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Abstract: Bounds are developed on the maximum communications rate between a transmitter and a
fusion node aided by a cluster of distributed receivers with limited resources for cooperation, all in
the presence of an additive Gaussian interferer. The receivers cannot communicate with one another
and can only convey processed versions of their observations to the fusion center through a Local
Array Network (LAN) with limited total throughput. The effectiveness of each bound’s approach for
mitigating a strong interferer is assessed over a wide range of channels. It is seen that, if resources
are shared effectively, even a simple quantize-and-forward strategy can mitigate an interferer 20 dB
stronger than the signal in a diverse range of spatially Ricean channels. Monte-Carlo experiments
for the bounds reveal that, while achievable rates are stable when varying the receiver’s observed
scattered-path to line-of-sight signal power, the receivers must adapt how they share resources in
response to this change. The bounds analyzed are proven to be achievable and are seen to be tight
with capacity when LAN resources are either ample or limited.

Keywords: distributed reception; communications networks; channel capacity; relay channels;
interference mitigation

1. Introduction

We are at a remarkable time for radio systems. With the significant reductions in cost
and improvements in performance, there has been an explosion in the number of radio systems
with a wide range of applications including personal, machine-to-machine, vehicle-to-vehicle,
and Internet-of-Things (IoT) communications. In many situations, radios cluster in physically close
groups. This has two effects. First, it increases the likelihood of interference between systems and
necessitates that systems be designed to maintain good performance in these conditions. Second,
it creates an opportunity for groups of independent radios to be used as a distributed array to improve
performance. Considering this new setting, we study the problem of receiving a signal in the presence
of interference with the help of a distributed array, as illustrated in Figure 1.

We develop bounds on the maximum communications rate from a single transmitter to a base
node that is provided side information from a distributed receive array in the presence of interference.
The nodes that provide side information to the base are identified as helpers, and we assert they do
not communicate with one another, but only forward information to the base through a previously
established reliable Local Array Network (LAN) link, and that this link only supports a maximum
total throughput which all the helpers must share.

This receive system can mitigate a strong interferer in a wide variety of environments. We consider
the effects of an overall LAN capability that is parameterized by a total number of bits that helpers can
share with the base for each source channel usage. Furthermore, to investigate algorithmic needs as a
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function of environmental conditions, we consider a spatially Ricean channel and a parametrically
defined interference. Finally, we consider both the conditions in which the base node does and does not
have its own noisy observation of the source signal. Our bound development in this paper provides
significant extensions to and clarifications of the results found in References [1,2], and our preliminary
efforts in Reference [3].

Figure 1. A broadcast node speaks to many helper nodes, which forward limited amounts of
information to a base node. Additive interference from neighboring systems is present in the link from
broadcaster to helpers.

1.1. Results

We perform an analysis of the achievable rates of the system in the presence of an interferer.
The following contributions are provided:

• Upper and lower bounds on the system’s achievable communication rate in correlated Gaussian
noise and regimes where these bounds are tight (Section 3). The strongest lower bound is given
in Theorem 7.

• Performance characteristics of these rates in the presence of an interferer (Section 4.1).
• Behavior of the strategies in various scattering environments (Section 4.2). The scattering

environment is seen to not affect average performance if LAN resource sharing adapts to
the channel.

• A strengthening of an existing achievability proof for the system, where the same rate is achieved
using less cooperation between nodes (Remark 7).

1.2. Background

The problem of communicating with the help of an array of distributed receivers has been
studied in a variety of contexts, most generally as an instance of communications over a single-input
multiple-output (SIMO) channel. A variety of SIMO channels have been extensively analyzed, but most
analyses are subtly different than the problem considered here. Our work is done in the context of
information theory and bounds achievable communications rates, while in contrast most existing
studies work towards minimizing distortion metrics or bit error rates.

Results presented here are a significant extension and generalization of the work in [3], where there
is no treatment of the system’s performance in the presence of an interferer. A tighter inner bound
than all those in [3] is included in Theorem 7, and full proofs are provided for all the results.

Achievable communications rates for this network topology were studied in References [1,2],
although their bounds do not directly apply to channels with a Gaussian interferer. The studies
provide an example demonstrating the sub-optimality of a Gaussian broadcaster when no interference
is present, and suggest that non-Gaussian signaling techniques are needed for this sort of network.
In contrast, we demonstrate in Section 4 that an achievable rate using Gaussian signaling typically
comes quite close to the system’s upper bound in many practical regimes.
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The helpers in the system we have described seem like relay nodes but there is an important
distinction. Here, the ensemble of links from each helper to the base are like those in a graphical
network, available for design within distributional and rate constraints. This is not usual in the context
of relay networks, including those studied in very general setting such as Reference [4]. Studies such
as References [5–7] detailed using a collection of receivers as beam forming relays to a destination node
in a network with structure similar to the system considered here. In our situation, each helper-to-base
link is orthogonal to the others, so beam forming studies are not directly applicable.

Performance of specific coding schemes for this system were studied in References [8–10].
In particular, [10] was able to identify a scheme that can perform to within 1.5 dB of allowing the
base and receivers to communicate without constraints. Results in our study further work towards
characterizing achievable rates of the system rather than designing and analyzing the performance of
specific modulation schemes.

The topology we consider is similar to many-help-one problems such as the “Chief Executive
Officer (CEO) problem” posed by Berger in Reference [11]. In this scenario, some node called the CEO
seeks to estimate a source by listening to “agent” nodes which communicate to the CEO at fixed total
rates. Many variations of this problem have been studied, for instance in Reference [12] in limit with
number of agents. The focus of the CEO problem and most of its derivatives are to estimate a source to
within some distortion (often mean squared error), whereas the focus here is on finding achievable
rates for lossless communications.

The noisy Slepian–Wolf problem [13] may be interpreted as communications in the opposite
direction of our system: distributed, cooperative helpers have a message for a base, but their
cooperation ability is limited and their modulations must be sent over a noisy channel.

2. Problem Setup

Throughout the paper, we use the notation in Table 1. A broadcaster seeks to convey a message to
a base at some rate R > 0 bits per time period. The message M is uniformly distributed along [1 : 2TR]

over some T ∈ N time periods. Our goal is to determine the greatest rate R at which the base can
recover M with low probability of error.

