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Abstract: The fact that real dissipative (entropy producing) processes may be detected by
non-comoving observers (tilted), in systems that appear to be isentropic for comoving observers,
in general relativity, is explained in terms of the information theory, analogous with the explanation
of the Maxwell’s demon paradox.
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1. Introduction

Observers play an essential role in quantum mechanics where the very concept of reality is tightly
attached to the existence of the observer, as ingeniously illustrated by the well known Schrodinger’s
cat paradox. In the quantum mechanics terminology, we say that the observer produces the collapse of
the wave function.

However, it is generally assumed that observers do not play a similar role in classical
(non quantum) theories. However, is this assumption really justified? As we shall see here, the answer
to such a question is negative. Indeed, the role of observers in General Relativity is a fundamental one,
and reminds one, in some sense, of its role in quantum physics, namely: a complete understanding of
some gravitational phenomena requires the inclusion of the observers in the definition of the physical
system under consideration.

In order to make our case, let us first recall that, in relativistic hydrodynamics, different observers
assign different four-velocities to a given fluid distribution. This simple fact is at the origin of an
ambiguity in the description of the source of the gravitational field (whenever it is represented by a
fluid distribution).

Thus, one may face the situation when one of the congruences corresponds to comoving observers,
whereas the other is obtained by applying a Lorentz boost to the comoving observer’s frame (this
Lorentz boosted congruence is usually referred to as the tilted congruence).

The strange fact then appears that systems that are isentropic for comoving observers may become
dissipative for tilted observers (see [1–10] and references therein).

We shall illustrate this situation with some examples, and shall provide an explanation based
on the theory of information. More specifically, we shall see that an argument similar to the one
put forward by Bennet [11] to solve the Maxwell’s demon paradox [12] may be used to explain
the very different pictures of a given system, presented by different congruences of observers in
general relativity.

As we shall see, the essential fact is that, when we pass from comoving observers (which assign
zero value to the three-velocity of any fluid element) to tilted observers, for whom the three-velocity
represents another degree of freedom, the erasure of the information stored by comoving observers
(vanishing three velocity) explains the presence of dissipative processes (gravitational radiation
included) detected by tilted observers.
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2. Comoving and Tilted Observers

In order to grasp the essence of the problem under consideration, it is important to understand
how the tilted (non-comoving) congruence may be obtained from the comoving one. In what follows,
we present the general scheme for doing that. Thus, let us consider a congruence of observers that
are comoving with an arbitrary fluid distribution; then, the four-velocity for that congruence, in some
globally defined coordinate sytem, reads

Vµ = (V0, 0, 0, 0). (1)

In order to obtain the four-velocity corresponding to the tilted congruence (in the same globally
defined coordinate system), one proceeds as follows.

We have first to perform a (locally defined) coordinate transformation to the Locally Minkowskian
Frame (LMF). Denoting by Lν

µ the local coordinate transformation matrix and, by V̄α, the components
of the four-velocity in such LMF, we have:

V̄µ = Lµ
ν Vν. (2)

Next, let us apply a Lorentz boost to the LMF associated with V̄α, in order to obtain the (tilted)
LMF with respect to which a fluid element is moving with some, non-vanishing, three-velocity.

Then, the four-velocity in the tilted LMF is defined by:

˜̄Vβ = Λα
βV̄α, (3)

where Λα
β denotes the Lorentz matrix.

Finally, we have to perform a transformation from the tilted LMF, back to the (global) frame
associated with the line element under consideration. Such a transformation, which obviously only
exists locally, is defined by the inverse of Lν

µ, and produces the four-velocity of the tilted congruence in
our globally defined coordinate system, say Ṽα.

In the following sections, we shall present several examples of tilted space-times, which illustrate
the sharp differences in their interpretations, with respect to the picture obtained by the comoving
observers. To avoid any confusion, it must be kept in mind that the global coordinate system in each
example is the same for both congruences of observers (comoving and tilted). In addition, it must
be stressed that these congruences are not related by any global coordinate transformation. They are
related by the process described above.

3. Tilting the Lemaitre–Tolman–Bondi Congruence

The Lemaitre–Tolman–Bondi metric (LTB) is an exact solution to Einstein’s equation [13–16],
which, as seen by a congruence of comoving observers, describes spherically symmetric distributions
of geodesic, shearing, and vorticity free, inhomogeneous non-dissipative dust. The magnetic part
of the Weyl tensor vanishes, whereas its electric part may be defined through a single scalar
function. If we put the shear or the the Weyl tensor equal to zero, the LTB spacetime becomes
the Friedman–Robertson–Walker spacetime.

