 0 1 0.75 0.25
0 1 0 1 0.30 0.70
1 1 0 1 0.50 0.50
0 0 1 1 0.75 0.25
1 0 1 1 0.66 0.34
0 1 1 1 0.65 0.35
1 1 1 1 0.20 0.80

To estimate the regression model in Equation (1) with the parameter T = 1005, samples of {yt}1005
t=1

and {θt}1005
t=1 are being collected simultaneously. Based on the prior belief that yt−D and θt−D are no

longer important for making predictions about yt and θt when D is greater than 5, predictors for both
yt and θt are set as follows:

zt ≡ (yt−1, yt−2, yt−3, yt−4, yt−5, θt−1, θt−2, θt−3, θt−4, θt−5) (21)

From these data sets, 1000 training samples are chosen for testing the proposed algorithm.
To calculate posteriors using Algorithm 1 for p(yt|zt), since there is no other prior knowledge, µj

is set to be 1 across j = 1, . . . , 10. Initially, 200,000 samples are used in a burn-in period: they are fed into
the algorithm and then discarded. The next 50,000 samples (after burn-in) are downsampled further
by taking every 5th sample to reduce their autocorrelation. Figure 2 summarizes the results, in which
Figure 2a displays the log-likelihood for 10,000 iterations of this model and Figure 2b illustrates the
ability to correctly identify all the important predictors for the proposed method. For this example,
the key predictors should be 1, 3 and 4, and the results from the prediction (yt−1, yt−3 and yt−4)
are the same as the ground truth. Figure 2c shows the relative frequency of number of predictors
that are important. Furthermore, the proposed method also creates parsimonious representations of
the model as seen in Figure 2d,e. As previously discussed in Section 2.2, the tensor λs1 ...sq(yt) has
more components than needed but it can be clustered in a nonparametric way to reduce the number
of combinations. Referring to [13], Figure 2f shows the Bayes factors calculation as mentioned in
Section 3.2 for all of the predictors. Bayes factor BF10 in Equation (15) can be regarded as the evidence
against H0. After setting a commonly-used threshold of t = 20, it can be concluded that those predictors
with higher BF10 have implications of their evidences being strong. Furthermore, having BF10 > 150
indicates even stronger evidence against the hypothesis H0 [13]. It should be noted here that when
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the inclusion proportions of different lags in Figure 2b are equal to 1, then their corresponding Bayes
factors in Figure 2f should tend to infinity (as for predictors 1, 3 and 4 in this example).
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Figure 2. Gibbs sampling results: Numerical example for p(yt | yt−1, . . . , yt−5, θt−1, . . . , θt−5).

Similarly, Figure 3 shows the results using the same set of data as in Figure 2 but instead of
estimating p(yt|zt), we are estimating p(θt|zt) here. Figure 3a–f have the same implications as those
previously stated for Figure 2a–f. It can be seen that in this case for p(θt), the key predictors should be
1, 3, 6 and 7, and the results confirm this in Figure 3.
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Figure 3. Gibbs sampling results: Numerical example for p(θt | yt−1, . . . , yt−5, θt−1, . . . , θt−5).

Besides the ability to correctly identify the structure of the model, the proposed method can also
perform transition probability estimation. Figure 4 illustrates two arbitrarily selected cases from Table 1
and Table 2. Setting yt−1 = 0, yt−3 = 1, and yt−4 = 0, from Table 1 we can get the transition probability
of the model of (yt = 1) is 0.70. Similarly, setting yt−1 = 1, yt−3 = 0, θt−1 = 1, and θt−2 = 0, from
Table 2 we can get the transition probability of (yt = 1) is 0.50. In Figure 4, the estimated transition
probability using the proposed method is displayed along with their running mean as well as their
5% and 95% percentiles. From both subplots of Figure 4, it is observed that the running mean of the
transition probability is actually close to the true transition probability as given in the data generation
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tables. Even with a limited amount of data, the proposed method can not only estimate the transition
probabilities, but also give an uncertainty bound in terms of their respective quantiles.
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Figure 4. Transition probabilities in the numerical example.

The causal relationship between y and θ is identified by Bayes factor analysis (see Section 3.2.
The results are summarized in Table 3, which show that y Granger-causes θ but not the other way,
which is in line with the ground truth.

Table 3. Hypothesis Testing of Granger causality in the Numerical Example.

Null Hypothesis Bayes Factor BF10

θ does not Granger-cause y 0.43
y does not Granger-cause θ Infinity

6. Validation with Experimental Data: The Combustor Apparatus

This section validates the nonparametric regression model with experimental data generated
from a swirl-stabilized lean-premixed laboratory-scale combustor apparatus [14].

