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1. Introduction

Let X = {`k; k ≥ 1} be a finite or countably infinite alphabet, let p = {pk; k ≥ 1} be a probability
distribution on X , and define K = ∑k≥1 1[pk > 0], where 1[·] is the indicator function, to be the
effective cardinality of X under p. An important quantity associated with p is entropy, which is
defined by [1] as

H = − ∑
k≥1

pk ln pk. (1)

Here and throughout, we adopt the convention that 0 ln 0 = 0.
Many properties of entropy and related quantities are discussed in [2]. The problem of statistical

estimation of entropy has a long history (see the survey paper [3] or the recent book [4]). It is
well-known that no unbiased estimators of entropy exist, and, for this reason, much energy has
been focused on deriving estimators with relatively little bias (see [5] and the references therein for
a discussion of some (but far from all) of these). Perhaps the most commonly used estimator is the
plug-in. Its theoretical properties have been studied going back, at least, to [6], where conditions
for consistency and asymptotic normality, in the case of finite alphabets, were derived. It would be
almost fifty years before corresponding conditions for the countabe case would appear in the literature.
Specifically, consistency, both in terms of almost sure and L2 convergence, was verified in [7]. Later,
sufficient conditions for asymptotic normality were derived in two steps in [3,8].

Despite a simple form and nice theoretical properties, the plug-in suffers from large finite sample
bias, which has led to the development of modifications that aim to reduce this bias. Two of the
most popular are the Miller–Madow estimator of [6] and the jackknife estimator of [9]. Theoretical
properties of these have not been studied, as extensively, in the literature. In this paper, we give
sufficient conditions for the asymptotic normality of these two estimators. This is important for deriving
confidence intervals and hypothesis tests, and it immediately implies consistency (see e.g., [4]).

We begin by introducing some notation. We say that a distribution p = {pk; k ≥ 1} is
uniform if and only if its effective cardinality K < ∞ and for each k = 1, 2, . . . either pk = 1/K
or pk = 0. We write f ∼ g to denote limn→∞ f (n)/g(n) = 1 and we write f = O(g(n)) to denote

lim supn→∞ | f (n)/g(n)| < ∞. Furthermore, we write L→ to denote convergence in law and
p→ to
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denote convergence in probability. If a and b are real number, we write a ∨ b to denote the maximum
of a and b. When it is not specified, all limits are assumed to be taken as n→ ∞.

Let X1, . . . , Xn be independent and identically distributed (iid) random variables on X under
p. Let {Yk; k ≥ 1} be the observed letter counts in the sample, i.e., Yk = ∑n

i=1 1[Xi = `k], and let
p̂ = { p̂k; k ≥ 1}, where p̂k = Yk/n, be the corresponding relative frequencies. Perhaps the most
intuitive estimator of H is the plug-in, which is given by

Ĥ = − ∑
k≥1

p̂k ln p̂k. (2)

When the effective cardinality, K, is finite, [10] showed that the bias of Ĥ is

E(Ĥ)− H = −K− 1
2n

+
1

12n2

(
1−

K

∑
k=1

1
pk

)
+O

(
n−3

)
. (3)

One of the simplest and earliest approaches aiming to reduce the bias of Ĥ is to estimate the first order
term. Specifically, let m̂ = ∑k≥1 1[Yk > 0] be the number of letters observed in the sample and consider
an estimator of the form,

ĤMM = Ĥ +
m̂− 1

2n
. (4)

This estimator is often attributed to [6] and is known as the Miller–Madow estimator. Note that,
for finite K,

E
(

m̂− 1
2n

)
=

K− 1
2n
− ∑k(1− pk)

n

2n
.

Since ∑k(1 − pk)
n ≤ K(1 − p∧)n, where p∧ = min{pk : pk > 0}, decays exponentially fast,

it follows that, for finite K, the bias of ĤMM is

E(ĤMM)− H =
1

12n2

(
1−

K

∑
k=1

1
pk

)
+O

(
n−3

)
.

Among the many estimators in the literature aimed at reducing bias in entropy estimation,
the Miller–Madow estimator is one of the most commonly used. Its popularity is due to its simplicity,
its intuitive appeal, and, more importantly, its good performance across a wide range of different
distributions including those on countably infinite alphabets. See, for instance, the simulation study
in [5].

