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Abstract: In this paper, we study the admissible consensus for descriptor multi-agent systems (MASs)
with exogenous disturbances that are generated by some linear systems. The topology among agents
is represented by a directed graph. For solving the admissible consensus problem, the exogenous
disturbance observer and distributed control protocol are proposed. With the help of the graph theory
and the generalized Riccati equation, some conditions for admissible consensus of descriptor MASs
with exogenous disturbances are obtained. Finally, we provide a numerical simulation to effectively
illustrate the results we have reached before.
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1. Introduction

The descriptor multi-agent systems (MASs) is a combination of the descriptor system and the
MASs. The descriptor system was first mentioned in [1], and is also referred to as generalized system,
singular system, or implicit system. Since its introduction, it has been widely used [2,3]. For MASs,
its definition is given in [4], and its application has also become more and more widespread in real
life [5], industry [6] and technology [7,8] with the rapid development of science and technology.
Moreover, the three-link manipulators has been taken as an example of the descriptor MASs in [9].

As is well known, the consensus problem is one of the hot topics of coordinated control theory [10–14].
The main task of the consensus problem is to design distributed protocol according to the information
obtained from neighbors, so that the states of a group of agents can reach an agreement. Until now,
there exist many studies of the consensus problem of MASs. For example, the first-order system
consensus problem [15,16], second-order system consensus problem [17], general system consensus
problem [18–20]. For instance, in [16], the average consensus problem was explored for the first
order multi-agent systems with uncertain topologies as well as multiple time-varying delays; in [18],
the consensus problem was addressed for general linear multi-agent systems with a time-invariant
communication topology. In addition, the admissible consensus problem of the descriptor MASs
was further studied in [21]. The conditions of consensus-ability with respect to a set of admissible
consensus protocols were investigated in [9]. It is worth mentioning that the observer-based design
approach of [19] that can solve the consensus problem of general system was generalized to resolve the
admissible consensus problem in [22]. In [23], a distributed observer is used to solve the admissible
consensus problem of descriptor MAS, and a new framework is proposed.

However, in the real life, the exogenous disturbances exist and cannot be neglected, for
example, the wind, and the electromagnetic interference. Therefore, in this paper, we study the
admissible consensus problem of the descriptor MASs with exogenous disturbances. Many researchers
have studied the consensus problem of MASs with exogenous disturbance [24–29]. For example,
in [28], group consensus problems of first order dynamic agents in the presence of random noises
and communication delays were investigated, while L1 group consensus problem of discrete-time
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multi-agent systems with external stochastic inputs was studied in [29]. In addition, [30] also studied
the consensus problem of linear MASs with exogenous disturbances generated from heterogeneous
exosystems. However, there is little research on the admissible consensus problem for descriptor MASs
with exogenous disturbances. For example, [31] only studied cooperative output regulation of singular
heterogeneous MASs. This situation also appears in other literature, and there are few relevant results
on this issue. Therefore, in this paper, we further study the admissible consensus problem of descriptor
MASs with exogenous disturbances. The main contributions of this paper are (1) Consider a descriptor
MASs with exogenous disturbances, the consensus problem of general linear system is extended to
the descriptor MASs; (2) The disturbance observer for descriptor MASs is designed by state feedback;
(3) The disturbance observer is used for disturbance attenuation.

The rest of the paper is organized as follows: In Section 2, we introduce some basic concepts and
related theorems to describe descriptor MASs. Then, the formulation of the considered problem is
introduced. In Section 3, the disturbance observer is proposed, the corresponding distributed control
protocol is designed and sufficient conditions that ensure the states of a group of agents can reach
an agreement are obtained. Section 4 gives a numerical example. Finally, conclusions are given in
Section 5.

2. Preliminaries and Problem Formulation

2.1. Preliminaries

In this subsection, some notations and preliminaries involved in this paper are introduced.
In denotes the n × n identity matrix. For a matrix A (or a vector x), AT (or xT) represents the
transpose of A (or x). Let σ(A) be the set of all eigenvalues of the square matrix A, and let σ(E, A)

be {λ|λ ∈ C, det(λE− A) = 0}. C− represents the open left-half complex plane. Let ⊗ denotes the
Kronecker product of matrix A ∈ Rm×n and B ∈ Rp×q, which is defined as

A⊗ B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB


and satisfies the following properties

(A⊗ B)(C⊗ D) = (AC)⊗ (BD)