Table 1. Notation and terminology.

CN (0, Σ) Complex circularly symmetric normal distribution with zero mean and Hermitian
covariance matrix Σ

I(·; ·), H(·), h(·) Mutual information, Shannon entropy and differential entropy
A†, a† Conjugate transpose of matrix A, vector a

aS; S ⊆ T Vector with components indexed by S
|A| Determinant of a matrix A

[a : b] Integers from a to b, inclusive
a � 0 Vector a with non-negative elements
A � 0 Positive semidefinite matrix A

1N N-row vector of 1 s
Aj,k Element on row j, column k of a matrix A

diag(a) Diagonal matrix where the (i, i)th diagonal element is the ith element of vector a
In×n n× n identity matrix
‖x‖ Vector magnitude/2-norm
R+ Nonnegative real numbers

Before communicating, the broadcaster and base agree on a modulation scheme φ : [1 : 2TR]→ CT ,
where each possible message m ∈ [1 : 2TR] is mapped to a T-length signal through φ. Each of these
signals is denoted xm = (xm,1, . . . , xm,T) = φ(m), and it is chosen within the broadcaster’s power
constraint: 1

T ∑T
`=1 |xm,`|2 ≤ 1. To send message M, the broadcaster transmits xM, which we denote

X = (X1, . . . , XT) = xM.
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The signal is observed by N + 1 single-antenna receive nodes through a static flat fading channel
and additive white Gaussian noise. Enumerating these receivers 0–N, we identify the base as the “0th”
receiver, and call the rest helpers. For n ∈ [0 : N], at each time t, the nth receiver observes

Yn,t = hnXt + Wn,t, (1)

where

• the channel h ,

[ h0
...

hN

]
∈ C(N+1)×1 is constant over time t, and

• the noise (W0,t, . . . , WN,t) ∼ CN (0, Σ) has covariance Σ across receivers, and is independent
over t.

The receiver observations are written as vectors:

Yn , (Yn,1, . . . , Yn,T) ∈ CT , (2)

Y , (Y0, Y1, . . . , YN) ∈ (CT)N+1. (3)

Helper n for n ∈ [1 : N] employs a (possibly randomly chosen) vector quantizer Qn on its received
sequence Yn to produce a coarse rn-bitrate summary of its observations, Un , Qn(Yn). The vector of
helper messages is denoted:

U , (U1, . . . , UN) (4)

= (Q1(Y1), . . . , QN(YN)) (5)

and the quantizers (Q1, . . . , QN) = Q satisfy two properties:

• Every node in the system is informed of each quantizer’s behavior, and quantizers produce
their compression using only local information. Formally, the probability distribution of
(Q, X, Y , U) factors:

P(Q,X,Y ,U) = PQ · PX|Q · PY |X ·
N

∏
n=1

PUn |Yn ,Q. (6)

• Quantizations are within the LAN constraint:

1
T

H(Un|Q) ≤ rn, n ∈ [1 : N]. (7)

The vector of the helper’s quantization rates is denoted:

r , (r1, . . . , rN) ∈ C(N+1)×1. (8)

Each Un is conveyed precisely to the base over a Local Array Network (LAN). We assume the
LAN only supports a limited amount of communication between helpers and the base. For instance,
the helpers must all share a small frequency band. We model this by asserting that feasible rate vectors
r belong to a bounded setRLAN(L) with a sum-capacity L > 0:

RLAN(L) ,

{
r

∣∣∣∣∣ N

∑
n=1

rn ≤ L, rn ≥ 0

}
. (9)

We refer to the condition that r ∈ RLAN(L) as the LAN constraint. The base reconstructs an
estimate X̂ of X using its own full-precision observation Y0 and side information U from the helpers,
then recovers an estimate M̂ of message M from X̂. A block diagram of the system is shown in Figure 2.
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Channel h and noise covariance Σ are assumed to be static throughout the transmission of each
message and are known to all the receive nodes. Both the transmitter and the receivers are assumed to
have knowledge of the set of feasible rates,RLAN(L). The environment determines:

• channel fades h,
• noise covariance Σ and
• maximum LAN throughput L.

Available for design are:

• quantizers Q,
• message modulation {xm}m∈[1:2TR ],
• rates each helper should send to the base r and
• fusion and decoding methods at the base to produce M̂.

XM

+

+

...

+

W0
W1

WN

Q1

...

QN

Base X̂ M̂

Y0

Y1

YN

U1

r1

UN

rN

Figure 2. The system in consideration. A message M is broadcast as X with average power 1. The signal
is received by a base and N helper nodes, occluded by correlated AWGN W . Helper n for n ∈ [1 : N]

quantizes Yn through Qn to produce an rn-bit summary Un. The quantized observations U and the
base’s full-precision reception Y0 are combined to produce an estimate X̂ of X, then an estimate M̂ of M.

We say a communication rate R is achievable if for any ε > 0 then for large enough T there is some
distribution of quantizers Q satisfying 1

T H(Qk(Yk)|Q) ≤ rk for each k, encoders φQ : [1 : 2TR]→ X T

and decoders fQ where:
P( fQ(U) 6= M) < ε. (10)

Theorem 1. The maximum communications rate achievable with arbitrarily low probability of error is:

C = sup
T

max
(X,Y ,Q,U)∼P∈ST :

E|X|2≤1

1
T

I(X; Y0, U|Q) (11)

where ST is the collection of joint distributions with block length T that satisfy conditions in Equations (6)
and (7) for some r ∈ RLAN(L).

Proof. C is achievable through the usual noisy channel coding argument [14]. For any achievable
rate R, applying Fano’s inequality to H(M|Q) gives R ≤ C.

In the sequel, we bound C from Theorem 1 with computable expressions.
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3. Bounds on Communications Rates

The system’s capacity C can be upper bounded by considering a stronger channel where all
helpers are informed of each other’s observations. Compute:

I(X; Y0, U|Q) = I(X; U|Y0, Q) + I(X; Y0|Q) (12)

≤ H(U|Q) + I(X; Y0) (13)

≤ T ·
(

L + log2

[
1 + ‖h0‖2/Σ0,0

])
, (14)

where the first inequality follows since Q → X → Y0 is a Markov chain (Equation (6)). If the
LAN constraint were not imposed and the base had access to the helpers’ receptions in full precision,
the receive side would be equivalent to a multi-antenna Gaussian receiver. By noisy channel coding [15],
the capacity of this stronger channel is maxPX :E[|X|2]<1 I(X; Y) (here, (X, Y) are variables at a single
timepoint) which, by a derivation given in [16], simplifies to the familiar upper bound:

log2

[
|Σ + hh†|
|Σ|

]
. (15)

Taking the minimum of this bound and Equation (14) yields an upper bound for the original
system. This is an instance of a general cut-set upper bound from [17].