The general form of LTB metric is defined by:

ds2 = −dt2 + B2dr2 + R2(dθ2 + sin2 θdφ2), (4)

where B(r, t) and R(r, t) are functions of their arguments, and as a consequence of the
Einstein equations

B(t, r) =
R′

[1 + k(r)]1/2 , (5)
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where k is an arbitrary function of r and prime denotes derivative with respect to r.
The energy momentum tensor describing a dust distribution with energy density µ in comoving

coordinates takes the usual form:

Tµν = µVµVν. (6)

Obviously, for the comoving observer, the fluid is geodesic.
However, if we now tilt the comoving observer, then, as it has been shown, the spacetime appears

to be sourced by a dissipative anisotropic fluid distribution, and furthermore the fluid is no longer
geodesic [5]. The important point to stress here is that the tilted observer detects a real dissipative
process (entropy producing) as it follows from the discussion on the generalized Gibbs equation (see [5]
for details).

Obviously, due to the spherical symmetry, the magnetic part of the Weyl tensor also vanishes for
the tilted observer, implying that no gravitational radiation is detected by the latter.

4. Tilting the Szekeres Congruence

In the example analyzed in the previous section, the fluid distribution was spherically symmetric,
thus it is interesting to wonder what happens when we consider fluid distributions non restricted by
this symmetry. For doing so, let us consider the Szekeres spacetime [17,18].

Indeed, Szekeres dust models have no Killing vectors and therefore represent an interesting
generalization of LTB spacetimes. When analyzed from the point of view of comoving observers,
the Szekeres spacetime is sourced by a geodesic non-dissipative dust, without vorticity. In addition,
as in the LTB case, the magnetic part of the Weyl tensor vanishes, implying that there is no
gravitational radiation.

In this case, the line element is given by:

ds2 = −dt2 +
(R′E− RE′)2

E2(ε + f )
dr2 +

R2

E2 (dp2 + dq2), (7)

where a prime denotes a derivative with respect to r, R = R(t, r), ε = ±1, 0 and f = f (r) > −ε is an
arbitrary function of r. We number the coordinates x0 = t, x1 = r, x2 = p, x3 = q.

The function E is given by

E(r, p, q) =
S
2

[(
p− P

S

)2
+

(
q−Q

S

)2
+ ε

]
, (8)

where S = S(r), P = P(r) and Q = Q(r) are arbitrary functions.
From Einstein equations, it follows that R satisfies the equation

Ṙ2 =
2M
R

+ f , (9)

where a dot denotes derivative with respect to t, and M = M(r) is an arbitrary function. From the
above equation, it follows that

R̈ =
−M
R2 , (10)

from where the meaning of M as an effective gravitational mass becomes evident.
However, the above picture drastically changes when the matter content is analyzed by a

tilted congruence.
Indeed, as shown in [6], tilted observers detect a dissipative, anisotropic fluid that is no longer

geodesic and furthermore is endowed with vorticity. As for the LTB case, the dissipation detected
by tilted observers is “real” in the sense that there is an increasing of entropy. However, even in
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the tilted version, the magnetic part of the Weyl tensor vanishes, and so tilted observers do not detect
gravitational radiation.

5. Tilted Shear-Free Axially Symmetric Fluids

In the examples analyzed in the two previous sections, the Lorentz boost applied to the comoving
congruence, in order to obtain the tilted one, was always directed along one of the coordinate
axis (r). We shall now consider a much more general situation, where the boost is applied along
two independent directions.

We shall consider axially symmetric fluids, which for the comoving observer are geodesic,
shear-free non-dissipative, and vorticity free.

The line element reads [19]

ds2 = −dt2 + B2(t)
[
dr2 + r2dθ2 + R2(r, θ)dφ2

]
, (11)

where B(t) and R(r, θ) are functions of their arguments satisfying the Einstein equations, and, from
regularity conditions at the origin, we must require R(0, θ) = 0.

For the comoving observer, the energy momentum–tensor in the “canonical” form reads:

Tαβ = (µ + P)VαVβ + Pgαβ + Παβ, (12)

where, as usual, µ, P, Παβ, Vβ denote the energy density, the isotropic pressure, the anisotropic stress
tensor and the four-velocity, respectively.

For the comoving congruence, the anisotropic tensor depends on a single scalar function, and the
four-velocity vector reads:

Vα = (1, 0, 0, 0) ; Vα = (−1, 0, 0, 0) (13)

(see [19] for details).
In addition, as shown in [19], the magnetic part of the Weyl tensor calculated by means of the

four-velocity vector (13) vanishes and the electric part is defined through a unique scalar function.
The above picture is drastically changed when the system is analyzed by a tilted congruence of

observers, as we shall now see (see [20] for details).
For doing so, we have to obtain first the tilted congruence and all the associated kinematical

variables, applying the procedure sketched above, for the case when the boost is applied along the r
and the θ directions.