The jackknife entropy estimator is another commonly used estimator designed to reduce the bias
of the plug-in. It is calculated in three steps:

1. for each i ∈ {1, 2, . . . , n} construct Ĥ(i), which is a plug-in estimator based on a sub-sample of
size n− 1 obtained by leaving the ith observation out;

2. obtain Ĥ(i) = nĤ − (n− 1)Ĥ(i) for i = 1, · · · , n; and then
3. compute the jackknife estimator

ĤJK =
∑n

i=1 Ĥ(i)

n
. (5)

Equivalently, (5) can be written as

ĤJK = nĤ − (n− 1)
∑n

i=1 Ĥ(i)

n
. (6)

The jackknife estimator of entropy was first described by [9]. From (2), it may be verified that, when
K < ∞, the bias of ĤJK is

E
(

ĤJK
)
− H = O

(
n−2

)
. (7)
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Both the Miller–Madow and the jackknife estimators are adjusted versions of the plug-in.
When the effective cardinality is finite, i.e., K < ∞, the asymptotic normalities of both can be easily
verified. A question of theoretical interest is whether these normalities still hold when the effective
cardinality is countably infinite. In this paper, we give sufficient conditions for

√
n(ĤMM − H) and√

n(ĤJK − H) to have asymptotic normalities on countably infinite alphabets and provide several
illustrative examples. The rest of paper is organized as follows. Our main results for both the
Miller–Madow and the jackknife estimators are given in Section 2. A small simulation study is given
in Section 3. This is followed by a brief discussion in Section 4. Proofs are postponed to Section 5.

2. Main Results

We begin by recalling a sufficient condition due to [8] for the asymptotic normality of the
plug-in estimator.

Condition 1. The distribution, p = {pk; k ≥ 1}, satisfies

∑
k≥1

pk ln2 pk < ∞, (8)

and there exists an integer-valued function K(n) such that, as n→ ∞,

1. K(n)→ ∞,
2. K(n)/

√
n→ 0, and

3.
√

n ∑k≥K(n) pk ln pk → 0.

Note that, by Jensen’s inequality (see e.g., [2]), (8) implies that

H2 =

(
− ∑

k≥1
pk ln pk

)2

≤ ∑
k≥1

pk ln2 pk < ∞,

where equality holds, i.e., H2 = ∑k≥1 pk ln2 pk, if and only if p is a uniform distribution. Thus, when (8)
holds, we have H < ∞. The following result is given in [8].

Lemma 1. Let p = {pk; k ≥ 1} be a distribution, which is not uniform, and set

σ2 = ∑
k≥1

pk ln2 pk − H2 and σ̂2 = ∑
k≥1

p̂k ln2 p̂k − Ĥ2. (9)

If p satisfies Condition 1, then σ̂
p→ σ,

√
n(Ĥ − H)

σ

L−→ N(0, 1),

and √
n(Ĥ − H)

σ̂

L−→ N(0, 1).

The following is useful for checking when Condition 1 holds.

Lemma 2. Let p = {pk; k ≥ 1} and p′ = {p′k; k ≥ 1} be two distributions and assume that p′ satisfies
Condition 1. If there exists a C > 0 such that, for large enough k,

pk ≤ Cp′k,

then p satisfies Condition 1 as well.
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In [8], it is shown that Condition 1 holds for p = {pk; k ≥ 1} with

pk =
C

k2 ln2 k
, k = 1, 2, . . . ,

where C > 0 is a normalizing constant. It follows from Lemma 2 that any distribution with tails lighter
than this satisfies Condition 1 as well.

We are interested in finding conditions under which the result of Lemma 1 can be extended to
bias adjusted modifications of Ĥ. Let Ĥ∗ be any bias-adjusted estimator of the form

Ĥ∗ = Ĥ + B̂∗, (10)

where B̂∗ is an estimate of the bias. Combining Lemma 1 with Slutsky’s theorem immediately gives
the following.

Theorem 1. Let p = {pk; k ≥ 1} be a distribution, which is not uniform, and let σ2 and σ̂2 be as in (9).
If Condition 1 holds and

√
nB̂∗

p−→ 0, then σ̂
p→ σ,

√
n(Ĥ∗ − H)

σ

L−→ N(0, 1),

and √
n(Ĥ∗ − H)

σ̂

L−→ N(0, 1).

