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Abstract: After summarizing the present status of Rational Extended Thermodynamics (RET) of
gases, which is an endeavor to generalize the Navier–Stokes and Fourier (NSF) theory of viscous
heat-conducting fluids, we develop the molecular RET theory of rarefied polyatomic gases with
15 independent fields. The theory is justified, at mesoscopic level, by a generalized Boltzmann
equation in which the distribution function depends on two internal variables that take into account
the energy exchange among the different molecular modes of a gas, that is, translational, rotational,
and vibrational modes. By adopting the generalized Bhatnagar, Gross and Krook (BGK)-type collision
term, we derive explicitly the closed system of field equations with the use of the Maximum Entropy
Principle (MEP). The NSF theory is derived from the RET theory as a limiting case of small relaxation
times via the Maxwellian iteration. The relaxation times introduced in the theory are shown to be
related to the shear and bulk viscosities and heat conductivity.

Keywords: extended thermodynamics; rarefied polyatomic gas; relaxation process; molecular
rotation and vibration; generalization of Navier–Stokes and Fourier theory

1. Introduction

The Navier–Stokes and Fourier (NSF) theory, which was conceived nearly two centuries ago,
has been recognized as the distinguished theory for describing viscous flow and heat conduction
in a fluid. Its practical usefulness has also been repeatedly confirmed, in particular, in the field of
engineering; mechanical engineering, aerospace engineering, chemical engineering, and so on.

The nonequilibrium-thermodynamical basis of the NSF theory was laid down by thermodynamics
of irreversible processes (TIP) in the middle of the last century [1]. It is well known that TIP is valid for
phenomena where the assumption of local thermal equilibrium is well satisfied. Therefore the NSF
theory has the same limitation of its validity range. In other words, the NSF theory is no longer valid
for describing phenomena beyond local equilibrium. Indeed, there exist many experimental evidences
that the NSF theory becomes to be insufficient for highly nonequilibrium phenomena, for example,
in shock waves and ultrasonic waves [2–5]. Generalization of the NSF theory is an urgent problem
nowadays from both theoretical and practical viewpoints.

Several attempts have been done in order to overcome TIP. These are, for example, Extended
Irreversible Thermodynamics [6,7], Rational Extended Thermodynamics [8,9], and GENERIC, which is
an acronym for General Equation for Non-Equilibrium Reversible-Irreversible Coupling [10–14]. A first

Entropy 2018, 20, 301; doi:10.3390/e20040301 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-6758-7991
https://orcid.org/0000-0002-7588-2074
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/20/4/301?type=check_update&version=2
http://dx.doi.org/10.3390/e20040301


Entropy 2018, 20, 301 2 of 20

tentative of comparison among different approaches of nonequilibrium thermodynamics has been made
in [15]. Rational Extended Thermodynamics (RET) of gases [8,9], in particular, has been established as
a theory to explore highly nonequilibrium phenomena mentioned above, which utilizes the kinetic theory
as its justification at mesoscopic level. Interplay between these theories and the numerical simulations
using multiscale methods (see, for example [16,17]) is also quite interesting.

In the present paper, after presenting a brief review on the present status of RET of gases in the
next section, we will establish a 15-field RET theory of rarefied polyatomic gases with two relaxation
processes in which molecular rotation and vibration are involved. We will see that the NSF theory is
deduced from the RET theory in the limit of small relaxation times.

2. Rational Extended Thermodynamics: Present Status

In RET, we adopt dissipative fluxes, such as viscous stress and heat flux, as independent variables
in addition to the usual hydrodynamic variables, and we assume a system of balance equations
with local-type constitutive equations. For rarefied gases, there are two possible closure methods for
a system of balance equations:

• Phenomenological RET: The closure is obtained by using the universal principles of continuum
thermomechanics—(I) the Galilean invariance and the objectivity principle; (II) the entropy principle;
and (III) the causality and thermodynamic stability (i.e., convexity of the entropy)—to select admissible
constitutive equations (see [8,18] for monatomic gases and [9,19] for polyatomic ones);

• Molecular Extended Thermodynamics (molecular ET): The fields are the moments of a distribution
function and the closure is done by using the maximum entropy principle (MEP) . This principle
has its root in statistical mechanics. It is developed by Jaynes [20,21] in the context of the
theory of information basing on the Shannon entropy. Nowadays the importance of MEP is
recognized fully due to the numerous applications in many fields [22], for example, in the field of
computer graphics. MEP states that the probability distribution that represents the current state
of knowledge in the best way is the one with the largest entropy. Concerning the applicability of
MEP in nonequilibrium thermodynamics, this was originally raised by the observation made by
Kogan [23] that Grad’s distribution [24] function maximizes the entropy. The MEP was proposed
in RET for the first time by Dreyer [25]. The MEP procedure was then generalized by Müller and
Ruggeri to the case of any number of moments in the first edition of 1993 of their book [8] proving
that the closed system is symmetric hyperbolic and coining the name of molecular ET for this kind
of closure process.

It was proved that the closure by the MEP is equivalent to the imposition of the entropy principle
on the truncated moment equations both for monatomic gases [26] and for polyatomic gases [27].
It was verified that the two closure methods for processes near equilibrium are also equivalent to the
Grad kinetic closure based on the perturbation around the Maxwellian via Hermite polynomials [24,28]
(see [8,25] for monatomic gases with 13 fields and [9,29] for polyatomic gases with 14 fields).

In order to generalize the NSF theory, it is suitable to study the following four cases individually:
(i) rarefied monatomic gas; (ii) rarefied polyatomic gas; (iii) dense monatomic gas; and (iv) dense
polyatomic gas; even though, in principle, the case (iv) includes all the other three cases as special ones.

2.1. RET of Rarefied Monatomic Gases

We adopt the system of balance equations with hierarchy structure, which is suggested by the
moment theory based on the Boltzmann equation [8]. A well-known example is the Grad moment
theory [24] although the phenomenological independent variables are not the moments of the distribution
function. The hierarchy is characterized by: (i) the tensorial rank of the balance equations increases
one by one starting from the mass balance equation; and (ii) the flux in one equation becomes the density
in the next equation. The prototype of the phenomenological RET theory is the 13-field theory that
adopts the mass density, velocity, internal energy, shear stress, and heat flux as independent fields [18].
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The relativistic RET theory has also been established [30]. Furthermore, molecular ET of monatomic gases
has been developed comprehensively [8,25].