Remark 1. Any achievable rate R must satisfy

R ≤ min
{

log2

[
|Σ + hh†|
|Σ|

]
, L + log2

[
1 + ‖h0‖2/Σ1,1

]}
. (16)

Proof. Justified by the preceding discussion.

The rest of the section is dedicated to four communication strategies for the system in order of
increasing complexity and diversity utilization. The strongest bound is presented in Theorem 7. It is
described using the context of the preceding two bounds.

3.1. Achievable Rate by Decoding and Forwarding

Treating each helper node as a user seeking to receive its own message, the link from the
broadcaster to helpers is a scalar Gaussian broadcast channel. The capacity region of this channel was
characterized in Reference [18], and in particular its sum-rate was given in Reference [19]. In the scalar
case, this sum rate reduces to:

max
n

log2

[
Σn,n + |hn|2

Σn,n

]
, (17)

where only the point-to-point channel between transmitter and the best receiver is used.

Remark 2. The following rate is achievable

RBC(L) = max
{

log2

[
Σ0,0 + |h0|2

Σ0,0

]
, min

{
L, max

n
log2

[
Σn,n + |hn|2

Σn,n

]}}
. (18)

The rate is achievable with the following facilities:

• Helpers are informed of which helper is the best (best is derived from h, Σ, L).
• The transmitter and best helper coordinate a codebook of appropriate rate and distribution.
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Proof. By having the broadcaster send a message to the nth receiver, a rate

log2

[
Σn,n + |hn|2

Σn,n

]
(19)

is achievable from transmitter-to-receiver. If n = 0 (i.e., the transmitter broadcasts to the base), then
Equation (19) is achievable from transmitter-to-base. Otherwise, Equation (19) is achievable from
transmitter-to-base if it is less than L by forwarding the receiver’s decoding over the LAN.

Remark 3. When the base does not have its own reception (i.e., I(X; Y0) = 0) and

L ≤ max
n

log2

[
Σn,n + |hn|2

Σn,n

]
(20)

then the system’s capacity is L.

Proof. By assumption, the upper bound in Equation (16) equals L. This is achievable by Remark 2.

The strategy to achieve this rate requires a strong amount of cooperation from the broadcaster,
since the decoding receivers must all share codebooks with the transmitter.

3.2. Achievable Rate through Gaussian Distortion

Rate-distortion theory shows that to encode a Gaussian source Y ∼ N (0, σ2) with minimum rate
such that distortion does not exceed some maximum allowable mean squared error D > 0, the rate
must be at least

R(D) = log2(σ
2)− log2(D). (21)

To achieve this rate, the encoding operation must emulate the following test channel (Reference [14]):

Y +

W ∼ CN (0, 1)

Z = αY + βW
α/β β

(22)

where α =
√

1−D/σ2 and β =
√
D. Dithered lattice quantization [20] is one method that can be

used to realize such a quantizer in limit with block length in addition to having other nice analytic
properties. Using this method, in limit with block length, the base’s estimates for a helper’s observation
at any single timepoint can be made to approximate

Zn(rn) , Yn + WQ,n(rn) (23)

where WQ,n(rn) is independent Gaussian distortion with variance some function of the helper’s rate rn.
We will now derive this function. Define

WQ(r) , (WQ,1(r1), . . . , WQ,N(rn)) ∈ CN×1, (24)

and the vector of Zns corresponding to this choice of WQ,n as:

Z(r) , Y + WQ(r). (25)

The subscript Q here is a decoration to distinguish quantization distortion terms WQ, WQ,n from
environment noise, W , Wn.

If the nth helper is to forward information to the base at rate rn, then the amount of distortion in
the helper’s encoding under this strategy can be determined by setting Equation (21) equal to rn and
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solving for D, with σ2 equal to the helper observation’s variance, ‖hn‖2 + Σn,n. Scaling the output of
the test channel the helper emulates (Equation (22)) by 1/α causes it to equal the helper’s observation
plus independent Gaussian noise with variance (β/α)2 = D/(1−D/σ2). This means that, in such a
system, the distortion from the helpers is equivalent to adding independent additive Gaussian noise
with variance:

Var(WQ,n(rn)) =
‖hn‖2 + Σn,n

2rn − 1
. (26)

By Equations (1) and (26), all the noise and distortion on the signal present in the helpers’ messages
to the base are summarized by the vector W + WQ with covariance matrix

D(r) , Σ + diag
(

0,
‖h1‖2 + Σ1,1

2r1 − 1
, . . . ,

‖hN‖2 + ΣN,N

2rN − 1

)
. (27)

We refer to this system as a Gaussian distortion system. A block diagram of this system is shown in
Figure 3. This system is equivalent to a multi-antenna Gaussian receiver and its achievable rate has a
closed form:

RG(r) , I(X; Z(r)) = log2

[
|D(r) + hh†|
|D(r)|

]
. (28)

Theorem 2. For a distributed receive system as described in Section 2 with noise covariance matrix Σ,
LAN constraint L and fixed average helper quantization rates r ∈ RLAN(L), then a rate RG(r) is achievable
with the following facilities:

• The transmitter and base coordinate a codebook of appropriate rate and distribution.
• Each n-th helper is informed of an encoding rate rn (optimal choice derived from h, Σ, L).
• Each helper coordinates a random dither with the base.
• The base is informed of r, h, Σ, L.

All the details of this derivation are formalized in Appendix B.
Maximizing RG overRLAN(L) gives a lower bound on the system capacity:

RG,max(L) , max
r∈RLAN(L)

RG(r). (29)

Unfortunately, this expression cannot be simplified much in general. Maximization of RG over
RLAN(·) can be performed efficiently using quasi-convex optimization algorithms:

Remark 4. The max of RG(r) follows the maximum of h†D(r)−1h, which is quasi-concave in r.