For the Miller–Madow estimator and the jackknife estimator, respectively, the bias correction
term, B̂∗, in (10) takes the form

Miller–Madow: B̂MM =
m̂− 1

2n
,

Jackknife: B̂JK =
n− 1

n

n

∑
i=1

(
Ĥ − Ĥ(i)

)
.

Below, we give sufficient conditions for when
√

nB̂MM
p−→ 0 and when

√
nB̂JK

p−→ 0.

2.1. Results for the Miller–Madow Estimator

Condition 2. The distribution, p = {pk; k ≥ 1}, satisfies that, for sufficiently large k,

pk ≤
1

a(k)b(k)k3 , (11)

where a(k) > 0 and b(k) > 0 are two sequences such that

1. a(k)→ ∞ as k→ ∞, and, furthermore,

(a) the function a(k) is eventually nondecreasing, and
(b) there exists an ε > 0 such that

lim sup
k→∞

(a(k))2ε

a
( √

k
(a(k))ε

) < ∞; (12)

2.

∑
k≥1

1
kb(k)

< ∞. (13)
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Since this condition only requires that pk, for sufficiently large k, is upper bounded in the
appropriate way, we immediately get the following.

Lemma 3. Let p = {pk; k ≥ 1} and p′ = {p′k; k ≥ 1} be two distributions and assume that p′ satisfies
Condition 2. If there exists a C > 0 such that, for large enough k,

pk ≤ Cp′k,

then p satisfies Condition 2 as well.

We now give our main results for the Miller–Madow Estimator.

Theorem 2. Let p = {pk; k ≥ 1} be a distribution, which is not uniform, and let σ2 and σ̂2 be as in (9). If
Condition 2 holds, then σ̂

p→ σ, √
n(ĤMM − H)

σ

L−→ N(0, 1)

and √
n(ĤMM − H)

σ̂

L−→ N(0, 1).

In the proof of the theorem, we will show that Condition 2 implies that Condition 1 holds.
Condition 2 requires pk to decay slightly faster than k−3 by two factors 1/a(k) and 1/b(k), where a(k)
and b(k) satisfy (12) and (13) respectively. While (13) is clear in its implication on b(k), (12) is much less
so on a(k). To have a better understanding of (12), we give an important situation where (12) holds.
Consider the case a(n) = ln n. In this case, for any ε ∈ (0, 0.5)

(a(n))2ε

a
( √

n
(a(n))ε

) =
(ln n)2ε

0.5 ln n− ε ln ln n
∼ (ln n)2ε

0.5 ln n
−→ 0.

We now give a more general situation, which shows just how slow a(k) can be. First, we recall the
iterated logarithm function. Define ln(r)(x), recursively for sufficiently large x > 0, by ln(0)(x) = x and

ln(r)(x) = ln
(

ln(r−1) x
)

for r ≥ 1. By induction, it can be shown that d
dx ln(r)(x) =

(
∏r−1

i=0 ln(i)(x)
)−1

for r ≥ 1.

Lemma 4. The function a(n) = ln(r)(n) satisfies (12) with ε = 0.5 for any r ≥ 2.

We now give three examples.

Example 1. Let p = {pk; k ≥ 1} be such that for sufficiently large k,

pk ≤
C

k3(ln k)(ln ln k)2+ε
,

where ε > 0 and C > 0 are fixed constants. In this case, Condition 2 holds with a(k) = ln ln k and
b(k) = (ln k)(ln ln k)1+ε/C in (11).

We can consider a more general form, which allows for even heavier tails.

Example 2. Let r be an integer with r ≥ 2 and let p = {pk; k ≥ 1} be such that, for sufficiently large k,

pk ≤
C

k3
(

∏r−1
i=1 ln(i) k

)
(ln(r) k)2+ε
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where ε > 0 and C > 0 are fixed constants. In this case, Condition 2 holds with a(k) = ln(r) k and
b(k) =

(
∏r−1

i=1 ln(i) k
)
(ln(r) k)1+ε/C in (11). The fact that b(k) satisfies (13) follows by the integral test

for convergence.

It follows from Lemma 3 that any distribution with tails lighter than those in this example must
satisfy Condition 2. On the other hand, the tails cannot get too much heavier.

