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Abstract: The current era demands high quality software in a limited time period to achieve new goals
and heights. To meet user requirements, the source codes undergo frequent modifications which can
generate the bad smells in software that deteriorate the quality and reliability of software. Source code
of the open source software is easily accessible by any developer, thus frequently modifiable. In this
paper, we have proposed a mathematical model to predict the bad smells using the concept of
entropy as defined by the Information Theory. Open-source software Apache Abdera is taken into
consideration for calculating the bad smells. Bad smells are collected using a detection tool from sub
components of the Apache Abdera project, and different measures of entropy (Shannon, Rényi and
Tsallis entropy). By applying non-linear regression techniques, the bad smells that can arise in the
future versions of software are predicted based on the observed bad smells and entropy measures.
The proposed model has been validated using goodness of fit parameters (prediction error, bias,
variation, and Root Mean Squared Prediction Error (RMSPE)). The values of model performance
statistics (R2, adjusted R2, Mean Square Error (MSE) and standard error) also justify the proposed
model. We have compared the results of the prediction model with the observed results on real data.
The results of the model might be helpful for software development industries and future researchers.

Keywords: software design defects; software quality; code smell; entropy; statistical
model; regression

1. Introduction

Object-oriented software systems (OOSS) are prone to continuous design changes. When any
open source software (OSS) is developed, its source code is available for modification or enhancement
by anyone. With frequent changes in the source code, the software becomes complex over a period of
time [1,2]. These design changes and complexity in the software results in the introduction of code
smells and at times they may cause the failure of the software.
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Code smells are bad programming practices. They affect the software quality as well as
maintenance cost of the software (software maintenance cost is around 60–80% of total software
cost [3,4]). International Organization for Standardization (ISO) standard 8402-1986 elucidated software
quality as “the totality of features and characteristics of a product or service that bears its ability to
satisfy stated or implied needs” [5]. Code smells comply a negative impact on the software structural
quality. Software structure quality reflects on the inner structure of the software and its source code.
An important attribute of the software quality is the software reliability which is also affected by bad
smells [6], as the bad smells can caused the failure of a software. Bad smells could be considered as
the symptoms which indicate poor design quality of source code [7,8] or test code [9], and make a
software hard to maintain and shorten its life cycle [10]. On the other hand, if code smells are detected
early enough, it allows to reduce software testing costs and ensures higher software reliability.

Bad smells give a more scientific evaluation on where and how to refactor a software module. It is
introduced during the software development due to lack of time or through a lack of a developer’s
experience. With the maintenance cost of software on the rise, there is an increasing need for measuring
the code smells at an early stage of the software development life cycle. It becomes a priority for
software developers to manage and measure the complexity of the software code [11], as complex
software code leads to high maintenance cost.

Figure 1 shows the general life cycle of the software development in which bad smells are
predicted after implementation of the code. In this model the re-factoring solutions [12] and the
redesigning of the software are provided after bad smell detection. In Figure 2, bad smells can be
predicted and removed before implementation process. It will reduce the development life cycle and
increase the efficiency of the process.

Figure 1. Common software life cycle with respect to bad smell prediction after implementation.

Figure 2. Software life cycle with prior bad smell detection.
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Previous studies on bad smells and design errors offered many detection techniques [13],
including expert-based approach [14] and logical prediction of bad smells using machine learning
techniques [12]. In an existing software, a bad smell can be detected simply by using a tool and actions
can be taken accordingly. However, if we want to predict the smells before being introduced in the
software, we primarily base our confidence on an appropriate mathematical model. In this context, we
consider a code smell estimation model that can be used to build relationships between code smells
and the different versions of the software. These models can be either statistical models (such as a
regression model) or logical models. The proposed approach suggests a statistical model. This model
estimates probabilistic future behavior of the system based on past statistical information. This also
helps to estimate uncertainties in observational data and in calculation based on observational data.

As per our knowledge, there is no research paper available in which any statistical model has
been proposed till now to predict the bad smells. Though there are logical and structural models
that exist to predict and hence reduce the number of code smells. Code smells present in the several
versions of Apache Abdera software (1.1.3, The Apache Software Foundation, Forest Hill, MD, USA)
are taken into consideration after data preprocessing. The major features of this study that make it
unique and add to an already existing large pool of studies are:

• Calculated different measures of entropy namely, Shannon’s entropy, Rényi entropy and Tsallis
entropy, for the bad smells on real data of Apache Abdera versions.