Proof. The maximum of RG follows the maximum of −h†D(r)−1h by the matrix determinant lemma.
It suffices to show that the restriction of this functional on the intersection of any line with RN×1

+ is
quasi-concave (see Reference [21]). Further, a one-dimensional function is quasi-concave if anywhere
its derivative is 0 and its second derivative is below 0.

Fix any a, b ∈ RN×1, denote Dt , D(·)|ta+b for any t where ta + b ∈ RN×1
+ . Define At , d

dt Dt,
and f (t) , −h†D−1

t h. Then,
d
dt

f (t) = AtD−1
t h (30)

d2

dt2 f (t) = (D−1
t h)†

[
d
dt

At − 2AtD−1
t At

]
(D−1

t h). (31)

If d
dt f (t) = 0, then D−1

t h is in the null space of At so the−2AtD−1
t A term in Equation (31) vanishes.

d
dt At is negative definite in RN×1

+ so d2

dt2 f (t) < 0 there, establishing f ’s quasi-concavity and thus that of
−h†D−1

t h†. Since −h†D−1
t h† is quasi-concave along all of RN×1

+ , then it is also quasi-concave in any
convex restriction of that domain. RLAN(L) is a simplex, which is convex.
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RG,max(L) is tight with the upper bound in Equation (16), in limit with LAN throughput L.

Remark 5. RG,max(L)→ C as L→ ∞.

Proof. RGmax(L) ≥ RG(L/N · 1N), and if L→ ∞ then

RG( L/N · 1N )→ log2

[
|Σ + hh†|
|Σ|

]
(32)

by continuity of log2, sums, and the matrix determinant (in terms of matrix coordinates). The limit
in Equation (32) is greater than or equal to Equation (16), establishing the remark.

This strategy has the benefit of not needing much coordination between receive nodes.
The transmitter does not have to share codes with helpers because here the helpers do not perform any
decoding. Each helper needs only its encoding rate and its own channel state to form its messages properly.

X

+

+

...

+

W0
W1

WN

+

...

+

WQ,1

WQ,N

Base X̂

Y0

Y1

YN

Z1

r1

ZN

rN

Figure 3. Gaussian distortion System: Quantizer distortion is modeled as additive white Gaussian
noise, where enough noise is added so that the capacity across quantizers is some given rate vector r.

3.3. Achievable Rate through Distributed Compression

Helper n for n ∈ [1 : N] in a realization of the Gaussian distortion system described in Section 3.2,
on average and with long codes, will produce an rn-bit encoding of its observation that can be
decoded to produce the helper observation with additional approximately Gaussian noise. Since all
the helper’s quantizations contain the same signal component (and possibly the same interference),
they are correlated and can be compressed before forwarding to allow for less noise to be introduced
in quantization.

The Slepian–Wolf theorem [22] shows that if the LAN is such that helpers can encode at rates
ρ , (ρ1, . . . , ρN), then the helpers can losslessly convey the encodings to the base at lower rates r � ρ,
as long as r and the encodings U satisfy the conditions that for all subsets S ⊆ [1 : N], then:

H(US|USC , Y0, Q) < ∑
n∈S

rn. (33)

Note that Y0 is always included in the conditioning because Y0 is available at the base node in
full precision.

In the Gaussian distortion setting described right before Equation (23), H(US|USC , Y0, Q) can be
made close to I(YS; ZS(ρ)|ZSC (ρ), Y0) with time expansion. The details of this are given in Lemma 2.
Maximizing over the LAN constraint in Equation (9), the following rate is achievable:

RDC(L) , max
r∈RLAN(L)

max
ρ∈RDC(r)

RG(ρ) (34)



Entropy 2018, 20, 269 10 of 24

where

RDC(r) =

{
ρ : ∀S ⊆ [1 : N],I (YS; ZS(ρ)|ZSC (ρ), Y0) < ∑

n∈S
rn

}
. (35)

Z(·) in Equation (35) is defined as in Equation (25). We can then state the following:

Theorem 3. For a distributed receive system as described in Section 2 with noise covariance matrix Σ and LAN
constraint L, RDC(L) is achievable with the following facilities:

• The transmitter and base coordinate a codebook of appropriate rate and distribution.
• Each n-th helper is informed of a quantization rate ρn and binning rate rn, (optimal choice derived

from h, Σ, L).
• Each helper coordinates a random dither with the base.
• The base is informed of ρ, r, h, Σ, L.

The base can unambiguously decompress the helper’s compressed encodings with low probability
of error if and only if ρ is chosen such that Equation (33) is satisfied. However, in analog to Corollary 1
from Reference [1], the rate in 6 can be improved by expandingRDC(r) to include some of the ρ where
the base cannot perform unambiguous decompression. This helps because even if the encoding rates
in ρ are chosen outside ofRDC(r) so that helpers cannot convey U to the base unambiguously, some
extra correlation with X is retained through this distortion.

Theorem 4. For a distributed receive system as described in Section 2 with noise covariance matrix Σ and LAN
constraint L, the following rate is achievable:

RDC(L) , max
r∈RLAN(L),

λ>0

max
ρ∈Rλ

DC(r)
RG(ρ)− λ (36)

where

Rλ
DC(r) ,

{
ρ : ∀S ⊆ [1 : N],I (YS; ZS(ρ)|ZSC (ρ), Y0) < ∑

n∈S
rn + λ

}
. (37)

The rate requires the following facilities:

• The transmitter and base coordinate a codebook of appropriate rate and distribution.
• Each n-th helper is informed of a quantization rate ρn, binning rate rn and hull parameter λ (optimal choice

derived from h, Σ, L).
• Each helper coordinates a random dither with the base.
• The base is informed of ρ, r, λ, h, Σ, L.

All the details of Theorems 6 and 7 are shown in Appendix B.

Remark 6. The capacity of the system is RDC(L) under the following restrictions:

• Σ is diagonal (no interference).
• The base does not have its own full-precision observation of the broadcast (h0 = 0).
• The broadcaster must transmit a Gaussian signal.
• Construction of helper messages is independent of the transmitter’s codebook X .