Example 3. Let p = {pk; k ≥ 1} be such that pk = Ck−3, where C > 0 is a normalizing constant. In this
case, Condition 2 does not hold. However, Condition 1 does hold.

2.2. Results for the Jackknife Estimator

For any distribution p, let Bn = E(Ĥ)− H be the bias of the plug-in based on a sample of size n.

Condition 3. The distribution, p = {pk; k ≥ 1}, satisfies

lim
n→∞

n3/2 (Bn − Bn−1) = 0.

Theorem 3. Let p = {pk; k ≥ 1} be a distribution, which is not uniform, and let σ2 and σ̂2 be as in (9).
If Conditions 1 and 3 hold, then σ̂

p→ σ,

√
n(ĤJK − H)

σ

L−→ N(0, 1)

and √
n(ĤJK − H)

σ̂

L−→ N(0, 1).

It is not clear to us whether Conditions 1 and 3 are equivalent or, if not, which is more stringent.
For that reason, in the statement of Theorem 3, both conditions are imposed. The proof of the theorem
uses the following lemma, which gives some insight into B̂JK and Condition 3.

Lemma 5. For any probability distribution p = {pk; k ≥ 1}, we have

B̂JK =
n− 1

n

n

∑
i=1

(
Ĥ − Ĥ(i)

)
≥ 0

and
E
[
B̂JK
]
= (n− 1) (Bn − Bn−1) ≥ 0.

We now give a condition, which implies Condition 3 and tends to be easier to check.

Proposition 1. If the distribution p = {pk; k ≥ 1} is such that there exists an ε ∈ (1/2, 1) with
∑k≥1 p1−ε

k < ∞, then Condition 3 is satisfied.

We now give an example where this holds.

Example 4. Let p = {Ck−(2+δ); k ≥ 1}, where δ > 0 is fixed and C > 0 is a normalizing constant. In this
case, the assumption of Proposition 1 holds and thus Condition 3 is satisfied.
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To see that the assumption of Proposition 1 holds in this case, fix ε ∈ (1/2, (1 + δ)/(2 + δ)).
Note that −(1 + δ/2) < −(2 + δ)(1− ε) < −1, and thus

∑
k≥1

p1−ε
k = C1−ε ∑

k≥1
k−(2+δ)(1−ε) < ∞.

3. Simulations

The main application of the asymptotic normality results given in this paper is the construction of
asymptotic confidence intervals and hypothesis tests. For instance, if p satisfies the assumptions of
Theorem 2, then an asymptotic (1− α)100% confidence interval for H is given by(

ĤMM − zα/2
σ̂√
n

, ĤMM + zα/2
σ̂√
n

)
,

where zα/2 is a number such that P(Z > zα/2) = α/2 and Z is a standard normal random variable.
Similarly, if the assumptions of Theorem 3 are satisfied, then we can replace ĤMM with ĤJK, and if
the assumptions of Lemma 1 are satisfied, then we can replace ĤMM with Ĥ. In this section, we give
a small-scale simulation study to evaluate the finite sample performance of these confidence intervals.

For concreteness, we focus on the geometric distribution, which corresponds to

pk = p(1− p)k−1, k = 1, 2, . . . ,

where p ∈ (0, 1) is a parameter. The true entropy of this distribution is given by H =

−p−1 (p ln p + (1− p) ln(1− p)). In this case, Conditions 1, 2, and 3 all hold. For our simulations, we
took p = 0.5. The simulations were performed as follows. We began by simulating a random sample
of size n and used it to evaluated a 95% confidence interval for the given estimator. We then checked to
see if the true value of H was in the interval or not. This was repeated 5000 times and the proportion of
times when the true value was in the interval was calculated. This proportion should be close to 0.95
when the confidence interval works well. We repeated this for sample sizes ranging from 20 to 1000 in
increments of 10. The results are given in Figure 1. We can see that the Miller–Madow and jackknife
estimators consistently outperform the plug-in. It may be interesting to note that, although the proofs
of Theorems 1–3 are based on showing that the bias correction term approaches zero, it does not mean
that the bias correction term is not useful. On the contrary, bias correction improves the finite sample
performance of the asymptotic confidence intervals.
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Figure 1. Effectiveness of the 95% confidence intervals as a function of sample size. The plot on the top
left gives the proportions for the Miller–Madow and the plug-in estimators, while the one on the top
right gives the proportions for the jackknife and the plug-in estimators. The horizontal line is at 0.95.
The closer the proportion is to this line, the better the performance. The plot on the bottom left gives
the proportion for Miller–Madow minus the proportion for the plug-in, while the one of the bottom
right gives the proportion for the jackknife minus the proportion for the plug-in. The larger the value,
the greater the improvement due to bias correction. Here, the horizontal line is at 0.