2.2. RET of Rarefied Polyatomic Gases

The RET theory of rarefied polyatomic gases was developed in [9,19,31]. This theory adopts the
balance equations with binary hierarchy structure, where the dynamic pressure (nonequilibrium
pressure) is properly taken into account. Note that the dynamic pressure vanishes in rarefied
monatomic gases. The number of independent fields is now 14; the mass density, velocity, internal
energy, dynamic pressure, shear stress, and heat flux. The first hierarchy consists of the balance
equations for mass density, momentum density and momentum flux, and the second hierarchy
consists of the balance equations for energy density and energy flux.

The binary hierarchy was first introduced in a previous simple model [32] and in a kinetic
approach [33], and, for the first time, in the phenomenological 14-field theory (ET14 theory) [19].
The hierarchy was justified and also derived from molecular ET [29] by using the generalized kinetic
theory where the distribution function depends also on an extra variable that represents the molecular
internal degrees of freedom such as rotation and vibration [34,35]. In a different context, the necessity
to enlarge the kinetic theory of particles, that is, from rigid particles to particles with internal degrees
of freedom, was discussed in [36].

The molecular ET theory of rarefied polyatomic gases with any number of fields was established
in [27], and the convergence to the singular limit of a monatomic gas when the molecular degrees of
freedom D → 3 was proved in [37].

The validity of the ET14 theory of rarefied polyatomic gases has been successfully confirmed by
comparing the theoretical predictions to the experimental data of linear waves [38], shock waves [39,40],
and light scattering [41] in the region where the NSF theory is no longer valid.

The role of the dynamic pressure has been studied, in particular, by the RET theory with 6 fields
(ET6): mass density, velocity, specific internal energy, and dynamic pressure [42,43]. This theory
is the simplest extension of the Euler theory and is compatible with the Meixner theory with one
internal variable [44,45]. The correspondence relation between ET6 and the Meixner theory was
shown explicitly in [42]. Recently the ET6 theory with a nonlinear constitutive equation was proposed
and developed [46–49]. It is also noteworthy that the molecular ET6 theory of rarefied polyatomic
gases is consistent with a different approach of polyatomic gases via the discrete internal energy
in which a gas is treated as a sort of mixture of monatomic gases [49]. It has been shown that the
effect of the dynamic pressure becomes to be several orders of magnitude larger in some gases, e.g.,
hydrogen gas [9]. This fact is remarkable because the dynamic pressure is usually related to the bulk
viscosity under the assumption of the Newtonian fluid, and sometimes it is assumed to be zero (Stokes’
assumption). The RET theory with two molecular relaxation processes was also developed by adopting
7 independent fields [50].

2.3. RET of Dense Gases

RET of dense gases is still under development [51–54]. In this case, we can rely solely on the
phenomenological RET theory. Nonequilibrium properties of dense gases and liquids can be analyzed
by this theory. Unfortunately, we cannot go into the details of this subject in the present paper because
we will focus our attention on rarefied polyatomic gases in the next section.

3. RET Theory with Molecular Internal Variables

3.1. Molecular Internal Variables

Concerning the kinetic counterpart of the phenomenological ET14 theory of a rarefied polyatomic
gas [19], a crucial step was made by Borgnakke and Larsen [34]. The distribution function is assumed
to depend on an additional continuous variable I representing the energy of the internal modes of
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a molecule, such as molecular rotational and vibrational modes. As only one variable I is introduced
here, the model treats the internal modes as a unit. Then the system of balance equations in RET is
prescribed by two kinds of fields, that is, the fields related to the translational motion of a molecule and
the fields related to the internal motion of a molecule. For this reason, this theory adopts the system of
balance equations with binary hierarchy structure [27,29,42].

However, in the case when we need a more detailed model that describes the relaxation processes
of rotational and vibrational modes individually, we must introduce two non-negative energies of the
internal modes of a molecule, that is, the energy of rotational mode IR and the energy of vibrational
mode IV [50]. Then we have the relationship:

I = IR + IV .

In this model, the velocity distribution function f depends also on the two parameters, i.e., f ≡
f
(
x, c, t, IR, IV), where f (x, c, t, IR, IV) dx dc is the number density of molecules with the energies

IR and IV at time t and in the volume element dx dc of the phase space (6D position-velocity
space) centered at (x, c) ∈ R3 × R3. The Boltzmann equation is formally the same as the one of
monatomic gases:

∂t f + ci ∂i f = Q ( f ) , (1)

but, for the collision term Q( f ), we take into account the influence of internal degrees of freedom
through the collision cross-section. Here ∂t ≡ ∂/∂t and ∂i ≡ ∂/∂xi.

One remark is made here: In a harmonic approximation of the molecular vibration, we may divide
IV into the energies of several harmonic modes, and may establish a model with several I’s. However,
we do not enter into such details here because the extension in this direction is straightforward.

3.2. System of Balance Equations with Triple Hierarchy

Let us introduce three kinds of moments F, HR, and HV as follows:

F =
∫
R3

∫ ∞

0

∫ ∞

0
m f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc, Fi1 ...ij =
∫
R3

∫ ∞

0

∫ ∞

0
mci1 · · · cij f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc,

HR
ll =

∫
R3

∫ ∞

0

∫ ∞

0
2IR f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc, HR
lli1 ...ik

=
∫
R3

∫ ∞

0

∫ ∞

0
2IRci1 · · · cik f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc,

HV
ll =

∫
R3

∫ ∞

0

∫ ∞

0
2IV f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc, HV
lli1 ...il

=
∫
R3

∫ ∞

0

∫ ∞

0
2IV ci1 · · · cil f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc,

(2)

where j, k, l = 1, 2, · · · . Here m is the mass of a molecule, and ϕ
(

IR) and ψ
(

IV) are the state densities
corresponding to IR and IV , i.e., ϕ

(
IR) dIR (ψ

(
IV) dIV) represents the number of internal rotational

(vibrational) state between IR and IR + dIR (IV and IV + dIV). From the Boltzmann equation (1),
we obtain three hierarchies (a triple hierarchy) of balance equations, in the form:

∂tF + ∂iFi = 0,

∂tFi1 + ∂iFii1 = 0,

∂tFi1i2 + ∂iFii1i2 = PK
i1i2 , ∂tHR

ll + ∂i HR
lli = PR

ll , ∂tHV
ll + ∂i HV

lli = PV
ll , (3)

∂tFi1i2i3 + ∂iFii1i2i3 = PK
i1i2i3 , ∂tHR

lli1 + ∂i HR
llii1 = PR

lli1 , ∂tHV
lli1 + ∂i HV

llii1 = PV
lli1 ,

...
...