A⊗ B + A⊗ C = A⊗ (B + C)

In this paper, the information interaction topology is modeled by a weighted digraph G = {V, ε,A},
where V = {v1, v2, · · · , vn} is the set of vertices, ε ⊂ V × V is the set of edges, A = [aij] ∈ Rn×n

is a weighted adjacency matrix. An edge of G that is from node vi to node vj is denoted by (vi, vj),
which represents node vj can get information from node vi, but not necessarily vice versa. The set
of neighbors of node vi is Ni = {vj|(vj, vi) ∈ ε}. aij denotes the weight of the edge (vj, vi) and
aii = 0, aij > 0 ⇔ (vj, vi) ∈ ε. The degree matrix D = diag{d1, · · · , dn} ∈ Rn×n of digraph G is a
diagonal matrix with di = ∑n

j=1 aij. Then, the Laplacian matrix of G is defined as L = D−A, which has
at least one zero eigenvalue with 1 = [1, 1, · · · , 1]T as its corresponding right eigenvector. In addition,
L has exactly one zero eigenvalue if and only if the directed graph G contains a directed spanning tree.

Definition 1. [21] Let E, A ∈ Rn×n. (i) The pair (E, A) is said to be regular if det(sE− A) is not identically
zero for some s ∈ C; (ii) The pair (E, A) is said to be impulse free if (E, A) is regular and deg(det(sE− A)) =

rankE for ∀s ∈ C; (iii) The pair (E, A) is said to be stable if σ(E, A) ⊆ C−; (iv) The pair (E, A) is said to be
admissible if (E, A) is impulse free and stable.
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Definition 2. (E, A, B) is stable, if there is a matrix K that satisfies σ(E, A + BK) ⊂ C−.

Definition 3. (E, A, C) is detectable, if there is a matrix L that satisfies σ(E, A + LC) ⊂ C−.

2.2. Problem Formulation

In this subsection, we will establish the model of the descriptor MASs with exogenous disturbances
and propose the corresponding consensus problem for this system. In addition, the corresponding
model of the exogenous disturbances system is also given.

Consider a descriptor MASs composing of n identical agents. The dynamic of agent i is modeled
by the following descriptor linear system

Eẋi(t) = Axi(t) + B(ui(t) + ωi(t)),
yi(t) = Cxi(t) + Dωi(t), i = 1, 2, · · · , n,

(1)

where xi(t) ∈ Rm is the state variable, yi(t) ∈ Rq is the measured output, ui(t) ∈ Rp is the control
input, ωi(t) ∈ Rp is exogenous disturbance. E, A, B, C, D are real constant matrices with appropriate
dimensions, and rankE = r < m.

Since E is a singular matrix, the initial state cannot be arbitrarily chosen, which needs to satisfy
some algebraic conditions.

The descriptor MASs (1) is said to achieve consensus, if the states of all agents satisfy

lim
t→∞

(xj − xi) = 0, i, j = 1, 2, · · · , n, (2)

for any initial states xi(0), i = 0, 1, · · · , n.
If the closed-loop system is admissible and achieves consensus, we say the protocol

ui(i = 1, 2, · · · , n) can solve the admissible consensus problem.
In this paper, we suppose that the disturbance ωi(t) is generated by the following linear

exogenous system
ξ̇i(t) = Gξi(t), (3)

ωi(t) = Fξi(t), (4)

where ξi(t) ∈ Rl is the state of the exogenous system, G ∈ Rl×l and F ∈ Rp×l are the matrices of the
disturbance system.

Lemma 1. [21] Assume that (E, A) is impulse free and (E, A, B) is stable. Then, the generalized
Riccati equation

AT P + PT A− PT BBT P + In = 0 (5)

ET P = PTE ≥ 0

has at least one admissible solution P, that is, (E, A− BBT P) is admissible. Furthermore, the admissible solution
P is unique in the sense of ET P.

Lemma 2. [9] Assume (E, A, C) is detectable, and the matrix P is the admissible solution of the following
Riccati equation

AT P + PT A− PT BBT P + CCT = 0 (6)

ET P = PTE ≥ 0.

Then, σ(E, A− (a + bi)BBT P) ⊂ C−, when a ≥ 1
2 , b ∈ R, where i is imaginary units.
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3. Main Results

In this section, we will design a disturbance observer to solve the problem caused by exogenous
disturbances. Moreover, in order to resolve admissible consensus problem, we propose the distributed
consensus protocol.