This is demonstrated in Appendix C. The last three assumptions are necessary:

• Since the base has codebook knowledge, it is possible for the transmitter to send a direct message
to the base, which is not accounted for in the compress-and-forward strategy used for RDC(L).
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• The Gaussian broadcast assumption is needed because of a counterexample given in Reference [1].
• Codebook independence is necessary because RDC(L) is strictly less than the upper bound in

Equation (16), but, by Remark 3, this upper bound is achieved in some regimes.

Theorem 7 and Remark 7 strengthen Corollary 1 and Theorem 5 from Reference [1] since we
show that the same rate can be achieved with less cooperation between transmitter and receivers.
Sanderovich et al. [1] used a “nomadicity” assumption which asserts that the mapping from transmitter
messages to codewords is not present at the helpers, whereas Theorem 7 shows (the same argument
applying to the general discrete case) that indeed the same rate is achievable when helpers have no
knowledge at all of the codewords the transmitter is using.

Similar to the Gaussian distortion achievable rate, the distributed compression technique does
not require cooperation between the transmitter and helpers. It does, however, require a priori sharing
of codes from the helpers to the base so that the helpers can perform distributed compression.

4. Ergodic Bounds

In this section, the bounds are averaged over random channels in various regimes. Each bound
tested is a deterministic function of:

• number of helpers N,
• LAN constraint L,
• noise covariance matrix Σ, and
• channel h (assumed to be static and precisely estimated a priori per each channel use).

In all graphs, the rate from Equation (16) is called “Upper Bound”, the rate from Equation (28)
is “Gaussian Distortion”, the rate from Theorem 7 is “Distributed Compression” and the rate from
Remark 2 is “Broadcast”. A discussion of the optimizations performed for the Gaussian Distortion and
Distributed Compression bounds is in Appendix A.

4.1. Performance in the Presence of an Interferer

One motivation for increasing receive diversity is to better mitigate the effect of interference, so it
is important to study the extent to which the strategies from Section 3 can do so.

We model interference as a zero-mean Gaussian broadcast independent of our system.
Our system’s nodes are informed of nothing more than the scales at which the interferer appears
in our receivers’ observations. This assumption prohibits using dirty paper coding [23] and other
transmit-side interference mitigation strategies. With this model, the covariance matrix of noise terms
associated with a particular interferer seen by the receivers is a matrix A = aa†, where a ∈ CN+1.
In all trials run, a single interferer was assumed to be present at all nodes with power α and random
phase so that

Σ = IN+1×N+1 + α · aa†. (38)

with an = ej2π·θn , θn ∼ Unif[0, 1] where Unif is the uniform distribution.
Figure 4 shows the difference in achievable rates with and without interference for different

receive-side strategies. Even when a strong rank-one interferer is present at all the nodes, achievable
communications rates are comparable to the case without an interferer.

Sanderovich et al. [1] provided an example of a system such as the one in the present work where
a Gaussian transmitter is significantly sub-optimal. In contrast, we see in Figure 4 that, over an average
of many random channels in a range of settings, achievable rates using Gaussian signaling come quite
close to an upper bound on the system. Even the relatively simple Gaussian distortion bound is close
in performance to the optimum in all regimes but one with strong interference and little cumulative
helper-to-base information. In this regime the LAN constraint limits the helper’s ability to provide the
base with the diversity of observations necessary to perform good interference mitigation.
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Figure 4. Bound performance versus LAN constraint (that is, the total rate available to hub from all
the helpers combined). Four helpers with 0 dB average receiver SNR, averaged over 1000 channels
with gains ∼ CN (0, I). Interferer present at each receiver with a uniform random phase and specified
INR. Single-user decode-and-forward is greatly affected by interference (Compare the Broadcast curves
from −20 dB to 20 dB INR). Distributed compression only offers significant benefits over Gaussian
compress-and-forward in strong interference and when LAN resources are scarce.

4.2. Path Diversity versus Performance

It is reasonable to expect that the best strategy for a distributed receiver to use will change
depending on its environment. If the receivers observe the signal through a single line-of-sight path,
all else being equal, the signal and noise at each receiver will have similar statistics. In contrast,
in environments with many scatterers, the channel statistics will vary more across spatially
distributed receivers.

The level of attenuation at a receiver can be modeled with a Rician distribution [24]. The Rician
distribution follows the magnitude of a circularly-symmetric complex Gaussian with nonzero mean
and can be parameterized by two nonzero values: a scale Ω > 0 representing the average receive SNR
and a shape K > 0 (called a K-factor in other literature) denoting the ratio of signal power received
from direct paths to the amount of power received from scattered paths. By construction, if K = 0,
then a Rician distribution is equivalent to a Rayleigh distribution with mean Ω. In contrast, if K → ∞,
then the distribution approaches a point mass at Ω (Reference [25]).

The type of scattering environment does not greatly affect the average rate achievable by any
bound other than the Broadcast bound (Figure A1). This is because the Broadcast bound’s only
utilization of receive diversity is in channel variances which is small when the channel is dominated
by line-of-sight receptions. Despite the invariance of most bounds to K, the profile of helper-to-base
bits does change. Figure 5 shows that, no matter the other parameters, in high scattering, it is most
helpful for the base to draw most of its information from the highest SNR helper while mostly ignoring
low-SNR helpers’ observations. The imbalance is less pronounced in interference and when SNR is less
varied across receivers (high K), since in these regimes, gaining diverse observations for combining is
more beneficial than using the strongest helper’s observation.

When the base collects its own full-precision observation, the helper rate profile is unaffected by
interference and scattering, where most helper information is provided by the highest SNR helper.
In practice, in this situation, the base might use its observation as an estimate of the interferer and
subtract it from a compression of the strongest helper’s observation.
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Figure 5. Average rate at which each helper forwards to base in distributed compression (Theorem 7)
versus K-factor (scattered-to-direct-path received signal power ratio). Four helpers with 0 dB average
receive SNR and a LAN constraint of L = 5 bits per channel use of side information the helpers
share to inform the base of their observations. Averaged over 1000 channels with gains ∼ CN (0, I).
Interferer present at each receiver with a uniform random phase and specified INR. As the proportion
of line-of-sight path power increases, the need for receive diversity increases and the base draws
information from more helpers. This does not occur when the base has its own observation, when
presumably it is used as an estimate of the interferer to be mitigated from a compression of the
highest-SNR helper’s observation.