...
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where the production terms are related to the collision term as follows:

PK
i1 ...ij

=
∫
R3

∫ ∞

0

∫ ∞

0
mci1 · · · cij Q( f ) ϕ

(
IR
)

ψ
(

IV
)

dIRdIVdc,

PR
lli1 ...ik

=
∫
R3

∫ ∞

0

∫ ∞

0
2IRci1 · · · cik Q( f ) ϕ

(
IR
)

ψ
(

IV
)

dIRdIVdc,

PV
lli1 ...il

=
∫
R3

∫ ∞

0

∫ ∞

0
2IVci1 · · · cil Q( f ) ϕ

(
IR
)

ψ
(

IV
)

dIRdIVdc.

(4)

We notice that the first and second equations of the F-hierarchy represent the conservation laws
of mass and momentum, while the sum of the balance equations of Fll, HR

ll and HV
ll represents the

conservation law of energy:

∂tGll + ∂iGill = 0,

with

Gll = Fll + HR
ll + HV

ll , Gill = Fill + HR
ill + HV

ill ,

and the production term Qll , which vanishes:

Qll = PK
ll + PR

ll + PV
ll = 0.

It is remarkable that, in each of the three hierarchies, the flux in one equation appears as the density in
the next equation.

3.3. Entropy Law

The entropy density h, the entropy flux hi, and the entropy production Σ are defined by

h = −kB

∫
R3

∫ ∞

0

∫ ∞

0
f log f ϕ

(
IR
)

ψ
(

IV
)

dIRdIVdc,

hi = −kB

∫
R3

∫ ∞

0

∫ ∞

0
ci f log f ϕ

(
IR
)

ψ
(

IV
)

dIRdIVdc,

Σ = −kB

∫
R3

∫ ∞

0

∫ ∞

0
Q( f ) log f ϕ

(
IR
)

ψ
(

IV
)

dIRdIVdc,

(5)

where kB is the Boltzmann constant. Then we have the entropy law:

∂th + ∂ihi = Σ.

The H-theorem requires that the collision term Q must be such that Σ given by the third equation in (5)
is not negative: Σ ≥ 0. We will see that the Bhatnagar, Gross and Krook (BGK) collision term, which
will be proposed in Section 3.7.1, satisfies the H-theorem.

3.4. Equilibrium Distribution Function

We derive the equilibrium distribution function fE by means of MEP. We remark that the collision
invariants of the present model are m, mci, and mc2 + 2IR + 2IV . These quantities correspond to the
hydrodynamics variables, i.e., the mass density F(= ρ), the momentum density Fi(= ρvi), and twice
the energy density Gll(= 2ρε + ρv2):

Gll =
∫
R3

∫ ∞

0

∫ ∞

0

(
mc2 + 2IR + 2IV

)
f ϕ
(

IR
)

ψ
(

IV
)

dIRdIVdc. (6)
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It is easy to see, from (6), that the specific internal energy ε is composed of the kinetic, rotational,
and vibrational parts, εK, εR, and εV , i.e.,

ε = εK + εR + εV .

The equilibrium distribution function fE, which maximizes the entropy density, the first equation
in (5), under the constraints that the first 5 moments are prescribed, is given by

fE = f (K)E f (R)
E f (V)

E (7)

with

f (K)E =
ρ

m

(
m

2πkBT

)3/2
exp

(
− mC2

2kBT

)
, f (R)

E =
1

AR(T)
exp

(
− IR

kBT

)
, f (V)

E =
1

AV(T)
exp

(
− IV

kBT

)
,

where AR(T) and AV(T) are normalization factors (partition functions):

AR(T) =
∫ ∞

0
ϕ
(

IR
)

e−βE IR
dIR, AV(T) =

∫ ∞

0
ψ
(

IV
)

e−βE IV
dIV . (8)

Here βE = 1/(kBT), T is the equilibrium temperature, and Ci = ci − vi (C2 = CjCj) is the peculiar
velocity. For the proof see [46,49,50].

Using the equilibrium distribution function fE, we obtain the caloric and thermal equations of
state. The caloric equation of state is given by

ε = εE(T) = εK
E(T) + εR

E(T) + εV
E (T), (9)

and, in a similar way in [49], we have

εK
E(T) ≡

3
2

kB
m

T, εR
E(T) ≡

kB
m

T2 d log AR(T)
dT

, εV
E (T) ≡

kB
m

T2 d log AV(T)
dT

. (10)

If the partition functions AR and AV are given, for example, by a statistical-mechanical analysis, we
obtain the equilibrium energies of rotational and vibrational modes from (10). Vice versa, if we know
the caloric equations of state εR

E(T) and εV
E (T), we can obtain, by integration of the second and third

equations in (10), the partition functions. We remark that the knowledge of the partition functions
permits us to obtain, from (8), the measures ϕ

(
IR) and ψ

(
IV) via the inverse Laplace transformation.

The thermal equation of state is given by

p = pK(ρ, T) ≡ kB
m

ρT =
2
3

ρεK
E(T), (11)

where p is the pressure.
The specific entropy density in equilibrium s = hE/ρ is given by

s = sE(ρ, T) = sK
E(ρ, T) + sR

E(T) + sV
E (T),
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where

sK
E(ρ, T) ≡ − kB

ρ

∫
R3

∫ ∞

0

∫ ∞

0
fE log f (K)E ϕ

(
IR
)

ψ
(

IV
)

dIRdIVdc,

=
kB
m

log

(
T3/2

ρ

)
+

εK
E(T)
T
− kB

m
log

[
1
m

(
m

2πkB

)3/2
]

,

sR
E(T) ≡ −

kB
ρ

∫
R3

∫ ∞

0

∫ ∞

0
fE log f (R)

E ϕ
(

IR
)

ψ
(

IV
)

dIRdIVdc,

=
kB
m

log AR(T) +
εR

E(T)
T

,

sV
E (T) ≡ −

kB
ρ

∫
R3

∫ ∞

0

∫ ∞

0
fE log f (V)

E ϕ
(

IR
)

ψ
(

IV
)

dIRdIVdc,

=
kB
m

log AV(T) +
εV

E (T)
T

.

3.5. Molecular ET Theory with 7 Independent Fields (ET7)

The simplest RET theory with the triple hierarchy is the theory with 7 fields (ET7); mass density,
velocity, internal energy of translational mode, internal energy of rotational mode, and internal energy
of vibrational mode [50]. The system of balance equations is the system of (3) but truncated at the
second order tensor:

∂F
∂t

+
∂Fi
∂xi

= 0,

∂Fj

∂t
+

∂Fij

∂xi
= 0,

∂Fll
∂t

+
∂Flli
∂xi

= PK
ll ,

∂HR
ll

∂t
+

∂HR
lli

∂xi
= PR

ll ,
∂HV

ll
∂t

+
∂HV

lli
∂xi

= PV
ll .