• Applied the non-linear regression on the computed entropy.
• Compared the predicted code smells with the observed code smells.
• Goodness of fit criteria and statistical performance metrics have been calculated to validate the

proposed model.
• Calculated R2 value to justify the model.

The rest of the paper is organized as follows. Related work of the code smell and information
theory is described in Section 2, the information-theoretic approach is presented in Sections 3 and 4
elaborates the experiment design and bad smell prediction modeling. Section 5 describes data collection
and preprocessing, and Section 6 demonstrates the result and discussion of the proposed model with
critical analysis and observations. Section 7 gives its application and limitations and Section 8 concludes
the paper.

2. Related Work and Motivation

Software developers develop software to fulfill the needs of the end users. The quality of
software is influenced by technical, human, environmental, and organizational practices [15]. Lack
of quality management and assurance in IT industry leads to lower reliability of software delivered
to end-users. Lots of techniques have been proposed for bad smell detection and software quality
assurance. The prime motivation of this research was to develop a statistical model for predicting the
bad smells and justify the validity of the model with the goodness of fit and statistical parameters.

Commonly, data from existing software source code versions or their testing data are used to
develop software fault (or reliability) prediction models, which are then applied to predict future
occurrences software defects or faults [16]. Researchers are also working hard to predict the bad
smells in the software and the impact of bad smells on the maintenance. The bad smell term was
coined Beck and Fowler [17] in the book “Refactoring: Improving the structure of existing code”.
Mantyla et al. [18] introduced a new smell: “Dead code” that is never executed. They categorized the
smells into six categories and analyzed the detection of code smells subjectively. Tufano et al. [7,19]
empirically assessed about the reasons of bad smells occurred in the software and the survivability
of the bad smells. They concluded their study over the change history of 200 open source projects.
Chatzigeorgiou et al. [20] examined the evolution of four bad smells (long method, god class, state
checking and feature envy) throughout successive release of two open-source systems. They stated
that mostly the bad smells persist up to the latest analyzed release accumulated as the project matured.
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A variety of bad smell detection techniques such as binary logistic regression, clustering, genetic
algorithm, and relation association rule mining have been tabulated in the literature [13].

For example, Zhang et al. [6,21] described quality assurance in code development by using code
smells. Emden et al. [22] developed a Java code smell detector/tool and applied the tool in a case study.
Moha et al. [23,24] implemented a tool (DECOR) in a domain specific language to detect the bad smells.
Fontana et al. [25,26] examined that different tools mostly gives a distinct result, which is why the
illustration of the threshold values and magnitude is arduous across tools. Dexun et al. [27] introduced
a new concept of weight based distance metrics (Jaccard distance) for feature envy bad smell detection.
The approach is applied for Jfreechart open source system and achieved high accuracy with low time
complexity. Liu et al. [28] discovered a resolution sequence of bad smells and validated its effect on two
nontrivial applications. Palomba et al. [29] presented the approach using change history information
and detected five (Parallel inheritance, Divergent change, Shotgun surgery, Blob and Feature envy) bad
smells. Hassaine et al. [30] proposed a systematic parallel between artificial immune system (AIS) for
bad smell detection. They tested two systems (Gantt project and Xercess) for three (Blob, Functional
decomposition, Spaghetti code) smells. Czibula et al. [31] identified faulty software entities such
as classes, methods using relational association rule in object oriented systems. They compared the
outcomes with other conventional computation techniques and prove the potential of their approach.
Kessentini et al. [32–37] stated that due to code smells, the cost of maintenance has increased. They have
also described that code smells can be prioritized on the basis of risk. Yamashita et al. [38–41] analyzed
that maintenance cost also gets affected due to the interaction between the smells. Khomh et al. [42]
identified the code smells, which affect the maintenance efforts and relationship of change proneness.
Code clone, a type of code smell has been studied the most [6]. A survey on the behavior of the code
clone and its applications have been described in the literature [43]. Holschuh [44] presented a report
for the industry use that is based on the defect prediction of Java language depending on the code smell
metrics. There is one logical prediction of bad smells that has been proposed by Maneerat et al. [12]
using machine learning algorithms. In this model, seven data sets were considered with 27 design
metrics and seven bad smells. Authors have also used the statistical analysis for the significance
of the prediction. Taba et al. [45] proposed antipattern based metrics and bug prediction model to
improve the accuracy of bug prediction, while Codabux et al. [46] related code smells to the number
of micro and nano-patterns in source code. Zhu et al. [47] presented a software reliability model for
Non-homogeneous Poisson process related to software fault dependency and imperfect fault removal.
They considered two types of faults (dependent and independent) according to fault dependency.
Amarjeet et al. [48] proposed a Harmony Search Based algorithm for software remodularization for
object oriented systems. They have compared the proposed algorithm with other algorithms, in terms
of Modularization Quality (MQ), Non Extreme Distribution (NED), authoritativeness, and searching
efficiency and achieved the Harmony search based algorithm has better results to improve the quality
of remodularization of software systems. Bansal [49] analyzed the change prone classes in the software
systems using the Hybridized Search based algorithmic model and machine learning based models in
predicting change prone classes of software using g-mean and accuracy.