5. Conclusions

One upper bound and three lower bounds on communication rate were developed. A simple
upper bound (Remark 1) was derived, achievable when the LAN constraint is stringent (small L),
and achievable in limit as the LAN constraint is relaxed (L → ∞). An achievable rate (Theorem 5)
considering quantizers which add Gaussian distortion was seen to provide large gains in interference
over a rate that does not fully use the distributed receive array (Remark 2). The rate (Theorem 7)
achieved when a distributed compression stage is added to the previous technique provides gains
over Theorem 5 when interference is strong and helper-to-base communication is limited, but may be
more difficult to implement.

Leaving SNR fixed, performance is mostly unchanged in high-scattering versus low-scattering
environments, although the profile of helper-to-base communication changes: In high-scattering
environments, some helper observations are ignored by the base, while, in line-of-sight environments,
each helper informs the base equally. The presence of a strong interferer dampens this effect, since in
this regime the base needs more spatial diversity to mitigate the interferer.

An immediate goal for future work is to devise practical implementations of the presented strategies.
This may include refining the models of the LAN and helpers to more precisely reflect system capabilities.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/20/4/269/
s1.
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Appendix A. Optimization Method

Evaluation of the Gaussian distortion and distributed compression bounds in each environment
requires optimization of a quasi-convex objective (Remark 4). In the case of distributed compression,
the space of acceptable parameters is not convex: consider compressing the encodings for two
highly-correlated sources. By the Slepian–Wolf theorem, if the encodings are high-bitrate, then perturbing
the encodings’ bitrate does not greatly affect the region of feasible compression rates, since the encodings
have high redundancy. On the other hand, perturbing the bitrate of low-bitrate encodings greatly
affects the region of feasible compression rates, since uncorrelated distortion from encoding dominates
source redundancies. Then, a compression to an average between minimum feasible compression rates
for low-bitrate encodings and ones for high-bitrate encodings is infeasible, and the distance from the
feasible set becomes large as the difference between high and low bitrates is made large. This is the
mechanism that governsRDC(r) ⊆ RK

+, hence the domain’s non-convexity.
To overcome this, an iterative interior point method was used to find the maximum: each constraint

f (x) < 0 is replaced with a stricter constraint, f (x) + β < 0 for some β > 0 and a minimization of the
objective is performed under the new constraint. The optimal point is passed as the initial guess for
the next iteration, where the objective function is minimized with updated constraints f (x) + β′ < 0
with 0 < β′ < β. The method is iterated until the constraint is practically equivalent to f (x) < 0 or the
optimal point converged. Each individual minimization was performed using sequential least-squares
programming (SLSQP) through SciPy [26]. The code for this is included in the Supplementary Materials.

Appendix B. Achievability of Bounds

Several lemmas are needed to prove bound achievability. The following lemma demonstrates
that lattice encodings become close in joint information content to the equivalent random variables in
a Gaussian distortion system from Section 3.2. Lemma 1 demonstrates the joint differential entropies
between source estimates from the encodings are close to the equivalent differential entropies in the
Gaussian distortion system. Lemma 2 demonstrates the encodings themselves have joint Shannon
entropies that are close to mutual informations in the Gaussian distortion system.

Lemma 1. Take helper observations Y and independent dithers (WQ,n)n∈[0:N] where, for each n, the dither
vector WQ,n is distributed along the base cell of a regular lattice in Ct whose normalized second moment is σ2

Q,n.
For any A ⊂ [0 : N], ε > 0 and t large enough,∣∣∣∣1t h(YA − (WQ,n)n∈A)− h(YA + WA)

∣∣∣∣ < ε (A1)

Proof. The proof is similar to Theorem 6 from [20]. Notice that, for any additive noise channel,
x → x + n then I(x; x + n) = h(x + n)− h(n) so that h(x + n) = h(n) + I(x; x + n). Then,
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1
t

h(YA − (WQ,n)n∈A) =
1
t
[h((WQ,n)n∈A) + I(YA; YA − (WQ,n)n∈A)] (A2)

=
1
t
[h((WQ,n)n∈A)− th(WA) + th(WA) + I(YA; YA − (WQ,n)n∈A)] (A3)

=
1
t
[ ∑
n∈A

h(WQ,n)− th(Wn) + th(WA) + I(YA; YA − (WQ,n)n∈A)] (A4)

≥ 1
t
[ ∑
n∈A

h(WQ,n)− th(Wn) + th(WA) + tI(YA; YA + WA)] (A5)

=
1
t
[ ∑
n∈A

h(WQ,n)− th(Wn) + th(YA + WA)] (A6)

= h(YA + WA) +
1
t ∑

n∈A
D(PWQ,n‖∏t

`=1 PWn)
t↑∞→ h(YA + WA). (A7)

where Equation (A4) follows since the terms are independent, Equation (A5) follows by the worst
additive noise lemma [27], and the substitution and convergence in Equation (A7) follow by Section III
of [20]. In addition:

1
t

h(YA − (WQ,n)n∈A) =
1
t
[h((WQ,n)n∈A) + I(YA; YA − (WQ,n)n∈A)] (A8)

≤ 1
t

h((WQ,n)n∈A) + I(YA; YA + WA) + ∑
n∈A

D(PWQ,n‖∏t
`=1 PWn) (A9)

< I(YA; YA + WA) + ∑
n∈A

1
t

h(WQ,n) + ε/2 (A10)

≤ I(YA; YA + WA) + ∑
n∈A

h(Wn) + ε (A11)

= I(YA; YA + WA) + h(W) + ε = h(YA + WA) + ε (A12)

where Equation (A4) follows by Lemma 1 from [28] and Equations (A10) and (A11) follow since the
terms in (WQ,n)n∈A are independent and by Section III of [20].