6.1. Background and Description of the Experimental Procedure

This subsection presents a brief background of thermoacoustic instabilities in the combustor
apparatus along with the experimental details for data collection. Thermoacoustic instabilities occur
from highly nonlinear coupled phenomena that evolve from mutual interactions among thermofluid
dynamics, unsteady heat release, and acoustics of the combustor chamber. The resulting self-sustained
high-amplitude pressure oscillations often impose severe negative impacts on the performance and
operational life of gas turbine engines [25–27].

Technical literature abounds with studies on combustion instabilities and their early detection
by time series analysis, especially by using Markov chains [28,29]. However, current methods are
largely limited to individual investigations of pressure or chemiluminescence measurements, and have
apparently not taken the machine-learning-theoretic approach to information fusion into consideration;
consequently, fast detection of thermoacoustic instabilities may not be achieved to the full extent based
on the individual information of different sources only. Moreover, parameter estimation is difficult in
current methods, even for moderately high-order Markov chains, due to the paucity of data, let alone
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a more sophisticated information fusion model. As for the detection procedure, empirical thresholds
are often used in existing literature, without taking advantage of methods in statistical detection theory
(such as sequential testing techniques); therefore, those applications are very limited in real-time
detection cases.

Figure 5 presents a schematic diagram of the combustor apparatus [14] that consists of an inlet
section, an injector, a combustion chamber, and an exhaust section. The combustor chamber consists of
an optically-accessible quartz section followed by a variable-length steel section.

Figure 5. Schematic diagram of the combustor apparatus.

Experiments have been conducted at 62 different operating conditions by varying the equivalence
ratio and percentage of pilot fuel, as listed in Table 4. Under each operating condition, 8 s of pressure
and chemiluminescence measurements have been collected at the sampling rate of 8192 Hz, where
stable and/or unstable modes are recorded along with each time series data. To alleviate the problem
of (possible) oversampling, the pressure and chemiluminescence measurements from combustors are
first downsampled, which is obtained from first minimum of the average mutual information [30].
Then, the continuously varying time series data for both stable and unstable modes are quantized
using maximum entropy partitioning [31,32] with a ternary alphabet Σ = {1, 2, 3}. The quantized
pressure measurements are denoted as yt and the chemiluminescence measurements are denoted as θt

at time instant t.

Table 4. Operating conditions.

Parameters Values

Variables Equivalence Ratio 0.525, 0.538, 0.575, 0.625
Pilot Fuel (percent) 0–9% (0.5% increment)

Fixed Conditions
Inlet Temperature 250 ◦C
Inlet Velocity 40 m/s
Combustor Length 0.625 m

6.2. Training Phase

This subsection describes details in the nonparametric regression model training, wherein 500
samples have been used after downsampling the quantized pressure time series data under stable
and unstable conditions. The maximum memory D of each of yt and θt in this dataset is observed
to be generally limited to 5 for both stable and unstable cases. Hence, predictors of yt or θt are set to
be zt ≡ (yt−1, yt−2, . . . , yt−5, θt−1, θt−2, . . . , θt−5) and the corresponding regression model is hereafter
referred to as “full order model”. Since yt and θt has three categories, it follows that Cy = Cθ = 3.

To compute posteriors, as in Algorithm 1, the values

[1, 1.5, 2.0, 2.5, 3.0, 1.0, 1.5, 2.0, 2.5, 3.0]
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are assigned to µj for j = 1, . . . , 10. After discarding 200,000 data points during the burn-in
period, remaining 50,000 samples are then downsampled by taking every 5th data point to
reduce their autocorrelation. Gibbs sampling results of pressure data are represented as
p(yt | yt−1, . . . , yt−5, θt−1, . . . , θt−5) in Figure 6a,b for a stable mode and in Figure 6c,d for an
unstable mode. Similarly, Gibbs sampling results of chemiluminescence data are represented as
p(θt | yt−1, . . . , yt−5, θt−1, . . . , θt−5) in Figure 7a,b for a stable mode and in Figure 7c,d for an
unstable mode.

Figures 6a,c and 7a,c show the log likelihood with different iterations for pressure and
chemiluminescence data under stable and unstable conditions, respectively. Similarly, Figures 6b,d
and 7b,d illustrate the Bayes factors of predictors for pressure and chemiluminescence data under stable
and unstable conditions, respectively. Based on the Bayes factor analysis, the important predictors for
stable pressure data are identified as:

yt−1, yt−2, yt−3, yt−4, θt−1, θt−3 and θt−4

while those for unstable pressure data are identified as

yt−1, yt−3, yt−4, yt−5, θt−1, θt−3, θt−4 and θt−5
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Figure 6. Gibbs sampling of pressure data.