However, the imbalanced distribution of software faults in source code leads to poor prediction
power of machine learning techniques applied to predict source code defects such as bad smells [50].
Hassan [51] proposed the information theory concept to measure the amount of randomness or
entropy of the distribution to quantify the code complexity as a result of code changes. Singh et al. [52]
presented a mathematical model using entropy for bug prediction. Chaturvedi et al. [53] proposed
a model to predict the bugs based on the current year complexity of code changes/entropy. Key
difference between the proposed research work and the existing research papers has been summarized
in Table 1.



Entropy 2018, 20, 372 5 of 20

Table 1. Comparison between the proposed and prior research works.

Bad Smell Bad Mathematical Entropy Industrial
Observations with Smell Model Based Application
Software Classes Detection Approach

Proposed Approach Yes Yes Yes Yes Yes
Tufano et al. [7,19] No Yes No No Yes
Maneerat et al. [12] No Yes No No No

Bansal [49] No No No No No
Zhu et al. [47] No No Yes No No

Amarjeet et al. [48] No No No No No
Holschuh [44] No Yes No No Yes

Czibula et al. [31] Yes Yes No No No
Chaturvedi et al. [53] No No Yes Yes No

Singh et al. [52] No No Yes Yes No

3. Information Theoretic Approach

The information theory, a mathematical concept of communication that deals with assessing
and defining the amount of information contained in a message, is measured as the amount
of entropy/randomness of the distribution. The term entropy, denoted as S, was proposed by
Shannon [54]. It is a vital branch of information theory which plays an important role in studying
the code changes. It is an approach that is based on the probability concept that emphasizes the
measurement of “randomness” related information. Entropy is applied in various domains, such as
pattern detection, statistical inference, natural language processing, thermal physics, and quantum
computing. The Shannon entropy S is defined as:

S = −
n

∑
i=1

(Pi log2 Pi) where Pi >= 0,
n

∑
i=1

(Pi) = 1 (1)

here Pi is the probability of occurrence of an event and the value of i varies from 1 to n, and n is the
number of files.

Entropy will be the maximum when for distribution P, all the files have the same probability of
changes (Pi = 1/n; ∀i = 1, 2, ..., n). On the other hand, if for a P distribution file, k has a probability of
code changes, i.e., (Pi = 1 and ∀i 6= k) Pi = 0, the entropy will be the minimum. From the definition of
entropy we can state that if the changes are in every file then the entropy will be maximum and it will
be minimum if the changes are in the single file.

A generalization of Shannon entropy in a systematic way has been characterized and developed
by Rényi [55] as follows:

R =
1

1− α
log(

n

∑
i=1

Pα
i ) where α 6= 1, α > 0 (2)

Tsallis [56] proposed another generalization of Shannon entropy [57,58] defined as:

T =
1

α− 1
(1−

n

∑
i=1

Pα
i ) where α 6= 1, α > 0 (3)

Rényi and Tsallis entropy reduces to Shannon entropy when α→ 1. For Rényi [55] and Tsallis
entropy [56], any value of α can be taken except 1 and must be α > 0. To study the variation in entropy,
five values of α parameter has taken into consideration, that is 0.1, 0.3, 0.5, 0.7 and 0.9.