Lemma 2. For length-t helper observations Y , dithered lattice encodings U of Y using dithers (W̃Q,n)n∈[0:N]

where each Un encodes Yn onto a regular lattice in Ct whose cells have normalized second moment σ2
Q,n. Then,

for any ε > 0 and if t is large enough, any S ⊆ [0 : N] has∣∣∣∣1t H(US|(W̃Q,n)n∈S)− I(YS; ZS(r))
∣∣∣∣ < ε. (A13)

In Equations (A13), Z(r) = Y + W, with Y = (Y0, . . . , YN) ∈ CN+1 distributed the same as helper
observations at a single time point, and

W = (W0, . . . , WN) ∼ CN
(

0, diag
(

σ2
Q,1, . . . , σ2

Q,N

))
. (A14)

Proof. We prove this by induction. By Theorem 1 in Reference [29], for any n ∈ [0 : N]

H(Un|W̃Q,n) = I(Yn; Yn − W̃Q,n). (A15)

Theorem 6 in Reference [20] has that

1
t

I
(
Yn; Yn − W̃Q,n

)
→
t↑∞

I(Yn; Yn + WQ,n) = I(Yn; Zn(rn)). (A16)
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Thus, the statement holds for any singleton {n}. Take any disjoint A, B ⊂ [0 : N] for
which the claim holds for ε′ > 0. By construction, given (W̃Q,n)n∈A∪B, there is a function fA∪B
where fA∪B(UA∪B) = YA∪B − (W̃Q,n)

∗
n∈A∪B with (W̃Q,n)

∗
n∈A∪B independent of but distributed like

(W̃Q,n)n∈A∪B [20]. Compute:

1
t

H(UA∪B|(W̃Q,n)n∈A∪B) ≥
1
t

H( fA∪B(UA∪B)|(W̃Q,n)n∈A∪B) (A17)

≥ 1
t

I( fA∪B(UA∪B); YA∪B|(W̃Q,n)n∈A∪B) (A18)

=
1
t

I( fA∪B(UA∪B); YA∪B) (A19)

≥ I(YA∪B; ZA∪B(r)). (A20)

The first inequality follows by the data processing inequality. Equation (A19) follows since
(W̃Q,n)n∈A∪B is independent of the other variables in the term. The last inequality follows by the worst
additive noise lemma [27]. For t large enough,

1
t

H(UA∪B|(W̃Q,n)n∈A∪B) =
1
t
[H(UA|(W̃Q,n)n∈A∪B)+ (A21)

H(UB|(W̃Q,n)n∈A∪B)− I(UA; UB|(W̃Q,n)n∈A∪B)]

≤ I(YA; ZA(r)) + I(YB; ZB(r))−
1
t

I(UA; UB|(W̃Q,n)n∈A∪B) + 2ε. (A22)

Similar to before, given (W̃Q,n)n∈S, S = A, B there are deterministic functions fA, fB where
fA(UA) = YA − (W̃Q,n)

∗
n∈A, and fB(UB) = YB − (W̃Q,n)

∗
n∈B with (W̃Q,n)

∗
n∈S iid to (W̃Q,n)n∈S, S =

A, B. Compute:

1
t

I(UA; UB|(W̃Q,n)n∈A∪B) ≥
1
t

I( fA(UA); fB(UB)|(W̃Q,n)n∈A∪B) (A23)

=
1
t

I( fA(UA); fB(UB)) (A24)

=
1
t
[h(YA − (W̃Q,n)

∗
n∈A) + h(YB − (W̃Q,n)

∗
n∈B)− . . . (A25)

h(YA − (W̃Q,n)
∗
n∈A, YB − (W̃Q,n)

∗
n∈B)]

≥ h(YA + WA) + h(YB + WB)− h(YA + WA, YB + WB)− 3ε′ (A26)

= I(ZA(r); ZB(r))− 3ε′ (A27)

where, again, the first line follows by the data processing inequality and the second line since the
conditional is independent of the rest of the mutual information’s terms. For large enough t, the second
inequality follows by Lemma 1. Combining Equations (A20), (A22) and (A27),

0 ≤ H(U t
A∪B)− I(Y t

A∪B; Zt
A∪B(r)) ≤ 5ε′. (A28)

Since S ⊆ [1 : N], the inductive step will only need to be used up to N times. Letting 0 < ε′ <

ε · 5−N , the initial statement holds.

A small result is also needed to show that the base having its own full precision observation is
approximately equivalent to receiving a high-bitrate helper message. Recall that the base is associated
with helper index 0.

Lemma 3. If ∀S ⊆ [1 : N], then

I(YS, ZS(r)|ZSC (r), Y0) < ∑
m∈S

rm, (A29)
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then, some value r0 can be chosen sufficiently large so that for any S ⊆ [0 : N]

I(YS, ZS(r)|ZSC (r)) < ∑
m∈S

rm. (A30)

Proof. Since all the conditional mutual information terms in the statement are continuous in r, it is
enough to show the statement for r � 0. In this case, with no loss of generality, we can say there is
some δ > 0 where:

I(YS, ZS(r)|ZSC (r), Y0) < ∑
m∈S

rm − δ. (A31)

Fix r0 large enough so that for any S ⊆ [1 : N],

‖I(YS; ZS(r)|ZSC (r), Y0)− I(YS; ZS(r)|ZSC (r), Z0(r0))‖ ≤ δ. (A32)

There is guaranteed to be such an r0 because the above expression is a continuous function of
the covariance matrix of (Y0, Y , Z0(r0), Z(r)) component-wise, and as r0 is made large, the covariance

matrices involved in the second term converge component-wise to those of the first since ‖h0‖2+Σ1,1
2r0−1 →0

as r0 → ∞. By Equations (A31) and (A32), the statement holds for any S ⊆ [1 : N], and it remains to
show that it also holds for each S ∪ {0}.

Note that, for any S ⊆ [1 : N],

I(Y t
S, Y t

0; Zt
S(r), Zt

0(r)|Zt
(S∪{0})C (r)) (A33)

=I(Y t
S; Zt

S(r)|Zt
(S∪{0})C (r)) + I(Y t

0; Zt
0(r)|Zt

[1:N](r)) (A34)

≤I(Y t
S; Zt

S(r)|Zt
(S∪{0})C (r)) + r0 (A35)

≤ ∑
m∈S

rm + r0 (A36)

where Equation (A35) follows because conditioning reduces mutual information, and Equation (A36)
follows from what was shown at the start.

Theorem 5. For a distributed receive system as described in Section 2 with noise covariance matrix Σ,
LAN constraint L and fixed average helper quantization rates r ∈ RLAN(L), a rate RG(r) is achievable.

Proof. If some n ∈ [0 : N] has rn = 0, the system is equivalent to the case where the nth receiver’s
observation is not present, so, without loss of generality, we assert that rn > ε. Fix some rate R < RG(r)
and a block length T = t2 ∈ N. Form a message M uniform on [1 : 2tR].