Using the identical set of hyperparameters and number of iterations, Gibbs sampling has been
performed on the same set with pressure data yt only; this is referred to as the “reduced order model”
in the following text. In this case the predictors are set as zt ≡ (yt−1, yt−2, . . . , yt−5). The stable and
unstable cases are shown in Figure 8a–d respectively. The important predictors for yt using this
reduced order model are: yt−2, yt−4, and yt−5 for the stable mode, and yt−1, yt−2, yt−4, and yt−5 for the
unstable mode.
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Figure 7. Gibbs sampling of chemiluminescence data.
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Figure 8. Gibbs sampling of the reduced-order model.

Similarly, for chemiluminescence data, the important predictors are identified as:

yt−1, yt−3, yt−4, yt−5, θt−1, θt−2, θt−3, θt−4 and θt−5
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while those for unstable chemiluminescence data are identified as:

yt−1, yt−2, θt−1, θt−2, θt−3, θt−4 and θt−5

6.3. Granger Causality

To identify the Granger causal relationship between pressure and chemiluminescence data,
Bayes factor analysis has been performed for both stable and unstable cases as described in
Section 3.2. The results are summarized in Table 5, which show that pressure and chemiluminescence
measurements Granger-cause each other under both stable and unstable conditions; this implies
that fusion of these two measurements can enhance the accuracy of prediction. This kind of mutual
interaction between pressure and chemiluminescence measurements could be caused by a third
unknown physical quantity, the exploration of which is a topic of future research.

Table 5. Hypothesis Testing of Granger Causality.

Null Hypothesis Operating Condition BF10

θ does not Granger-cause y Stable Infinity
y does not Granger-cause θ Stable Infinity
θ does not Granger-cause y Unstable Infinity
y does not Granger-cause θ Unstable Infinity

6.4. Sequential Classification

For evaluation of the performance of the sequential classification for thermoacoustic instability
identification, 100 instances of 50-sample datasets, which are not included in the training set, have
been selected (also from their downsampled quantized pressure measurements for both stable and
unstable modes). Figure 9 exhibits the profiles of posterior probability of each class as a function of
the length of the observed data, where the top plate (i.e., Figure 9a) uses the full order model, and the
bottom plate (i.e., Figure 9b) uses the reduced-order model for the same test data sequence. While
the test sequences are correctly classified by both models, the reduced-order model is slower than the
full-order model that contains more information.
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Figure 9. Posterior probabilities using different models.
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Figure 10 shows the receiver operating characteristic (ROC) curves for the proposed detection
algorithm with different lengths of the test data. These ROC curves are plotted for both full-order and
reduced-order models to show that, when testing with the same dataset, the full order model achieves
better detection performance in terms of the area under the ROC. In other words, the full-order model
may achieve the same performance as the reduced order model in a shorter time, which is desirable for
active control of thermoacoustic instabilities in real time. It is also observed that the ROC curves tend
to improve (i.e., move toward the top left corner) considerably as the length of test data is increased
from 5 to 9. This is expected because the information contents monotonically increase with the length
of test data and hence better results are obtained.
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Figure 10. ROC curves with different test data length L.

7. Validation with Economics Data

This section validates the nonparametric regression model with (publicly available) real-world
economics data. Specifically, monthly data of the U.S. consumer price index (CPI) and the U.S. Dollar
London Interbank Offered Rate (LIBOR) interest rate index with one-month maturity from January
1986 to December 2016 are used. It is noted that: (i) U.S. CPI is a measure of the average change
over time in the prices paid by urban consumers for U.S. market of consumer goods and services,
and (ii) U.S. Dollar LIBOR is a benchmark for short-term interest rates around the world, which is not
a monetary measure associated with any country, and which does not reflect any institutional mandate
in contrast to, e.g., when the Federal Reserve sets interest rates. Economics theory [33] indicates
that low interest rates can cause high inflation, and empirical research [34] has been conducted to
investigate the causal relationship between inflation and nominal or real interest rates for the same
country or region.

To avoid spurious regression [35], the raw data of U.S. CPI and U.S. Dollar LIBOR are
preprocessed to achieve stationarity. U.S. CPI raw data are used to calculate the monthly percentage
increase, and then this percentage increase is converted into a categorical variable by discretizing
to quintiles (e.g., 5-quantiles in this study) that are denoted as yt; the rationale for discretization of
(noise-contaminated) continuously varying data is to improve the signal-to-noise ratio [36]. Similarly,
U.S. LIBOR raw data are used to calculate the monthly difference, and then this difference is
convertedin to a categorical variable by discretizing to quintiles, denoted as θt. The entire dataset is
used for training the proposed algorithm.