Entropy helps in studying the process of code change. Due to the changes in the code, the code
becomes complex and may produce the code smells. The process of code change refers to the study of
code patterns. Feature enhancement, new feature addition and bug fixing cause these code changes or
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modifications. The frequent changes in the code may also degrade the overall quality, reliability and
sustainability of the software system and introduce the code smells in the source code. To measure
the effect of code changes in the software instead of simply counting the number of changes, entropy
quantifies the pattern of changes. These changes are calculated for a particular duration like ranging
from hours to years/decades. The frequency of updates in software leads to the release of different
versions of software.

For example, consider a software system which in total has 13 bad smells in four classes and three
versions. These bad smells in classes with respect to versions are shown in Table 2. If C1, C2, C3, C4
are the classes and Version 1, Version 2 and Version 3 are three versions. In Version 1, class C1, C2, C4
have one bad smell each and C3 has two bad smells. Table 2 depicts the number of bad smells in three
versions with respect to classes. Total bad smells in Version 1 are five. Thus, the probability of occurring
bad smells for Version 1 is 1/5 = 0.2. Similarly, we can calculate the probabilities of all the available
versions with respect to each class. Based upon these probabilities the Shannon entropy [57,58], Rényi
entropy [55], and Tsallis entropy [56] are determined.

Table 2. Example showing the number of bad smells in classes with respect to versions.

Class Version 1 Version 2 Version 3

C1 * * *
C2 * - *
C3 ** ** -
C4 * ** *

Note: *: 1 smell, **: 2 smells

4. Experiment Design and Bad Smell Prediction Modeling

This paper aims to achieve two objectives. The first objective aims to develop a mathematical
model for predicting the code smells. The second aims to verify the result of the prediction model with
the help of the statistical parameter R2.

4.1. Evaluation of Entropy

We have used a matrix representation between the classes and seven versions of the Apache
Abdera software which calculates the entropy for the mathematical model in this study. For this, we’ve
used a tool for code smell detection in each class of the software. The tool, Robusta (version 1.6.9,
https://marketplace.eclipse.org/content/robusta-eclipse-plugin) calculates the occurrence of bad
smells in the class of each version termed as probability. Using these probabilities, Shannon, Rényi and
Tsallis entropy have been calculated with the help of Equations (1)–(3) respectively for each version
of the software. For the Rényi and Tsallis entropies, five values of α are considered as 0.1, 0.3, 0.5, 0.7
and 0.9.

These entropy values represent the independent variables in this paper. The variable to
be predicted for the bad smell prediction is called the dependent variable. With the help of
non-linear regression, we have developed a mathematical model for predicting the bad smells using
entropy measures.

4.2. Bad Smell Prediction Modeling

In the nonlinear regression model, observational data has been modeled by a function in which
model parameters are combined non-linearly and depend on one or more independent variables. In this
work, the independent variable entropy has been measured for various versions of Apache Abdera
software. Once the entropy is measured, the bad smells are predicted using nonlinear regression.

 https://marketplace.eclipse.org/content/robusta-eclipse-plugin
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Entropy is the independent variable that is represented by X and predicted bad smell is presented as
Y, the dependent variable. Thus, the following nonlinear regression model is proposed:

Y = A + B× E + C× E× E (4)

here

• E = (S, R(0.1), R(0.3), R(0.5), R(0.7), R(0.9), T(0.1), T(0.3), T(0.5), T(0.7), T(0.9)) are entropies,
• Y are predicted bad smells,
• A, B, C are the regression coefficients.

A variable E is the entropy which takes different value that is Shannon entropy [57,58], Rényi
entropy [55], Tsallis entropy [56]. For Rényi and Tsallis entropy, five values of parameter α are
considered, namely, 0.1, 0.3, 0.5, 0.7 and 0.9.