On the basis of this theory, it was revealed that the internal energies of the three modes can be
characterized by the three nonequilibrium temperatures (see (14)), and the nonequilibrium entropy
is expressed in terms of these nonequilibrium temperatures. It was also shown that the dispersion
relation derived by ET7 is in excellent agreement with the experimental data of CO2, Cl2 and Br2

gases [50]. Moreover, this theory includes, as a limiting case, three different ET6 [50,53] theories,
which correspond to different molecular relaxation processes. The previous ET6 theory discussed in
Section 2.2 is, in fact, one of the three theories.

3.6. Molecular ET Theory with 15 Independent Fields (ET15)

The ET7 theory describes the relaxation processes of molecular rotational and vibrational modes
satisfactorily, but it ignores the effect of shear stress and heat flux. In this section, we establish and
develop more realistic theory including all these dissipative fluxes.

As we will see in (18), the shear stress is the intrinsic (velocity-independent) part of the traceless
momentum flux F〈ij〉 and the (total) heat flux is the intrinsic part of the total energy flux Glli(=



Entropy 2018, 20, 301 8 of 20

Flli + HR
lli + HV

lli). We, therefore, study the truncated system of (3) with the densities F, Fi, Fll , HR
ll , HV

ll ,
F〈ij〉 and Glli, which we call ET15 theory:

∂F
∂t

+
∂Fi
∂xi

= 0,

∂Fj

∂t
+

∂Fij

∂xi
= 0,

∂Fij

∂t
+

∂Fijk

∂xk
= PK

ij ,
∂HR

ll
∂t

+
∂HR

lli
∂xi

= PR
ll ,

∂HV
ll

∂t
+

∂HV
lli

∂xi
= PV

ll ,

∂Glli
∂t

+
∂Gllik
∂xk

= Qlli,

(12)

where (Fijk, HR
lli, HV

lli, Gllik) and (PK
ij , PR

ll , PV
ll , Qlli) are, respectively, the fluxes and productions of the

densities (Fij, HR
ll , HV

ll , Glli). It should be noted that, the balance equation of the energy flux Glli is
obtained by summing the balance equations of Flli, HR

lli, and HV
lli that appear in (3):

Glli =
∫
R3

∫ ∞

0

∫ ∞

0

(
mc2 + 2IR + 2IV

)
ci f ϕ

(
IR
)

ψ
(

IV
)

dIRdIVdc.

Then we have

Gllik = Fllik + HR
llik + HV

llik, Qlli = PK
lli + PR

lli + PV
lli.

It is worth emphasizing again that the ET14 theory adopts F, Fi, Fij, Gll(= Fll + HR
ll + HV

ll ) and Glli
as independent fields and the internal modes of a molecule are treated as a unit. On the other hand,
ET15 describes the rotational and vibrational modes individually.

3.6.1. Galilean Invariance and Intrinsic Variables

The densities of the system (12) are related to the following conventional field variables:

mass density: ρ ≡
∫
R3

∫ ∞

0

∫ ∞

0
m f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc,

velocity: vi ≡
1
ρ

∫
R3

∫ ∞

0

∫ ∞

0
mci f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc,

specific translational energy density: εK ≡ 1
2ρ

∫
R3

∫ ∞

0

∫ ∞

0
mC2 f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc,

specific rotational energy density: εR ≡ 1
ρ

∫
R3

∫ ∞

0

∫ ∞

0
mIR f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc, (13)

specific vibrational energy density: εV ≡ 1
ρ

∫
R3

∫ ∞

0

∫ ∞

0
mIV f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc,

shear stress σ〈ij〉 ≡ −
∫
R3

∫ ∞

0

∫ ∞

0
mC〈iCj〉 f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc,

heat flux qi ≡
1
2

∫
R3

∫ ∞

0

∫ ∞

0
(mC2 + 2IR + 2IV)Ci f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc.

We define three new variables θK, θR, and θV associated with the specific energies εK, εR, and εV

in the third to fifth equations in (13) through the caloric equations of state given in (10) [50]:

εK = εK
E(θ

K), εR = εR
E(θ

R), εV = εV
E (θ

V). (14)

Because of the monotonicity of εK,R,V
E , these are one-to-one relations between the new variables θK,R,V

and the specific energies εK,R,V . The physical meaning of these parameters will be discussed in
Section 3.6.3. From (7), the temperature T is determined in an implicit way by the relation:

εE(T) = εK
E(θ

K) + εR
E(θ

R) + εV
E (θ

V). (15)
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The trace part of the momentum flux is related to the pressure p and the dynamic pressure Π in
continuum mechanics as follows:

Fll = 3(p + Π) + ρv2.

Therefore, from (2), (11), the third equation in (13), and (14), the dynamic pressure is expressed
as [46,51]:

Π = pK(ρ, θK)− pK(ρ, T) =
2
3

ρ
(

εK
E(θ

K)− εK
E(T)

)
. (16)

For later convenience, we introduce the following variables, i.e., energy deviations of the three
modes from the state with the common temperature T [50–52,54]:

∆K = εK
E(θ

K)− εK
E(T),

∆R = εR
E(θ

R)− εR
E(T),

∆V = εV
E (θ

V)− εV
E (T).

(17)

Then, from (16), the dynamic pressure Π is expressed as

Π =
2
3

ρ∆K.

Since the intrinsic variables are the moments in terms of the peculiar velocity Ci instead of ci,
we have in agreement with the Galilean invariance [55]:

F = ρ, Fi = ρvi, Fll = 2ρεK + ρv2, F〈ij〉 = −σ〈ij〉 + ρv〈ivj〉,

HR
ll = 2ρεR, HV

ll = 2ρεV ,

Glli = 2qi +
{

2
(

ρε + p(ρ, θK)
)}

vi − 2σ〈li〉vl + ρv2vi.

(18)

Similarly, the velocity dependence of the fluxes and productions is obtained as follows:

Fijk = F̂ijk + 3F̂(ijvk) + ρvivjvk,

HR
lli = ĤR

ll vi + ĤR
lli, HV

lli = ĤV
ll vi + ĤV

lli,

Gllik = Ĝllik + 2Ĝll(ivk) + 2vl F̂lik + 6v(ivl F̂lk) + vivk

(
ĤR

ll + ĤV
ll

)
+ ρv2vivk,

PK
ij = P̂K

ij , PR
ll = P̂R

ll , PV
ll = P̂V

ll ,

Qlli = 2vl P̂K
il + Q̂lli,

where a hat on a quantity indicates the intrinsic part of the quantity.