To estimate the regression model in Equation (1), based on the assertion that yt−Dy and θt−Dθ
are

not important for predicting yt and θt if both Dy and Dθ are greater than 6 (i.e, six months for both CPI
and LIBOR), the predictor for yt and θt is set as:

zt ≡ (yt−1, yt−2, . . . , yt−6, θt−1, θt−2, . . . , θt−6) (22)
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To compute the posterior probabilities using the proposed Algorithm 1, µj are assigned to be j/2
for j = 1, . . . , 6 and (j− 6)/6 for j = 7, . . . , 12. After the initial 100,000 samples are discarded during
the burn-in period, the remaining 50,000 samples are then downsampled by taking every 5th to reduce
their autocorrelation. Figures 11 and 12 respectively summarize the results for yt and θt. These figures
have similar characteristics to their counterparts in the numerical example in Section 5. The results
show that, for yt or CPI, the important lags are yt−1, yt−2, yt−3 and θt−1. Similarly, for θt or LIBOR,
the important lags are θt−1, θt−1, θt−3. These results show that LIBOR Granger-cause CPI, but not vice
versa. This conclusion is summarized by Bayes factor analysis in Table 6.
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Figure 11. Gibbs sampling of economics dataset for p(yt | yt−1, . . . , yt−6, θt−1, . . . , θt−6).
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Figure 12. Gibbs sampling of economics dataset for p(θt | yt−1, . . . , yt−6, θt−1, . . . , θt−6).

Table 6. Hypothesis test of Granger Causality for economics data.

Null Hypothesis Bayes Factor BF10

US CPI does not Granger-cause LIBOR 7.29
LIBOR does not Granger-cause US CPI Infinity

8. Summary, Conclusions, and Future Work

The proposed Bayesian nonparametric method provides a flexible model for information fusion of
heterogeneous, correlated time series data. The proposed method has been validated on a real-world
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application by using the experimental data collected from a laboratory-scale swirl-stabilized combustor
apparatus, as well as on the publicly available economics data. It is demonstrated that the proposed
method is capable of enhancing the accuracy for real-time detection of thermoacoustic instabilities and
correctly identifying the Granger causal relationship between key economic variables.

There are many promising directions in which the proposed model can be further explored,
such as:

1. Variational inference algorithm development for the proposed model [37].
2. Extension of the present analysis to hidden Markov models (HMM) [38] and information

transfer [39].
3. Exploration of an unknown physical quantity that may cause the appearance of mutual

interactions between pressure and chemiluminescence measurements.
4. Investigation of the empirical performance of the proposed approach utilizing extensive

simulation studies.
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Nomenclature of Pertinent Parameters

a Hyperparameter of prior on probability vector π
b Hyperparameter of prior on probability vector π
Cj Number of categories of the jth predictor
Ci ith class of dynamical systems
Dy Number of time-lags of variable y
Dθ Number of time-lags of variable θ
k̃ j Number of clusters formed by xj
k j Dimension of the jth mixture probability vector
k Vector {k j}

q
j=1

L Number of truncations in a Pitman-Yor process
N Number of iterations in Algorithm 1
q Number of predictors
s Realization of a latent allocation-class variable
T Number of pairs of variables and predictors
xj,t jth latent allocation-class variables at time t
xj jth latent allocation-class variables {xj,t}T

t=1
xt Latent allocation-class variables {xj,t}

q
j=1 at time t

x Latent allocation-class variables {xt}T
t=1

yt Variable y at time t
y Variables {yt}T

t=1
zj,t jth predictor at time t
zj jth predictors {zj,t}T

t=1
zt Predictors {zj,t}

q
j=1 at time t

z Predictors {zt}T
t=1

α Hyperparameter of prior on λ
β j Hyperparameter of prior on ωj
θt Variable θ at time t
Θ Threshold
λs1,...,sq Probability vector {λs1,...,sq(c)}

C0
c=1

Λ Set of predictors
λ̃ Conditional probability tensor {λs1,...,sq}s1,...,sq
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λl Probability vector {λl(c)}C0
c=1

λ Sequence {λl}∞
l=1

µj Hyperparameter of prior on k j
π Probability vector {πl}∞

l=1
φ Collection {φs1,...,sq}s1,...,sq

ψ(k) Time-invariant spatial variables for kth experiment
ω(j)(c) Mixture probability vector {ω(j)

s (c)}kj
s=1

ω(j) Mixture probability matrix {ω(j)
s (c)}Cj

c=1
ω Mixture probability tensor {ω(j)}q

j=1

Pertinent Acronyms

BF Bayes Factor
Beta Beta Distribution
Dir Uniform Dirichlet Distribution
HOSVD Higher order singular value decomposition
Mult Multinomial Distribution
ROC Receiver operating characteristic
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