5. Data Collection and Preprossessing

5.1. Software Project Used as a Case Study

The data consisting of six bad smells is extracted for seven official releases of Apache Abdera
project. This is performed using detection tool Robusta. Apache Abdera is a large corporate strength
open-source system. The Abdera was developed initially by IBM and donated to the Apache Abdera
software foundation. These smells are given with their description in Table 3. The bad smells are then
determined using a detection tool from the classes of Apache Abdera. They are then analyzed with
respect to their classes and an excel worksheet is populated with the values of bad smells. Shannon,
Rényi and Tsallis entropies have been calculated for each version of the Apache Abdera. IBM SPSS
Statistics (version 2015, IBM Corporation, Armonk, NY, USA) regression analysis is used to predict the
bad smells for the coming release.

Table 3. Description of code smells.

s. no Name Description

1 Empty Catch Block When the catch block is left blank in the catch statement.
2 Dummy Handler Dummy handler is only used for viewing the exception but it will

not handle the exception.
3 Nested Try Statements When one or more try statements are contained in the try statement.
4 Unprotected Main Outer exception will not be handled in the main program; it can only

be handled in a subprogram or a function.
5 Careless Cleanup The exception resource can be interrupted by another exception.
6 Exception thrown in

the finally block
How to handle the exception thrown inside the finally block of
another try catch statement.

We have used Robusta (version 1.6.9, National Taipei University of Technology (Taipei Tech),
Taipei, Taiwan), a plug-in tool for Eclipse to identify the classes that had the bad smells. The source
code of Abdera has been complied on this plug-in. Table 4 shows the compiled result of the detected
code smells in the classes of Apache Abdera software.
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Table 4. Data of Detected Code Smells in the classes of Apache Abdera Software.

Class Name Bad Smells In Each Version of the Software

ver1 ver2 ver3 ver4 ver5 ver6 ver7

CacheControlUtil 0 1 1 1 1 1 0
AbstractExtensionFactory 0 1 1 1 1 1 0
CompressionUtil 0 1 1 1 1 1 0
MimeTypeHelper 0 6 0 6 6 6 4
ServiceUtil 5 15 1 0 0 0 14
UrlEncoding 0 3 1 1 1 1 0
DHEnc 0 1 1 1 1 1 0
Security Base 0 1 4 4 4 0 0
URITemplates 0 1 1 1 1 1 0
ThreadHelper 0 2 2 2 2 2 2
FOMWriter 0 2 2 0 2 2 0
SimpleAdapter 0 1 1 1 1 1 0
BaseResponseContext 0 2 2 2 2 2 0
Test 6 1 0 0 0 0 0
XsltExample 1 0 0 0 0 0 2
AbderaResult 1 0 0 0 0 0 2
Enc 0 1 1 1 1 1 0
SimpleCache Key 0 0 0 0 0 0 1
Escaping 0 0 0 0 0 0 1
Total 13 39 19 22 24 20 26

5.2. Assessment of Shannon, Rényi and Tsallis Entropy

The collected data have been used to calculate the probability of all available seven versions
of Abdera software as discussed in Section 3. Using probabilities, the value of entropies: Shannon,
Rényi and Tsallis have been calculated. Equations (1)–(3) have been used respectively to calculate the
entropies as discussed in Section 3.

Five values of α example 0.1, 0.3, 0.5, 0.7, 0.9 are considered for Rényi and Tsallis entropy
as discussed in Section 3. Table 5 depicts the entropy values for each version calculated using
Equations (1)–(3). Section 3 also describes the example for calculating the entropies with the derived
data. Here S stands for Shannon entropy, R(0.1) stands for Rényi entropy with α 0.1 value and T(0.1)
stands for Tsallis entropy with α values. We observed that Shannon entropy values lie between 1 to 4
and when the value of α increases, the values of Rényi and Tsallis entropy decrease.

Table 5. Different entropies for each version with different values of α.