3.6.2. Nonequilibrium Distribution Function Derived from MEP

To close the system (12), we need the nonequilibrium distribution function f , which is derived
from the MEP. That is, the most suitable distribution function f of the truncated system (12) is obtained
by maximizing the functional defined by
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L ( f )

= −kB

∫
R3

∫ ∞

0

∫ ∞

0
f log f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc

+ λ

(
F−

∫
R3

∫ ∞

0

∫ ∞

0
m f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc
)
+ λi

(
Fi −

∫
R3

∫ ∞

0

∫ ∞

0
mci f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc
)

+ λij

(
Fij −

∫
R3

∫ ∞

0

∫ ∞

0
mcicj f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc
)

+ µR
(

HR
ll −

∫
R3

∫ ∞

0

∫ ∞

0
2IR f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc
)
+ µV

(
HV

ll −
∫
R3

∫ ∞

0

∫ ∞

0
2IV f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc
)

+ µi

(
Glli −

∫
R3

∫ ∞

0

∫ ∞

0
mc2ci f ϕ

(
IR
)

ψ
(

IV
)

dIRdIV dc
)

,

where λ, λi, λij, µR, µV , and µi are the Lagrange multipliers. Their velocity dependences are determined
as follows [55]:

λ = λ̂− viλ̂i + vivjλ̂ij − v2viµ̂i,

λi = λ̂i − 2vjλ̂ji + 2vivjµ̂j + v2µ̂i,

λij = λ̂ij − vl µ̂lδij − viµ̂j − vjµ̂i,

µR = µ̂R − viµ̂i,

µV = µ̂V − viµ̂i,

µi = µ̂i.

(19)

The distribution function f , which satisfies δL/δ f = 0, is

f15 = exp
(
−1− m

kB
χ

)
,

χ = λ̂ + Ciλ̂i + CiCjλ̂ij +
2IR

m
µ̂R +

2IV

m
µ̂V +

(
C2 +

2IR

m
+

2IV

m

)
Ciµ̂i.

(20)

Taking into account that, in equilibrium, f15 coincides with the equilibrium distribution
function (7), we can easily see that the equilibrium components of the Lagrange multipliers are
given by

λE = − g
T
+

v2

2T
, λiE = −vi

T
,

λllE
3

= µR
E = µV

E =
1

2T
, λ〈ij〉E = 0, µiE = 0, (21)

where g is the chemical potential. For the reason of non-convergence of the integrals in the nonlinear
case (see [9,26] for a discussion on this subject), we consider, as usual, the processes near equilibrium.
Then we expand (20) around an equilibrium state in the following form:

f15 = fE

(
1− m

kB
χ̃

)
,

χ̃ = λ̃ + Ciλ̃i + CiCjλ̃ij +
2IR

m
µ̃R +

2IV

m
µ̃V +

(
C2 +

2IR

m
+

2IV

m

)
Ciµ̃i,

(22)

where a tilde on a quantity indicates its nonequilibrium part. In the following, for simplicity, we use
the notation f instead of f15.
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Inserting (22) into (13), we obtain the intrinsic nonequilibrium Lagrange multipliers as functions
of (ρ, vi, T, ∆R, ∆V , σ〈ij〉, qi) up to the first order with respect to the nonequilibrium fields, ∆R, ∆V , σ〈ij〉
and qi, as follows:

λ̃ =
εK

E(T)
T2cK

v (T)
∆K +

εR
E(T)

T2cR
v (T)

∆R +
εV

E (T)
T2cV

v (T)
∆V ,

λ̃i =
kB
m T + εE(T)

kB
m ρT3

(
kB
m + cv(T)

) qi,

λ̃ll
3

= − ∆K

2T2cK
v (T)

,

µ̃R = − ∆R

2T2cR
v (T)

, µ̃V = − ∆V

2T2cV
v (T)

,

λ̃〈ij〉 =
σ〈ij〉

2 kB
m ρT2

, µ̃i = −
qi

2 kB
m ρT3

(
kB
m + cv(T)

) ,

(23)

where ∆K = −∆R − ∆V from (15), and cK,R,V
v (T) = dεK,R,V

E (T)/dT are the specific heats of the
three modes. Inserting (21) and (23) into (19), we can write down the explicit form of the Lagrange
multipliers. As is well known, the multipliers coincide with the main field, by which the system (12)
becomes symmetric hyperbolic. Therefore we heave the well-posed Cauchy problem [9,26,56].

3.6.3. Physical Meaning of the Parameters θK, θR, and θV

In the general framework of RET, nonequilibrium temperatures are defined in terms of the main
field [9,53,54]. That is to say, the nonequilibrium temperatures ϑK, ϑR, and ϑV , which are, respectively,
related to the translational, rotational, and vibrational modes, are defined as follows:

ϑK =
3

2λ̂ll
, ϑR =

1
2µ̂R , ϑV =

1
2µ̂V .

These temperatures coincide with T in equilibrium.
In the present case, from (23) and (17), we have the following relations between the nonequilibrium

temperatures ϑK, ϑR, ϑV and the variables θK, θR, θV :

1
ϑK −

1
T

= −
εK

E(θ
K)− εK

E(T)
T2cK

v (T)
,

1
ϑR −

1
T

= −
εR

E(θ
R)− εR

E(T)
T2cR

v (T)
,

1
ϑV −

1
T

= −
εV

E (θ
V)− εV

E (T)
T2cV

v (T)
. (24)

Note that, near equilibrium, we have the approximate relations:

ϑK = θK, ϑR = θR ϑV = θV .

In fact, expanding the right hand sides of the relations (24) with respect to θK − T, θR − T, and θV − T,
respectively, we have

1
ϑK −

1
T

= − θK − T
T2 ,

1
ϑR −

1
T

= − θR − T
T2 ,

1
ϑV −

1
T

= − θV − T
T2 .

Therefore, we can regard θK, θR, and θV as nonequilibrium temperatures at least not so far from
equilibrium, as is the case for the present theory. In general, however, this equivalence no longer
holds because the parameters defined through the caloric equation of state depend only on internal
energy while the nonequilibrium temperatures defined by the main field may depend on many
nonequilibrium quantities. Only in the simple theory that adopts the nonequilibrium internal energies
as the dissipative fields such as ET7 [50] and ET6 [53,54], the above equivalence holds generally.
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3.6.4. Closure of the Differential System

By using the distribution function (22) with (23), we obtain the constitutive equations for the
fluxes up to the first order with respect to the nonequilibrium variables as follows:

F̂ijk =
∫
R3

∫ ∞

0

∫ ∞

0
mCiCjCk f ϕ

(
IR
)

ψ
(

IV
)

dIRdIVdC

=
kB
m

kB
m + cv(T)

(qkδij + qjδik + qiδjk),

ĤR
llk =

∫
R3

∫ ∞

0

∫ ∞

0
2IRCk f ϕ

(
IR
)

ψ
(

IV
)

dIRdIVdC

=
2cR

v (T)
kB
m + cv(T)

qk,

ĤV
llk =

∫
R3

∫ ∞

0

∫ ∞

0
2IVCk f ϕ

(
IR
)

ψ
(

IV
)

dIRdIVdC

=
2cV

v (T)
kB
m + cv(T)

qk,

Ĝllik =
∫
R3

∫ ∞

0

∫ ∞

0
(mC2 + 2IR + 2IV)CiCk f ϕ

(
IR
)

ψ
(

IV
)

dIRdIVdC

= −2
{

p(ρ, T)2

ρ
− 2

3
ρ

(
εE(T) + 2

p(ρ, T)
ρ

)(
εK

E(T) + ∆K
)}

δik − 2
(

εE(T) + 2
p(ρ, T)

ρ

)
σ〈ik〉.