4. Discussion

In this paper, we gave sufficient conditions for the asymptotic normality of the Miller–Madow
and the Jackknife estimators of entropy. While our focus is on the case of countably infinite alphabets,
our results are formulated and proved in the case where the effective cardinality K may be finite or
countably infinite. As such, they hold in the case of finite alphabets as well. In fact, for finite alphabets,
Conditions 1–3 always hold and we have asymptotic normality so long as the underlying distribution
is not uniform. The difficulty with the uniform distribution is that it is the unique distribution for
which σ2, as given by (9), is zero (see the discussion just below Condition 1). When the distribution is
uniform, the asymptotic distribution is chi-squared with (K− 1) degrees of freedom (see [6]).

In general, we do not know if our conditions are necessary. However, they cover most distributions
of interest. The only distributions, which they preclude, are ones with extremely heavy tails.
However, in complete generality, Conditions 1–3 may look complicated, and they are easily checked
in many situations. For instance, Condition 2 always holds when, for large enough k, pk ≤ Ck−3−δ for
some C, δ > 0, i.e., when

∞

∑
k=1

k2 pk < ∞.

If the alphabet X = N is the set of natural numbers, then this is equivalent to the distribution p having
a finite variance. Similarly, Conditions 1 and 3 both holding is the case when, for large enough k,
pk ≤ Ck−2−δ for some C, δ > 0, i.e., when

∞

∑
k=1

kpk < ∞.

If the alphabet X = N is the set of natural numbers, then this is equivalent to the distribution p having
a finite mean.
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5. Proofs

Proof of Lemma 2. Without loss of generality, assume that C > 1 and thus that ln C > 0.
Let f (x) = x ln x for x ∈ (0, 1). It is readily checked that f is negative and decreasing for x ∈ (0, e−1).
Since Cp′k → 0 as k→ ∞, it follows that Cp′k < e−1 for large enough k. Now, let K(n) be the sequence
that works for p′ in Condition 1. For large enough n,

0 ≥
√

n ∑
k≥K(n)

pk ln pk ≥ C
√

n ∑
k≥K(n)

p′k ln(Cp′k)

≥ C ln(C)
√

n ∑
k≥K(n)

p′k + C
√

n ∑
k≥K(n)

p′k ln(p′k)

≥ C (ln(C) + 1)
√

n ∑
k≥K(n)

p′k ln(p′k) −→ 0.

Similarly, the function g(x) = x ln2 x for x ∈ (0, 1) is positive and increasing for x ∈ (0, e−2). Thus,
there is an integer M > 0 such that if k ≥ M, then Cp′k < e−2 and

0 ≤ ∑
k≥1

pk ln2 pk ≤
M−1

∑
k=1

pk ln2 pk + C
∞

∑
k=M

p′k ln2(Cp′k)

=
M−1

∑
k=1

pk ln2 pk + C
∞

∑
k=M

p′k ln2(p′k)

+C ln2(C)
∞

∑
k=M

p′k + 2C ln(C)
∞

∑
k=M

p′k ln(p′k) < ∞,

as required.

To prove Theorem 2, the following Lemma is needed.

Lemma 6. If Condition 2 holds, then there exists a K1 > 0 such that for all k ≥ K1

pk ≤
1

a(k)b(k)k3 ≤ 1−
(

1− 2
kb(k)

) 1
a(k)k2

. (14)

Proof. Observing that e−x ≥ 1− x holds for all real x and that limx→0(1− e−x)/x = 1, we have
e−2/(kb(k)) ≥ 1− 2/(kb(k)), and hence

1−
(

1− 2
kb(k)

) 1
a(k)k2

≥ 1− e
− 2

a(k)b(k)k3 ∼ 2
a(k)b(k)k3 .