S R(0.1) R(0.3) R(0.5) R(0.7) R(0.9) T(0.1) T(0.3) T(0.5) T(0.7) T(0.9)

1.61 1.95 1.86 1.78 1.71 1.64 2.65 2.10 1.71 1.42 1.21
3.11 3.84 3.7 3.54 3.37 3.2 11.09 7.16 4.82 3.38 2.48
3.51 3.68 3.65 3.61 3.57 3.53 9.95 6.96 4.99 3.67 2.77
3.20 3.55 3.48 3.41 3.33 3.25 9.08 6.31 4.51 3.33 2.53
3.35 3.54 3.61 3.54 3.46 3.39 9.85 6.78 4.81 3.519 2.65
3.24 3.55 3.49 3.43 3.36 3.28 9.11 6.36 4.57 3.37 2.56
2.11 2.74 2.60 2.46 2.32 2.18 5.038 3.63 2.70 2.069 1.63

5.3. Model Construction

In order to construct and validate the prediction model, we follow the methodology and
recommendations suggested by Stockl et al. [59]. First, we perform the correlation analysis to
check if the model inputs and outputs are linearly related. The null hypothesis is that the population
correlation coefficient equals 0. For a sample size of seven, the Pearson‘s r value for α = 0.95 significance
is 0.75 [60]. The results of correlation analysis are presented in Figure 3. We can see that all correlation
values are below critical r value, suggesting that the model is not a linear one.
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Figure 3. The results of correlation analysis assuming linear model.

Next, we have performed the outlier analysis and fit the model described by Equation (4) using
Leave-One-Out validation, i.e., for each data column vector in Table 5, we use six values of data for
model fitting, and the left out value is used for model evaluation. The process is repeated seven times,
so that seven models are created. To evaluate the models, we use R2 and F-statistics. The results
are presented in Figures 4 and 5. Both figures show the data for software version ver2 as an outlier,
therefore, we remove its data from further analysis.

After calculating the regression coefficients using SPSS and Shannon, Rényi and Tsallis entropies,
a model has been proposed and predict the bad smells which are likely to occur in the future. The best
fitting model is described in Table 6 and Figure 6. The standard deviation values have been obtained
using bootstrapping with 10,000 bootstrap samples.

Figure 4. R2 statistics for Leave-One-Out model validation.
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Figure 5. F-statistics for Leave-One-Out model validation.

Figure 6. Coefficients of nonlinear regression model.

Table 6. Nonlinear regression model.

Dependent Variable Coefficient Std. Deviation of Coefficient

R(0.3) 31.534 7.268
S2 −24.284 6.169

R2(0.1) −1.155 6.83
T2(0.1) −5.728 3.323
T2(0.3) 23.751 10.283
T2(0.5) −14.649 8.498



Entropy 2018, 20, 372 11 of 20

6. Result and Discussion

6.1. Result

The data has been collected for seven versions of Apache Abdera. The entropy of the observed bad
smells is estimated accordingly for different versions and the corresponding classes. The parameters
for the bad smell prediction model have been calculated by applying the nonlinear regression using
SPSS. Table 7 shows the predicted bad smells using the proposed model. In this table Ob represents the
observed values of the bad smells in the Apache Abdera project and S represents the predicted values
of bad smells using Shannon entropy and R(0.1) and T(0.1) represents the predicted values of bad
smells using Rényi and Tsallis entropies respectively with the α value starting from 0.1 upto 0.9. Table 5
contains the predicted bad smells as a result of proposed model in the Section 6.1. The modeling
results are presented in Figure 7.

Table 7. Predicted bad smells (Y) using proposed model.

Ob S R(0.1) R(0.3) R(0.5) R(0.7) R(0.9) T(0.1) T(0.3) T(0.5) T(0.7) T(0.9)

13 12.81 13.02 13.06 13.57 12.57 12.23 17.39 15.99 14.07 12.66 12.27
39 30.24 16.16 18.81 24.86 25.65 28.0 30.42 26.3 24.86 25.97 28.23
19 19.66 19.68 19.70 24.15 21.67 19.30 26.12 25.92 23.82 20.77 18.93
22 28.4 22.11 22.37 25.92 26.33 26.92 23.35 24.67 26.27 26.8 27.10
24 24.65 22.33 20.47 24.88 23.94 23.44 25.79 25.59 24.89 23.79 23.42
20 27.49 22.01 22.15 25.74 25.82 26.11 23.50 24.79 26.05 26.17 26.25
26 28.69 26.39 25.23 24.47 26.94 28.10 16.66 19.3 23.57 26.44 27.77

Figure 7. Target and model prediction values.