Using the constitutive equations above, we obtain the closed system of field equations for
the 15 independent fields, ρ, vi, T, ∆R, ∆V , σ〈ij〉, qi (the equations of state are given by (9) and (11);
the dynamic pressure is given by (16); the production terms will be given below):

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0,

∂ρvj

∂t
+

∂

∂xi

{
[p(ρ, T) + Π]δij − σ〈ij〉 + ρvivj

}
= 0,

∂

∂t

{
2ρεE(T) + ρv2

}
+

∂

∂xi

{
2qi + 2 [ρεE(T) + p(ρ, T) + Π] vi − 2σ〈li〉vl + ρv2vi

}
= 0,

∂

∂t

{
2ρ
[
εE

R(T) + ∆R
]}

+
∂

∂xi

{
2ρ
[
εE

R(T) + ∆R
]

vi +
2cR

v (T)
kB
m + cv(T)

qi

}
= P̂R

ll ,

∂

∂t

{
2ρ
[
εE

V(T) + ∆V
]}

+
∂

∂xi

{
2ρ
[
εE

V(T) + ∆V
]

vi +
2cV

v (T)
kB
m + cv(T)

qi

}
= P̂V

ll ,

∂

∂t

(
−σ〈ij〉 + ρv〈ivj〉

)
+

∂

∂xk

{
2 kB

m
kB
m + cv(T)

q〈iδj〉k + 2[p(ρ, T) + Π]v〈iδj〉k − σ〈ij〉vk − 2σ〈k〈i〉vj〉 + ρv〈ivj〉vk

}
= P̂K

〈ij〉,

∂

∂t

{
2qi + 2 [ρεE(T) + p(ρ, T) + Π] vi − 2σ〈li〉vl + ρv2vi

}
+

+
∂

∂xk

{
2
[

p(ρ, T)
(

εE(T) +
p(ρ, T)

ρ

)
+ Π

(
εE(T) + 2

p(ρ, T)
ρ

)]
δik − 2

[
εE(T) + 2

p(ρ, T)
ρ

]
σ〈ik〉

+
2 kB

m
kB
m + cv(T)

qlvlδik + 2

[
1 +

kB
m

kB
m + cv(T)

]
(qivk + qkvi) + [p(ρ, T) + Π]v2δik

+ 2 [ρεE(T) + 2p(ρ, T) + 2Π] vivk − v2σ〈ik〉 − 2vlviδ〈lk〉 − 2vlvkσ〈il〉 + ρv2vivk

}
= 2vl P̂K

il + Q̂lli .

(25)

We notice that the field equations of ρ, vi, T, σ〈ij〉, qi are the same as those obtained by ET14 [19],
and the field equation of ∆K(= −∆R−∆V) is essentially the same as the one of the dynamic pressure Π
in ET14. However, ET14 treats the contribution from the rotational and vibrational mode of a molecule
as a unit, while ET15 has the field equations of ∆R and ∆V separately. In this sense, the ET15 theory
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is a more refined theory than the ET14 theory. Using the ET15 theory, we can analyze the energy
exchanges among the three modes.

We can also write down the closed system of field equations in terms of 15 independent fields:
ρ, vi, θK, θR, θV , σ〈ij〉 and qi. However, for simplicity, its explicit expression is omitted here.

3.6.5. Entropy Density, Flux and Production

The nonequilibrium part of the entropy density h − hE and the intrinsic entropy flux
(non-convective entropy flux) ϕi(= hi − hvi) up to the second order with respect to the dissipative
fluxes for the truncated system (12) are obtained since we have considered the theory with linear
constitutive equations. From (5), inserting the distribution function (22), we have

h− hE =− ρ

2T2
∆K2

cK
v (T)

− ρ

2T2
∆R2

cR
v (T)

− ρ

2T2
∆V2

cV
v (T)

−
σ〈ik〉σ〈ik〉

4 kB
m ρT2

− qiqi

2 kB
m ρT3

(
kB
m + cv(T)

) + O(3),

ϕi =
qi
T
− 2

2 kB
m ρT2

(
kB
m + cv(T)

) (2ρ

3
∆Kqi − qjσ〈ij〉

)
+ O(3),

(26)

where O(3) represents the nonequilibrium part composed of terms of order 3 or higher. The evaluation
of the higher order term in h and ϕi can be obtained by using the method presented in [57].

The entropy production is consistently determined regardless of the approximation order by
exploiting the entropy principle which requires the following form:

Σ = P̂K
ij λ̃ij + P̂R

ll µ̃R + P̂V
ll µ̃V + Q̂lliµ̃i + O(3). (27)

Remark 1. The O(3) term in h in the first equation of (26), even though being negligibly small, is necessary in
the evaluation of the correct entropy production (27) up to the second order with respect to the nonequilibrium
variables, as is the case for all approximate ET theories near equilibrium.

Remark 2. We have to recall that the entropy, entropy flux (26), and the entropy production (27) are not those
in (5) evaluated by using f of the Boltzmann equation (1), but those for the system of 15 moments evaluated
by the approximated distribution function f15 given by (22). Because of this reason, Σ is not automatically
positive as is expected by the H-theorem, but, as in all macroscopic theories, it is necessary to be imposed that Σ
is non-negative as a consequence of continuum approach of entropy principle.

3.7. Production Terms in the Generalized BGK-Model

As seen from (4), the production terms are determined from the collision term in the Boltzmann
equation. In this section, for simplicity, we adopt the generalized BGK-model [50], which is the
generalization of the collision term utilized in [58,59].