This implies that there is a K1 > 0 such that for all k ≥ K1 (11) holds and

2
a(k)b(k)k3

1−
(

1− 2
kb(k)

) 1
a(k)k2

≤ 2.

It follows that, for such k,

pk ≤
1

a(k)b(k)k3 = .5
2

a(k)b(k)k3

1−
(

1− 2
kb(k)

) 1
a(k)k2

[
1−

(
1− 2

kb(k)

) 1
a(k)k2

]
≤ 1−

(
1− 2

kb(k)

) 1
a(k)k2

as required.
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Proof of Theorem 2. By Theorem 1, it suffices to show that Condition 2 implies that both Condition 1

and
√

nB̂MM
p→ 0 hold. The fact that Condition 2 implies Condition 1 follows by Example 3, Lemmas 2

and 3. We now show that
√

nB̂MM
p→ 0.

Fix ε0 ∈ (0, ε). From (12) and the facts that a(k) is positive, eventually nondecreasing, and
approaches infinity, it follows that

lim sup
k→∞

(a(k))2ε0

a
( √

k
(a(k))ε0

) = lim sup
k→∞

(a(k))−2(ε−ε0)
(a(k))2ε

a
( √

k
(a(k))ε0

)
≤ lim sup

k→∞
(a(k))−2(ε−ε0)

(a(k))2ε

a
( √

k
(a(k))ε

) = 0. (15)

Let K2 be a positive integer such that, for all n ≥ K2, a(n) is nondecreasing, and let rn =(√
n/(a(n))ε0

)
∨ K3, where K3 = K1 ∨ K2 and K1 is as in Lemma 6. It follows that

E
(√

nB̂MM
)
=
√

n E
(

m̂− 1
2n

)
≤ 1√

n
E(m̂) =

1√
n ∑

k≥1

[
1− (1− pk)

n]
≤ 1√

n ∑
k≤rn

1 +
1√
n ∑

k>rn

[
1−

(
1− 2

kb(k)

) n
a(k)k2

]
=: S1 + S2.

We have

S1 ≤
rn√

n
=
(
(a(n))−ε0

)
∨ K3√

n
→ 0; and

S2 ≤
1√
n ∑

k>rn

[
1−

(
1− 2

kb(k)

) n
a(rn)r2

n

]
≤ 1√

n ∑
k>rn

1−
(

1− 2
kb(k)

) (a(n))2ε0

a
( √

n
(a(n))ε0

) .

By (15), it follows that, for large enough n,

S2 ≤
1√
n ∑

k>rn

[
1−

(
1− 2

kb(k)

)]
=

1√
n ∑

k>rn

2
kb(k)

≤
(

∑
k≥1

1
kb(k)

)
2√
n
→ 0.

From here, Markov’s inequality implies that
√

nB̂MM
p−→ 0.

Proof of Lemma 4. First note that ln(r−1)
(

0.5 ln n− 0.5 ln(v) n
)
∼ ln(r−1) (0.5 ln n) for any v ≥ 2 and

r ≥ 1. This can be shown by induction on r. Specifically, the result is immediate for r = 1. If the result
is true for r = m, then for r = m + 1

ln(m)
(

0.5 ln n− 0.5 ln(v) n
)

= ln
(

ln(m−1)
(

0.5 ln n− 0.5 ln(v) n
))

= ln

 ln(m−1)
(

0.5 ln n− 0.5 ln(v) n
)

ln(m−1) (0.5 ln n)

+ ln(m) (0.5 ln n)

∼ ln(m) (0.5 ln n) .

It follows that for r ≥ 2

lim
n→∞

ln(r) n

ln(r)
(√

n/(ln(r) n)
) = lim

n→∞

ln(r) n

ln(r−1)
(

0.5 ln n− 0.5 ln(r+1) n
)
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= lim
n→∞

ln(r−1) (ln n)

ln(r−1) (0.5 ln n)
= 1,

where the final equality follows by the fact that ln(r−1)(x) is a slowly varying function. Recall that
a positive-valued function ` is called slowly varying if for any t > 0

lim
x→∞

`(xt)
`(x)

= 1

(see [11] for a standard reference). To see that ln(r−1)(x) is slowly varying, note that ln is slowly varying
and that compositions of slowly varying functions are slowly varying by Proposition 1.3.6 in [11].