Graphs showing the relationship between the observed bad smells and predicted bad smells using
the proposed model with Shannon, Rényi and Tsallis entropies is shown in Figures 8–10 respectively.
Here Ob represents the observed bad smells. Y(S) represents the predicted bad smells with the help of
Shannon’s entropy. Y(R(0.1)) represents the predicted bad smells with the help of Rényi’s entropy
considering the value of α as 0.1 and further values of α as 0.3, 0.5, 0.7 and 0.9 are being considered.
Y(T(0.1)) represents the predicted bad smells with the help of the Tsallis entropy and further values
of α, similar to those used with Rényi’s entropy, are being considered. It is clear from these figures that
the entropy and the bad smells are highly correlated with each other.
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Figure 8. Graph between observed bad smells and predicted bad smells using Shannon entropy.
Ob represents the observed values of the bad smells in the Apache Abdera project; S represents the
predicted values of bad smells using Shannon entropy.

Figure 9. Graph between observed bad smells and predicted bad smells using Rényi entropy.

The statistical performance parameters for the considered data sets are shown in Table 8 and
Figure 11. We can conclude from Table 7 that R2 and Adjusted R2 is maximum that is 0.567 and 0.480
respectively for Shannon entropy. For Rényi and Tsallis entropy, it is observed that on increasing the α

value from 0.1 to 0.9, the R2 increases from 0.312 to 0.52 and from 0.367 to 0.527 and Adjusted R2 also
increases from 0.174 to 0.424 and from 0.240 to 0.432 respectively.

R2 = 1− CorrectedSS/ResidualSS (5)
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Figure 10. Graph between observed bad smells and predicted bad smells using Tsallis entropy.

Table 8. Statistical performance of entropies vs bad smells.

Entropy Parameter (α) Rsquare Adj. Rsquare Std. Err MSE

Shannon - 0.567 0.4804 6.0261 25.939

Rényi

0.1 0.312 0.1744 10.2862 75.5764
0.3 0.264 0.1168 9.2305 60.8594
0.5 0.289 0.1468 7.4598 39.7493
0.7 0.39 0.268 6.9112 34.1185
0.9 0.52 0.424 6.131 26.8495

Tsallis

0.1 0.367 0.2404 7.0405 35.4062
0.3 0.244 0.0928 7.693 42.2734
0.5 0.27 0.124 7.5623 40.8495
0.7 0.4 0.28 6.8458 33.4757
0.9 0.527 0.4324 6.0847 26.4462

Adj.: Adjusted; Std. Err: Standard Error; MSE: Mean Square Error.

Figure 11. Statistical performance of entropies versus bad smells. Adj.: Adjusted; Std. Err: Standard
Error; MSE: Mean Square Error.

R2 (or coefficient of determination) is the ratio of the sum of squares (SS) between the corrected
and residual subtracted from 1. It is used to evaluate the level of significance between the predicted
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and observed values. R2 estimates the total variation about the mean for the fitted curve. Its value
ranges from 0 to 1. Higher value of R2 indicates that the model fits the data well. It is also able to
explain the variation in the data.

Adjusted R2 explains the variation in the dependent variable. So, if the R2 value is 0.567, it means
that 56.7% of variance in dependent variable is predictable from the independent variable. Other
statistical performance parameters are Standard Error (SE) and Mean Square Error (MSE). SE refers to
an estimate of standard deviation to compute the estimate which is derived from a particular sample,
and MSE refers to the average of the squared errors between actual and estimated data.

Further, we have calculated the goodness of fit parameters to validate the model, whether this
statistical model meets the objectives. These parameters are prediction error, bias, variation and
Root Mean Squared Prediction Error (RMSPE) as shown in Figures 12–15. Prediction Error (PE) is
the difference between the observed value and predicted value. The lower value of this parameter
indicates less fitting error and it proves the goodness of fit is better.

PE =| ObservedValue− PredictedValue | (6)

Bias is the average value of prediction error. Lower value of bias implies higher goodness of fit.

Bias = ∑(ObservedValue− PredictedValue)/n (7)

Variation is the standard deviation of the prediction error. Lower value of variation provides
higher goodness of fit.