Thus, we obtain for the tilted four-velocity (see [20] for details):

Ṽα = (−Γ, BΓv1, BrΓv2, 0); Ṽα = (Γ,
Γv1

B
,

Γv2

Br
, 0), (14)

where Γ ≡ 1√
1−v2 , v2 = v2

1 + v2
2, and v1, v2 are the two non-vanishing components of the three-velocity

of a fluid element as measured by the tilted observer.
We can now calculate all the kinematical variables for the tilted congruence. The result shows that

now the four-acceleration, as well as the shear and the vorticity are non vanishing (see [20] for details).
In addition, for the tilted congruence, the electric part of the Weyl tensor has three independent

non-vanishing components and the magnetic part of the Weyl tensor is non-vanishing, and defined
through two components. Thus, we may write these two tensors in terms of five tetrad components
(ẼI , ẼI I , ẼKL, H̃1, H̃2), respectively.

For the tilted observers, the fluid distribution is described by the energy momentum tensor:

T̃αβ = (µ̃+ P̃)ṼαṼβ + P̃gαβ + Π̃αβ + q̃αṼβ + q̃βṼα. (15)
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It should be noticed that now the system appears to be dissipative, with the heat flux vector
defined through two independent scalar functions q̃(1), q̃(2) and the anisotropic tensor is defined by
three independent scalars Π̃I , Π̃I I , Π̃KL.

From the above expressions, we can calculate the super-Poynting vector in terms of only two
scalar functions P̃(1), P̃(2), where

P̃(1) =
2H̃2

3
(
2ẼI I + ẼI

)
+ 2H̃1ẼKL + 32π2q̃(1)

(
µ̃ + P̃ +

Π̃I
3

)
(16)

+ 32π2q̃(2)Π̃KL,

P̃(2) = −2H̃1

3
(
2ẼI + ẼI I

)
− 2H̃2ẼKL + 32π2q̃(2)

(
µ̃ + P̃ +

Π̃I I
3

)
(17)

+ 32π2q̃(1)Π̃KL.

In (17) and (18), we can identify two different types of contributions. On the one hand, we have
contributions from the heat transport process. These are independent on the magnetic part of the
Weyl tensor, and appear in the tilted versions of LTB and Szekeres, as well as in the case analyzed in
this section.

Next, we have contributions related to the gravitational radiation. These require both the electric
and the magnetic part of the Weyl tensor to be different from zero. Of course, they vanish for LTB and
Szekeres, but do not vanish in the present case.

The association of a state of gravitational radiation to a non-vanishing component of the
super-Poynting vector is enforced by the link between the super-Poynting vector and the news
functions in the context of the Bondi–Sachs approach [21].

Thus, we have in the case analyzed in this section that, for the comoving observer and the line
element (11), the magnetic part of the Weyl tensor vanishes identically and the fluid is non-dissipative,
implying at once that P̃(1) = P̃(2) = 0. In other words, no gravitational radiation, or dissipative
processes of any kind, are detected by the comoving observer.

However, for the tilted congruence calculations show that the magnetic part of the Weyl tensor is
not vanishing and, more specifically, the sum of the first two terms in (17) and (18) does not vanish,
except for the conformally flat case [20].

Thus, we face again the intriguing question: how it is possible that tilted observers may detect
irreversible processes, whereas comoving observers describe an isentropic situation?

As we shall see, the above quandary becomes intelligible if we appeal to the discussion on the
Maxwell’s demon presented by Bennet.

6. The Maxwell’s Demon and the Observers in General Relativity

The main moral emerging from the three cases analyzed here (and from many others included
in the list of references) is that tilted observers may detect dissipation in systems that appear
non-dissipative for comoving observers.

It is worth mentioning that, in the case analyzed in the previous section, the difference between
the pictures described by both congruences of observers is still sharper since the tilted observer not
only detects a dissipative process, but also gravitational radiation.

This last point is not alien to the fact that the tilted observer also detects vorticity, and as has
been pointed out in [21], vorticity and gravitational radiation are tightly associated. At any rate,
gravitational radiation is also a dissipative process; accordingly, the basic explanation of its presence in
the system analyzed by the tilted observer is basically the same as the one for any dissipative process.
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As conjectured in [22], the basic fact that explains the above-mentioned differences in
the description of a given system, as provided by different congruences of observers, is that both
congruences of observers store different amounts of information.