Proof of Lemma 5. Observing the convention that 0 ln 0 = 0,

n

∑
i=1

Ĥ(i) = ∑
k≥1

∑
i:Xi=`k

Ĥ(i)

= ∑
k≥1

Yk

(
−Yk − 1

n− 1
ln

Yk − 1
n− 1

− ∑
j:j≥1,j 6=k

Yj

n− 1
ln

Yj

n− 1

)

= ∑
k≥1

Yk

[
−Yk − 1

n− 1

(
ln

Yk − 1
Yk

+ ln
Yk

n− 1

)
− ∑

j:j≥1,j 6=k

Yj

n− 1
ln

Yj

n− 1

]

= ∑
k≥1

Yk

[
−Yk − 1

n− 1
ln

Yk − 1
Yk

+
1

n− 1
ln

Yk
n− 1

−∑
j≥1

Yj

n− 1
ln

Yj

n− 1

]

= − 1
n− 1 ∑

k≥1
Yk(Yk − 1) ln

Yk − 1
Yk

+ ∑
k≥1

Yk
n− 1

ln
Yk

n− 1
− ∑

k≥1
Yk ∑

j≥1

Yj

n− 1
ln

Yj

n− 1

= − 1
n− 1 ∑

k≥1
Yk(Yk − 1) ln

Yk − 1
Yk

− (n− 1) ∑
k≥1

Yk
n− 1

ln
Yk

n− 1

= − 1
n− 1 ∑

k≥1
Yk(Yk − 1) ln

Yk − 1
Yk

− ∑
k≥1

Yk

(
ln

Yk
n

+ ln
n

n− 1

)
= − 1

n− 1 ∑
k≥1

Yk(Yk − 1) ln
Yk − 1

Yk
− n ln

n
n− 1

+ nĤ.

Therefore,

n

∑
i=1

(
Ĥ − Ĥ(i)

)
=

1
n− 1 ∑

k≥1
Yk(Yk − 1) ln

Yk − 1
Yk

+ n ln
n

n− 1

=
1

n− 1 ∑
k≥1

Yk

[
(Yk − 1) ln

Yk − 1
Yk

+ (n− 1) ln
n

n− 1

]
=

1
n− 1 ∑

k≥1
Yk

[
(n− 1) ln

n
n− 1

− (Yk − 1) ln
Yk

Yk − 1

]
.

It suffices to show that for any y ∈ {1, 2, · · · , n}

(y− 1) ln y− (y− 1) ln(y− 1) ≤ (n− 1) ln n− (n− 1) ln(n− 1). (16)

Towards that end, first note that the inequality of (16) holds for y = 1. Now, let

f (y) = (y− 1) ln y− (y− 1) ln(y− 1)
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and, therefore, letting s = 1− 1/y,

f ′(y) = ln
y

y− 1
− 1

y
=

(
1− 1

y
− 1
)
− ln

(
1− 1

y

)
= (s− 1)− ln s.

Since s− 1 ≥ ln s for all s > 0 (see e.g., 4.1.36 in [12]), f (y) ≥ 0 for all y, 1 < y ≤ n, which implies (16).
For the second part, we use the first part to get

0 ≤ E

[
n

∑
i=1

(
Ĥ − Ĥ(i)

)]
= n E[Ĥ − H]−

n

∑
i=1

E[Ĥ(i) − H] = n(Bn − Bn−1),

where the last equality follows from the facts that for each i, Ĥ(i) is a plug-in estimator of H based
on a sample of size (n − 1) and that E

[
Ĥ(i)

]
does not depend on i due to symmetry. From here,

the result follows.

Proof of Theorem 3. By Theorem 1, it suffices to show
√

nB̂JK
p−→ 0. Note that, by Lemma 5,

0 ≤ E
[√

nB̂JK
]
=
√

n(n− 1)(Bn − Bn−1) ∼ n3/2(Bn − Bn−1)→ 0,

where the convergence follows by Condition 2. From here, the result follows by Markov’s inequality.

To prove Proposition 1, we need several lemmas, which may be of independent interest.

Lemma 7. Let Sn and Sn−1 be binomial random variables with parameters (n, p) and (n− 1, p), respectively.
If n ≥ 2 and p ∈ (0, 1), then

E(Sn ln Sn) = E
(

np ln(Sn−1 + 1)
)

. (17)

The proof is given on page 178 in [7].