Variation =
√

∑((PE− Bias)× (PE− Bias))/n− 1 (8)

Root Mean Squared Prediction Error (RMSPE) is a measure of closeness to estimates the
observations for a model. Lower value of this parameter provides higher goodness of fit.

RMSPE =
√

Bias× Bias + Variation×Variation (9)

Figure 12. Comparison of models using goodness of fit parameter Prediction Error.
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Figure 13. Comparison of models using goodness of fit parameter Bias.

Figure 14. Comparison of models using goodness of fit parameter Variation.
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Figure 15. Comparison of models using goodness of fit parameter Root Mean Squared Prediction
Error (RMSPE).

6.2. Discussion

Our results show that the prediction model for bad smells using entropy (an information theory
approach) can demonstrate significant performance. All three entropy approaches (Shannon, Rényi,
Tsallis) are not performing equally in predicting the bad smells. Low values of error parameters like
prediction error, bias, variation and RMSPE indicate higher goodness of fit for the proposed model.
The value of R2 (ranges from 0 to 1) should be large enough to explain the variation in the data and
prove the model best fitted. There is one outlier value in the data set as shown in Table 4. This value is
in class ServiceUtil and Version 2 of Apache Abdera. After removing that data; the value of R2 rises
up to 0.93, i.e., the model has fitted 93% and can explain 93% variation in the data.

7. Application and Limitation

The proposed model can help in predicting the bad smells in the software. It also can help to fix
bad smells before they create problems for software quality and reliability. Generally, in a software
life cycle, bad smell detection is performed after the implementation stage, whereas early bad smell
prediction can improve software quality. It is beneficial to predict and remove the bad smells as early
as possible. Prediction of software bad smells can help in determining code quality. In open-source
projects any developer can participate in the development process. However, it is the duty at the
managerial side to evaluate the quality of the developed code by a particular developer. Thus, the
developers, who are developing the code with less bad smells can be promoted by the manager.
In this way, this research will also help in deciding the appraisal of the employee in the software
programming industry.

The limitation of this research is that only a subset of all 22 bad smells introduced by
Fowler et al. [17] is considered. We have collected data of all seven versions of open-source project
Apache Abdera, which are available online. In this research, open-source software has been examined
whereas closed source (proprietary) software can also be taken into consideration in the future.
In addition, only three entropy approaches were used for model development.
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Threats to Validity

The main threat related to the software engineering experimentation work is the relationship
between theory and observations [61] (construct validity). In the context of this research, code smell
measurements are performed with the Robusta tool. We can not ignore that Robusta excludes some
smells and there are also distinct threshold values of bad smells in other existing tools which may affect
the bad smells observations. External validity are concerned with generalization of the results [61].
The model presented here supports only Java software. For generalization of results, the model needs
to be implemented for other languages too. Hence, the replicated study is needed for generalization.
Threats to the internal validity concern about the internal factors of our research experiment design [61].
Although a non-linear regression model is proposed for bad smell prediction yet different statistical
methods can lead to another direction for predicting bad smells.

8. Conclusions

Software quality is highly affected by the bad smells in a project. Bad smells are introduced
when there are changes in the software code, feature enhancement/modification or new features
are introduced in the software. We have proposed a statistical model using an information theoretic
approach with nonlinear regression for predicting the bad smells. Previous studies have discussed a
number of detection techniques of bad smells, while we have made a first attempt to formulate
a mathematical model for bad smell prediction. We validate the model using statistical tests.
The experiment results have shown that all the three entropy approaches (Shannon, Rényi and Tsallis)
are sufficient to predict the bad smells in software. We have validated the model on the basis of R2

value, which is largest for Shannon’s entropy, i.e., R2 = 0.567. When we remove one outlier value in
the data set, the value of R2 increases to 0.93. The predicted bad smells help in maintaining the quality
of the software and in reducing the developing time as well.

This model can be applied in the future versions of the Apache Abdera software as well as other
Java software using the methodology suggested in the paper. This will help software companies to
predict bad smells in the earlier stage of the software life cycle. This research can be further extended
with other measures of entropy with different parameter values. The study may be extended to another
open-source project as well as closed source projects with different modules.
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