3.7.1. Generalized BGK-Model

The generalized BGK model [50] has three relaxation times corresponding to the following three
relaxation processes caused by the molecular collision (see also [4,60–62]): (i) Relaxation time τK
which characterizes the relaxation process of the translational mode (mode K) of molecules to its
equilibrium state with the distribution function fK:E having the temperature θK; (ii) Relaxation time
τbc which characterizes the relaxation process of two of the three modes, that is, mode K, rotational
mode (mode R), and vibrational mode (mode V). The state approaches to an equilibrium state of the
two modes (b and c mode), characterized by the distribution function fbc:E with a common temperature
θbc. In Table 1, possible three cases are summarized depending on the choice of b and c. We assume
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O(τbc) & O(τK). (iii) Relaxation time τ which characterizes the relaxation process in which all modes,
K, R and V, approach a local equilibrium state characterized by fE with a common temperature T
among K, R and V modes. We have the relation: τ > τbc.

Table 1. Three possible relaxation processes in the second stage (ii).

(bc)-Process (a,b, c) Relaxation Time Collision Term

(KR)-process (V, K, R) τKR QKR( f )
(KV)-process (R, K, V) τKV QKV( f )
(RV)-process (K, R, V) τRV QRV( f )

The generalized BGK collision term with (bc)-process ((bc) = (KR), (KV), (RV)) is proposed as
follows [50]:

Qbc( f ) = − 1
τK

( f − fK:E)−
1

τbc
( f − fbc:E)−

1
τ
( f − fE), (28)

where the distribution functions fK:E and fbc:E are given as follows:

fK:E =
ρRV(IR, IV)

m

(
m

2πkBθK

)3/2

exp
(
− mC2

2kBθK

)
with ρRV(IR, IV) =

∫
R3

m f dc,

fKR:E =
ρV(IV)

mAR(θKR)

(
m

2πkBθKR

)3/2

exp
{
− 1

kBθKR

(
mC2

2
+ IR

)}
with ρV(IV) =

∫
R3

∫ ∞

0
m f ϕ

(
IR
)

dIRdc,

fKV:E =
ρR(IR)

mAV(θKV)

(
m

2πkBθKV

)3/2

exp
{
− 1

kBθKV

(
mC2

2
+ IV

)}
with ρR(IR) =

∫
R3

∫ ∞

0
m f ψ

(
IV
)

dIV dc,

fRV:E =
ρ

mAR(θRV)AV(θRV)

(
m

2πkBθK

)3/2

exp
(
− mC2

2kBθK −
IR + IV

kBθRV

)
.

(29)

From (29), we understand that the common temperature of the two modes b and c at every moment is
the temperature θbc, which is determined by the condition:

εb+c
E (θbc) ≡ εbE(θ

bc) + εcE(θ
bc) = εbE(θ

b) + εcE(θ
c).

The H-theorem for this BGK collision term holds as proved in [50].

3.7.2. Production Terms of ET15

In the case of ET15, we obtain the mass densities of equilibrium states of the stage (i) and (ii), ρRV ,
ρV and ρR, which appear in (29) as follows:

ρRV(IR, IV) = ρ f (R)
E f (V)

E

{
1 +

∆R

kB
m T2cR

v (T)

(
IR

m
− εR

E(T)
)
+

∆V

kB
m T2cV

v (T)

(
IV

m
− εV

E (T)
)}

,

ρV(IV) = ρ f (V)
E

{
1 +

∆V

kB
m T2cV

v (T)

(
IV

m
− εV

E (T)
)}

,

ρR(IR) = ρ f (R)
E

{
1 +

∆R

kB
m T2cR

v (T)

(
IR

m
− εR

E(T)
)}

.

(30)

By adopting the generalized BGK model (28) with (29) and (30), we obtain the explicit expressions of
the production terms P̂K

ll , P̂R
ll , P̂V

ll , P̂K
〈ij〉 and Q̂lli. In particular, P̂K

ll , P̂R
ll and P̂V

ll depend on the details of
the molecular relaxation processes. Inserting (22) with (23) into the corresponding components of (4),
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the production terms for (bc)-process ((a, b, c) = (V,K,R), (R,K,V), (K,R,V)) are generically expressed
as follows:

P̂a
ll = −

2ρ

τ
(εaE(θ

a)− εaE(T)) ,

P̂b
ll = −

2ρ

τbc

(
εbE(θ

b)− εbE(θ
bc)
)
− 2ρ

τ

(
εbE(θ

b)− εbE(T)
)

,

P̂c
ll = −

2ρ

τbc

(
εcE(θ

c)− εcE(θ
bc)
)
− 2ρ

τ
(εcE(θ

c)− εcE(T)) ,

P̂〈ij〉 =
(

1
τK

+
1

τbc
+

1
τ

)
σ〈ij〉,

Q̂lli = −2
(

1
τK

+
1

τbc
+

1
τ

)
qi.

(31)

For the expression (31), it may be useful to introduce the following quantities, i.e., the energy
exchanges among the three modes:

δ ≡ εbE(θ
b)− εbE(θ

bc) = −εcE(θ
c) + εcE(θ

bc),

∆ ≡ ∆a = εaE(θ
a)− εaE(T) = −εb+c

E (θbc) + εb+c
E (T).

Expanding the energy exchanges with respect to the nonequilibrium temperatures around
a temperature T up to the first order, we obtain

δ = cbv (θ
b − θbc) = −ccv(θ

c − θbc), ∆ = cav (θ
a − T) = −cb+c

v (θbc − T).

Here and hereafter we use the notation cav instead of cav (T) and so on for simplicity. Inversely,
the nonequilibrium temperatures are expressed as follows:

θa − T =
∆
cav

, θbc − T = − ∆
cb+c

v
,

θb − T =
δ

cbv
− ∆

cb+c
v

, θc − T = − δ

ccv
− ∆

cb+c
v

.

The relation between {δ, ∆} and {∆b, ∆c} is as follows:

δ =
cc

v∆b − cb
v∆c

cb+c
v

, ∆ = −∆b − ∆c.

More explicitly, depending on the (bc)-process, this relation is expressed in terms of {∆R, ∆V} as
summarized in Table 2.

Table 2. Relation between {δ, ∆} and {∆R, ∆V}.

(bc) δ ∆

(KR) − cR
v

cK+R
v

∆V − ∆R ∆V

(KV) − cV
v

cK+V
v

∆R − ∆V ∆R

(RV) cV
v ∆R−cR

v ∆V

cR+V
v

−∆R − ∆V

The production terms are now expressed as

Pa
ll = −2ρ

∆
τ

, Pb
ll = −2ρ

δ

τδ
+ 2ρ

cbv
cb+c

v

∆
τ

, Pc
ll = 2ρ

δ

τδ
+ 2ρ

ccv
cb+c

v

∆
τ

,
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where τδ is defined by

1
τδ
≡ 1

τbc
+

1
τ

.