Lemma 8. Let X1, . . . , Xn be iid Bernoulli random variables with parameter p ∈ (0, 1). For m = 1, . . . , n let
Sm = ∑m

i=1 Xi, p̂m = Sm/m, ĥm = − p̂m ln p̂m, and ∆m = E[ĥm − ĥm−1]. Then,

∆n = E[ĥn − ĥn−1] ≤
p(2− p)

(n− 1)[(n− 2)p + 2]
≤ 2p

(n− 1)[(n− 2)p + 2]
. (18)

Proof. Applying Lemma 7 to ∆n gives

∆n = p ln
(

n
n− 1

)
+ p E

[
ln
(

Sn−2 + 1
Sn−1 + 1

)]
= p ln

(
n

n− 1

)
+ p E

[
ln
(

Sn−2 + 1
Sn−2 + Xn−1 + 1

)]
.

Conditioning on Xn−1 gives

∆n = p ln
(

n
n− 1

)
+ p2 E

[
ln
(

Sn−2 + 1
Sn−2 + 2

)]
.

Noting that f (x) = ln(x/(x + 1)) is a concave function for x > 0, by Jensen’s inequality,

∆n ≤ p ln
(

n
n− 1

)
+ p2 ln

(
(n− 2)p + 1
(n− 2)p + 2

)
.
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Applying the following inequalities (both of which follow from 4.1.36 in [12]) to the terms of the
above expression,

ln
(

x
x− 1

)
<

1
x− 1

for x > 1 and ln
(

x
x + 1

)
< − 1

x + 1
for x > 0,

it follows that

∆n ≤
p

n− 1
− p2

(n− 2)p + 2
=

p(2− p)
(n− 1)[(n− 2)p + 2]

,

which completes the proof.

For fixed ε > 0, rewriting the upper bound of (18) gives

2p
(n− 1)[(n− 2)p + 2]

=
2p1−ε

n− 1

{
pε

(n− 2)p + 2

}
=:

2p1−ε

n− 1
{g(n, p, ε)}. (19)

Lemma 9. For any ε ∈ (0, 1) and n ≥ 3, there exists a p0 ∈ (0, 1) such that g(n, p, ε) defined in (19) is
maximized at p0 and

0 ≤ g(n, p0, ε) = O(n−ε). (20)

Proof. Taking the derivative of ln g(n, p, ε) with respect to p gives

∂

∂p
ln g(n, p, ε) =

ε

p
− n− 2

(n− 2)p + 2
.

It is readily checked that this equals zero only at

p0 =
2ε

(1− ε)(n− 2)

and is positive for 0 < p < p0 and negative for p0 < p < 1. Thus, p0 is the global maximum.
For a fixed ε, we have

g(n, p0, ε) =
(2ε)ε

(1− ε)ε(n− 2)ε[ 2ε
(1−ε)

+ 2]
=

(
ε

n− 2

)ε (1− ε

2

)1−ε

= O(n−ε),

as required.

Proof of Proposition 1. For every k and every m ≤ n, let

Sm,k =
m

∑
i=1

1[Xi = `k] and Ĥm = − ∑
k≥1

Sm,k

m
ln
(

Sm,k

m

)

be the observed letter counts and the plug-in estimator of entropy based on the first m observations.
Thus, Sm,k = Yk and Ĥn = Ĥ. We are interested in evaluating

Bn − Bn−1 = E
(

Ĥn − Ĥn−1
)

= ∑
k≥1

E
[

Sn−1,k

n− 1
ln
(

Sn−1,k

n− 1

)
−

Sn,k

n
ln
(

Sn,k

n

)]
≤ ∑

k≥1

2pk
(n− 1)[(n− 2)pk + 2]

= 2 ∑
k≥1

p1−ε
k

g(n, pk, ε)

(n− 1)
,
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where the third line follows by Lemma 8. Now, applying Lemmas 5 and 9 gives

0 ≤ n3/2(Bn − Bn−1) ≤ 2n3/2 ∑
k≥1

p1−ε
k

g(n, pk, ε)

(n− 1)

≤ n3/2 g(n, p0, ε)

n− 1 ∑
k≥1

p1−ε
k = O(n1/2−ε),

which converges to zero when ε ∈ (1/2, 1).
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