The disturbance observer is designed as follows

η̇i = (G + HBF)(ηi − HExi) + H(Axi + Bui),
ξ̂i = ηi − HExi,
ω̂i = Fξ̂i,

(7)

where ηi ∈ Rl is the internal state variable of the observer, ξ̂i and ω̂i are the estimated values of ξi and
ωi, respectively. H ∈ Rl×m is the gain matrix of the observer.

Let ei = ξi − ξ̂i, we can get

ėi = ξ̇i − ˙̂ξi
= Gξi − (η̇i − HEẋi)

= Gξi − [(G + HBF)(ηi − HExi) + H(Axi + Bui)− H(Axi + Bui + BFξi)]

= Gξi − Gηi + GHExi − HBFηi + HBFHExi + HBFξi
= G(ξi − ηi + HExi) + HBF(ξi − ηi + HExi)

= (G + HBF)(ξi − ξ̂i)

= (G + HBF)ei.

That is
ėi = (G + HBF)ei. (8)

Denoting e = (eT
1 , eT

2 , · · · , eT
n )

T , then, one has

(In ⊗ Il)ė = [In ⊗ (G + HBF)]e. (9)

We can get that the tracking errors ei, i = 1, 2, . . . , n, converge to 0, when the matrix G + HBF
is Hurwitz.

In order to resolve admissible consensus problem, we consider the following distributed
consensus protocol

ui = K ∑
j∈Ni

aij(xj − xi)− Fξ̂i, i = 1, 2, · · · , n (10)

where K is the gain matrix to be designed.

Theorem 1. For the descriptor MASs (1) whose interaction topology G contains a directed spanning tree,
suppose that the pair (E, A) is regular and impulse free, (E, A, B) is stable, and (E, A, C) is detectable.
Then, the protocol (10) can solve the consensus problem if

(i) The matrix G + HBF is Hurwitz;
(ii) K = αBT P, where matrix P is the unique admissible solution of (5) and α ≥ 1

2minλi(L) 6=0{Re(λi)}
,

i = 1, 2, · · · , n.

Proof. By substituting the control protocol (10) into the system (1), one has

Eẋi = Axi + Bui + BFξi

= Axi + BK ∑j∈Ni
aij(xj − xi) + BFei.

(11)

Next, we write formula (11) in the following form
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
Eẋ1

Eẋ2
...

Eẋn

 =


Ax1 + BK ∑j∈N1

a1j(xj − x1) + BFe1

Ax2 + BK ∑j∈N2
a2j(xj − x2) + BFe2
...

Axn + BK ∑j∈Nn
anj(xj − xn) + BFen



=


Ax1

Ax2
...

Axn

+




−∑j∈N1

a1j a12 · · · a1n

a21 −∑j∈N2
a2j · · · a2n

...
...

. . .
...

an1 an2 · · · −∑j∈Nn
anj

⊗ BK




x1

x2
...

xn

+


BFe1

BFe2
...

BFen



(12)

Denote x = (xT
1 , xT

2 , · · · , xT
n )

T , e = (eT
1 , eT

2 , · · · , eT
n )

T . Then, it follows that

(In ⊗ E)ẋ = (In ⊗ A− L⊗ BK)x + (In ⊗ BF)e (13)

Then, after manipulations with combining (9) and (13), the closed-loop system can be expressed as[
In ⊗ E 0

0 In ⊗ Il

] [
ẋ
ė

]

=

[
In ⊗ A− L⊗ BK In ⊗ BF

0 In ⊗ (G + HBF)

] [
x
e

]
.

(14)

Since the topology G contains a directed spanning tree, L has exactly one zero eigenvalue.
Let rT = (r1, r2, · · · , rn) be the left zero eigenvector of L with rT1 = 1. With the help of the Jordan

decomposition theory, there exists a transformation matrix S with form S = [1, S1] and S−1 =

[
rT

Q1

]

such that S−1LS =

[
0 0
0 Λ

]
, where Λ is the Jordan block diagonal matrix. The diagonal entries of

the upper triangular matrix Λ are non-zero eigenvalue of L.
Furthermore, define the following state transformation:

x̄ = (S−1 ⊗ Im)x,

ē = (S−1 ⊗ Il)e.