Here, we shall delve deeper into this question, by resorting to the resolution of the well known
paradox of the Maxwell’s demon [12].

Let us first recall the Maxwell’s demon paradox and how it was solved by Bennet, using the theory
of information. Let us take a look at Figure 1.

Figure 1. The Bennet scheme.

Initially (stage A), we have a cylinder containing one molecule with two pistons at either side.
At this point, the demon does not know where in the cylinder is the molecule. We shall refer to this
state of the demon’s mind as S. Next, in stage B, the demon inserts a partition wall in the middle of
the cylinder, trapping the molecule in one side or the other. In this stage, the demon still ignores on
what side of the cylinder is the molecule; therefore, the state of his mind is still S.

In stage C, the demon performs a reversible measurement allowing him to know whether the
molecule is on the left or the right side of the cylinder. In each case, the state of the demon’s mind
changes to L or R, respectively.

In D, depending on the result of the previous measurement, the demon moves the left piston to
the right (if the molecule is in the right), or the right piston to the left (if the molecule is in the left),
and removes the partition wall. Doing so, he allows the molecule to freely expand against the piston,
and thereby doing work.
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In E, the pistons are in their original position and the molecule fills the whole cylinder. Thus, one
is tempted to say that we have returned to the initial state A, but work has been done and therefore
such a conclusion would imply the violation of the second law of thermodynamics.

The solution to the above, apparent, paradox comes up when we realize that the demon’s mind
state in A and E are different. Indeed, in E, the demon knows where the molecule was before the
expansion. In order to truly return to A, the information acquired by the demon has to be erased.

However, according to the Landauer principle [23], the erasure of one bit of information stored in
a system requires the dissipation into the environment of a minimal amount of energy, whose lower
bound is given by

4 E = kT ln 2, (18)

where k and T denotes the Boltzman constant and the temperature of the environment, respectively.
In other words, to get the demon’s mind back to its initial state (S), generates dissipation, after

which the system is in F. Thus, all the work obtained by the expansion of the molecule in D is converted
to heat in order to return the demon’s mind to the state S, in F.

Therefore, Bennet solved the paradox by showing that the irreversible act that prevents the
violation of the second law is not the reversible measurement allowing him to know where the
molecule is, but the resaturation of the measuring apparatus to the standard state prior to the state
where the demon knows the location of the molecule. Therefore, if we consider the whole system
(demon + the gas in the cylinder), we must keep in mind that the information possessed by the demon,
before knowing the location of the molecule, is smaller than the information after this process has been
achieved. Accordingly, in order to return to the initial state of the demon, the acquired information has
to be erased.

A somehow similar picture appears when we apply the operation transforming comoving
observers, who are assigned zero value to the three-velocity of any fluid element, into tilted observers,
for whom the three-velocity represents another degree of freedom. The erasure of the information
stored by comoving observers (vanishing three velocity), when going in the frame of tilted observers,
must be accompanied by dissipation by virtue of the Landauer principle, which explains the presence
of dissipative processes (included gravitational radiation) observed by the latter.

To check the consistency of the explanation above, let us take a look at this issue by considering
the transition from the tilted congruence to the comoving one.

When passing from the tilted to the comoving congruence, a decrease of entropy occurs, but
we do not have any external agent, and therefore such a decrease of entropy is accounted for by the
dissipative flux observed in the tilted congruence, which leads to a isentropic system, as seen by the
comoving congruence (we recall that, in the comoving congruence, the system is dissipationless).
In other words, all the dissipation detected by the tilted congruence is associated with the information
difference between both congruences.

Thus, we can say that the state S of the demon, when he does not know the location of the
molecule, is analogous to tilted observers: for both, a piece of information is lacking. On the other
hand, the state L or R when the demon knows the location of the molecule, is equivalent to comoving
observers: in both cases, additional information has been acquired.

7. Discussion

With the three examples analyzed in the previous sections, we have clearly illustrated the
relevance of observers in the physical description of a given system.
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To explain the detection of dissipation by the tilted congruence, in a system which appears
isentropic for comoving observers, we have noticed that passing from comoving to tilted observers,
or returning the demon’s mind to its initial state, requires the erasure of the acquired information,
leading to the observed dissipative processes. This explains, on the one hand, why the second law of
thermodynamics is not violated by the Maxwell’s demon, and, on the other hand, why tilted observers
detect dissipation there when comoving observers only see an isentropic system.

In other words, observers storing different amounts of information provide different pictures of
the same phenomenon.

In light of the comments above, the statement by Max Born [24] “Irreversibility is a consequence of
the explicit introduction of ignorance into the fundamental laws ” becomes fully intelligible.
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