The system of balance Equations (25) can be rewritten in terms of the independent fields
{ρ, vi, T, δ, ∆, σ〈ij〉, qi}. In particular, we write down it by using the material derivative as follows:

ρ̇ + ρ
∂vk
∂xk

= 0,

ρv̇i +
∂
{
(p + Π)δij − σ〈ij〉

}
∂xj

= 0,

ρcvṪ + (p + Π)
∂vk
∂xk
− ∂vi

∂xk
σ〈ik〉 +

∂qk
∂xk

= 0,

δ̇ +
1
ρ

{
A1 +

1
cv

d
dT

(
cbv

cb+c
v

)
∆
}{

(p + Π)δkl − σ〈kl〉
} ∂vl

∂xk
+

1
ρ

{
kB
m A1

kB
m + cv

+
1
cv

d
dT

(
cbv

cb+c
v

)
∆

}
∂qk
∂xk

+
1
ρ

 cbv
cb+c

v

d
dT

( kB
m

A2
cv

+ cav
kB
m + cv

)
+

d
dT

 kB
m

(
1− A2

cv

)
+ cbv

kB
m + cv

 qk
∂T
∂xk

= − δ

τδ
,

∆̇ +
1
ρ

A2 − cav
cv

{
(p + Π)δkl − σ〈kl〉

} ∂vl
∂xk

+
1
ρ

d
dT

( kB
m

A2
cv

+ cav
kB
m + cv

)
qk

∂T
∂xk

+
1
ρ

A2 − cav
( kB

m + cv)cv

∂qk
∂xk

= −∆
τ

,

σ̇〈ij〉 − 2(p + Π)
∂v〈i
∂xj〉

+ σ〈ij〉
∂vk
∂xk

+ 2
∂v〈i
∂xk

σ〈j〉k〉 +
2 kB

m(
kB
m + cv

)2
dcv

dT
∂T
∂xk

q〈iδj〉k −
2 kB

m
kB
m + cv

∂q〈i
∂xj〉

= −
(

1
τK

+
1
τδ

)
σ〈ij〉,

q̇i +
2 kB

m + cv
kB
m + cv

qi
∂vk
∂xk

+
kB
m

kB
m + cv

qk
∂vk
∂xi

+
2 kB

m + cv
kB
m + cv

qk
∂vi
∂xk

+

{(
kB
m

+ cv

)
pδki +

(
2

kB
m

+ cv

)
(Πδki − σ〈ki〉)

}
∂T
∂xk

− p
ρ

∂p
∂xi

+
1
ρ

{
(p−Π)δki + σ〈ki〉

} ∂

∂xl

{
(p + Π)δkl − σ〈kl〉

}
= −

(
1

τK
+

1
τδ

)
qi,

where A1, A2 and Π are given in Table 3.

Table 3. Explicit expression of A1, A2 and Π.

(bc) A1 A2 Π

(KR) or (KV)
ccv

cb+c
v

0
2
3

ρ

(
δ− cbv

cb+c
v

∆
)

(RV) 0 cv
2
3

ρ∆

It is possible to verify that the present production terms give a non-negative entropy
production (27) (Σ ≥ 0). In fact, we have

Σ =
ρ

τT2
cv

cav cb+c
v

∆2 +
ρ

τδT2
cb+c

v
cbv ccv

δ2 +
1

2pT

(
1

τK
+

1
τδ

)σ〈ij〉σ〈ij〉 +
2

T
(

kB
m + cv

) qiqi

 ≥ 0,

since the relaxation times and specific heats are positive. Therefore the entropy principle is satisfied in
the present ET15 theory.
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3.8. Maxwellian Iteration and Phenomenological Coefficients: Shear and Bulk Viscosities,
and Heat Conductivity

To obtain the system of the NSF theory, we carry out the Maxwellian iteration [63] on (25) and
retain the first order terms with respect to the relaxation times τ, τσ and τq. Then we have

δ = −τδ
p
ρ

A1
∂vi
∂xi

, ∆ = −τ
p
ρ

A2 − cav
cv

∂vi
∂xi

, σ〈ij〉 = 2pτσ

∂v〈i
∂xj〉

, qi = −
(

kB
m

+ cv

)
pτq

∂T
∂xi

,

where, from (31),

1
τσ

=
1
τq

=
1

τK
+

1
τδ

If τK � τbc, we have the relation: τσ = τq ∼ τK. In particular, for (bc)-process ((bc) =(KR) or (KV)),
we have

Π = Πbc + Πa with

Πbc = p(ρ, θK)− p(ρ, θbc) = −τδ p
kB
m

ccv
cbv cb+c

v

∂vi
∂xi

Πa = p(ρ, θbc)− p(ρ, T) = −τp
kB
m

cav
cb+c

v cv

∂vi
∂xi

,

and for (RV)-process, we have

Π = −τp
kB
m

cR+V
v

cK
v cv

∂vi
∂xi

.

Recalling the definition of the bulk viscosity ν, shear viscosity µ, and heat conductivity κ:

Π = −ν
∂vi
∂xi

, σ〈ij〉 = 2µ
∂v〈i
∂xj〉

, qi = −κ
∂T
∂xi

,

we obtain

ν =


kB
m

ccv
cbv cb+c

v
pτδ +

kB
m

cav
cb+c

v cv
pτ for (bc)-process ((bc) =(KR) or (KV))

kB
m

cR+V
v
cK

v cv
pτ for (RV)-process

,

µ = pτσ,

κ =

(
kB
m

+ cv

)
pτq.

(32)

It should be noted that, as usual in the BGK model, the Prandtl number predicted by the present
model is not satisfactory. One possible way to avoid this difficulty is that we use the procedure adopted
in the phenomenological ET theory of rarefied polyatomic gases. That is, the relaxation times τ, τδ, τσ,
and τq are regarded as functions of ρ and T that are estimated by using the experimental data on ν, µ

and κ. In this respect, for (RV)-process, the relations (32) are the same as those derived by ET14 [19].
On the other hand, for (bc)-process ((bc) =(KR) or (KV)), only the relation for ν is different from the
one derived by ET14.

4. Summary and Outlook

In the present paper, firstly, a brief review on the present status of RET of gases was presented.
Secondly, the molecular ET theory of rarefied polyatomic gases with 15 independent fields has been
developed. By adopting the generalized BGK-type collision term, we have obtained the closed system of
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field equations explicitly, where detailed energy exchange among the different modes has been taken into
account appropriately. The relaxation times introduced in the theory can be estimated by the experimental
data on the shear and bulk viscosities and heat conductivity. It was shown that the NSF theory is derived
from the RET theory as a limiting case of small relaxation times.

With this theory, we can explore highly nonequilibrium phenomena beyond the local equilibrium
where the NSF theory is no longer valid. In particular, we are now studying linear wave dispersion
relation, shock wave, and light scattering by comparing the theoretical predictions with experimental
data. These results will soon be reported.
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