Then, (14) can be divided into the following two subsystems

E ˙̄x0 = Ax̄0 + BFē0

˙̄e0 = (G + HBF)ē0 (15)

and [
In−1 ⊗ E 0

0 In−1 ⊗ Il

] [
˙̄x1

˙̄e1

]

=

[
In−1 ⊗ A−Λ⊗ BK In−1 ⊗ BF

0 In−1 ⊗ (G + HBF)

] [
x̄1

ē1

]
,

(16)

where x̄ = [x̄0T , x̄1T ]T , ē = [ē0T , ē1T ]T , and x̄0T is the first m components of x̄, ē0T is the first l
components of ē.

At the same time, we have
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x(t)− 1⊗ x̄0(t)

= (S⊗ Im)x̄(t)− 1⊗ x̄0(t)

= [1⊗ Im S1 ⊗ Im]

[
x̄0(t)
x̄1(t)

]
− 1⊗ x̄0(t)

= (S1 ⊗ Im)x̄1(t).

(17)

Obviously, if the system (16) is admissible, we can get x̄1(t) → 0, as t → ∞. Thus, x(t)− 1⊗
x̄0(t)→ 0, as t→ ∞, which means that limt→∞(xj − xi) = 0, i, j = 1, 2, . . . , n.

Next, we will prove that the descriptor system (16) is admissible. Due to the matrix G + HBF is
Hurwitz, the admissibility of the system (16) is equivalent to the admissibility of all pairs (E, A− λiBK).
According to Lemma 1, P is the unique admissible solution of (5), therefore, (E, A− BBT P) is admissible.
Due to A − λiBK = A − αλiBBT P, where Re(αλi) ≥ 1

2 , i = {2, 3, . . . , n}, according to Lemma 2,
(E, A− λiBK)(i = {2, 3, . . . , n}) is admissible. So far, the proof is finished.

4. Simulations

In this section, a simulation result is presented to illustrate the previous theoretical results.
The network includes five agents. The topology can be described in Figure 1. The following matrix is
the weighted adjacency matrix A of the topology:

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 2 0

 .

Choosing matrices

E =

1 0 0
0 1 0
0 0 0

 , A =

 0.7 3.3 −1.3
3.3 4.3 −3.1
−1.3 −2.2 0.8

 , B =

 1
2
−1



G =

−1 0 0
0 −0.6 0
0 0 0

 , H =

2 0 2
0 1 0
0 0 1

 , F = [0 0 1].

Solving the Equation (5), we obtain that

P =

1 1 0
1 2 0
0 0 2

 .

Then, we have
α = 1

and
K =

[
3 5 −2

]
.

For the simulation, let initial states of the agents be the following:
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x1 =

 1
0.5

279/468

 , x2 =

 0.5
2

711/156

 , x3 =

 −2
2.5

861/312

 , x4 =

 −0.5
−1

−353/104

 , x5 =

 −1
1

328/416

 .

Figure 1. Communication topology.

Figures 2–4 show the states trajectory for all agents, indicating that the states trajectory of agents
reach an agreement by the distributed control protocol (10). If we take the x13 of Figure 4 as an example,
although its initial state and direction of movement are very different from those of other agents,
they can eventually reach the consensus agreement by the distributed control protocol (10).
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Figure 2. The first component of the states.
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Figure 3. The second component of the states.
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Figure 4. The third component of the states.

The time evolutions of tracking errors are depicted in Figures 5–7, we can get that the tracking
errors converge to zero asymptotically.

0 2 4 6 8 10 12 14 16 18 20
−30

−20

−10

0

10

20

30

40

t(s)

e

error

 

 
e

11

e
21

e
31

e
41

e
51

Figure 5. The first component of tracking errors.
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Figure 6. The second component of tracking errors.



Entropy 2018, 20, 276 9 of 10

0 2 4 6 8 10 12 14 16 18 20
−15

−10

−5

0

5

10

15

20

25

30

t(s)

e

error

 

 
e

13

e
23

e
33

e
43

e
53

Figure 7. The third component of tracking errors.

5. Conclusions

In this paper, we study the admissible consensus for descriptor MASs with exogenous
disturbances. A design method of disturbance observer is proposed, so that the states of all agents reach
an agreement. Through the use of graph theory and the generalized Riccati equation, some conditions
were obtained for admissible consensus of descriptor MASs with exogenous disturbances. The future
work is to consider the admissible consensus of the descriptor MASs with leaders. In addition,
since this paper does not consider the time delay, the perspective of considering the time delay will
also be an interesting topic.
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