• Outline

Form a rate-R codebook with length-T codewords. At receiver n ∈ [0 : N], form a length-t regular
lattice encoder with lattice chosen coarse enough that its encodings have rate rn. Combine encodings
at base and find the typical codeword. Observe that probability of error is low by recognizing that
each t-length encoding from a helper approximately contains the information content of the helper’s
observation plus Gaussian distortion.

• Transmitter setup

Generate a codebook mapping φ : [1 : 2TR]→ CT×1 where:

φ(m) = (xm,1, . . . , xm,T) ∈ CT×1 (A37)

with each component xm,` drawn iid from CN (0, 1). Reveal φ to the transmitter and base.
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• Helper encoder setup

For each helper n, n ∈ [1 : N], generate a dither vector W̃Q,n = (W̃ `
Q,n)` ∈ (Ct×1)t, where

each successive t-segment is uniform in the base region of the Voroni partition P t
n of a regular,

white t-dimensional lattice Lt
n which has the following normalized-second-moment:

Gt(Lt
n,P t

n) =
‖hn‖2 + Σn,n

2rn−ε − 1
. (A38)

These terms are detailed at the beginning of Reference [20]. Reveal W̃Q,n to the base and helper n.
Similarly, at the base, generate a dither vector W̃Q,0 = (W̃ `

Q,0)` ∈ (Ct×1)t with r0 chosen large enough
for Lemma 3 to hold.

• Transmission

To send message M ∈ [1 : 2TR], have the transmitter broadcast X = (X1, . . . , XT) = φ(M).

• Helper encoding and forwarding

Helper n (n ∈ [0 : N]) observes a sequence of length T, Yn = (Y`
n)` ∈ (Ct×1)t. Now Yn − W̃Q,n =

(Y`
n − W̃ `

Q,n)` ∈ CT = (Ct)t is composed of t consecutive length-t segments. For the `-th length-t
segment (` ∈ [1 : t]), form a quantization U`

n ∈ Lt
n by finding the point in Lt

n associated with the region
in P t

n in which that segment resides. The properties of such Un are the subject of References [20,29].
By the extension of Theorem 1 in Appendix A of Reference [29],

H(U`
n|W̃Q,n) =

1
t

I(Yn; Yn − W̃Q,n). (A39)

Further, by Theorem 6 in Reference [20],

1
t

I
(
Yn; Yn − W̃Q,n

)
→
t↑∞

I(Yn; Yn + WQ,n) = rn − ε (A40)

where Yn has the distribution of any individual component of Yn and WQ,n ∼ CN (0, Gt(Lt
n,P t

n))

(in agreement with notation in Section 3.2). Thus, the t encoded messages produced by helper n, (U`
n)`,

are within the LAN constraint for large enough block length T. Helper n ∈ [1 : N] forwards (U`
n)` to

the base.

• Decoding

At the base, receive all of the lattice quantizations,

U = ((U`
n)`∈[1:t])n∈[0:N]. (A41)

Take AT
ε (X, U|WQ) to be the collection of

(xm, u) ∈ Range(φ)×
(

N

∏
n=0
Lt

n

)t

(A42)

which are jointly ε-weakly-typical with respect to the joint distribution of (X, U), conditional on all the
dithers (W̃Q,n)n∈[0:N]. Weak- and joint-typicality are defined in Reference [14].

At the base, find a message estimate m̂ ∈ [1 : 2TR] where (φ(m̂), U) ∈ AT
ε (X, U|WQ). Declare error

events E0 if M is not found to be typical with U, and E1 if there is some m̂ 6= M where (φ(m̂), U) ∈
AT

ε (X, U|WQ).
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• Error analysis

By typicality and the law of large numbers, P(E0)→ 0 as t→ ∞. In addition,

P(E1) ≤ ∑
m̂ 6=M

P
(
{φ(m̂) : (φ(m̂), U) ∈ AT

ε (X, U|WQ)}
)

(A43)

≤ ∑
m̂ 6=M

2−t·(I(X1,...,Xt ;(U1
n)n∈[0:N] |(W̃1

Q,n)n∈[0:N])−3ε) (A44)

< 2−t·(I(X1,...,Xt ;(U1
n)n∈[0:N] |(W̃1

Q,n)n∈[0:N])−3ε)+TR (A45)

= 2−t·(h(X1,...,Xt)−h(X1,...,Xt |(U1
n)n∈[0:N] ,(W̃

1
Q,n)n,`)−3ε−tR) (A46)

≤ 2−t·(h(X1,...,Xt)−h(X1,...,Xt |(Y`
n−W̃1

Q,n)n)−3ε−tR) (A47)

≤ 2−t·(t·I(X;Z(r−1·ε))−4ε−tR) (A48)

Z(·) is defined as in Equation (25). Equation (A47) follows by the data processing inequality.
Equation (A48) follows by combining the entropies into a mutual information, then using the worst
additive noise lemma [27]. Thus, if R is chosen less than I(X; Z(r− 1 · ε))− 4ε then P(E0 ∪ E1)→0 as
T → ∞. Mutual information is lower semi-continuous so I(X; Z(r− 1 · ε))− 4ε can be made arbitrarily
close to RG(r).

Theorem 6. For a distributed receive system as described in Section 2 with noise covariance matrix Σ and LAN
constraint L, a rate RDC(L) is achievable.

Proof. Apply Theorem 7 with λ = 0 (proof shown below).

Theorem 7. For a distributed receive system as described in Section 2 with noise covariance matrix Σ and LAN
constraint L then RDC(L) is achievable.

Proof. It is enough to show that any component in the maximization from Equation (36) is achievable.
Fix λ > 0, a helper rate vector r ∈ RLAN(L), and a compression rate vector ρ ∈ Rλ

DC(r). If some
n ∈ [0 : N] has rn = 0 or ρn = 0, the system is equivalent to the case where the nth helper is not present,
so, without loss of generality, we assert that each rn, ρn > ε. Fix some rate R < RG(ρ− 1 · ε)− λ and a
block length T = t2 ∈ N. Form a message M uniform on [1 : 2tR].

• Outline

Form a rate-R codebook with length-T codewords. At receiver n ∈ [0 : N], form a length-t
regular lattice encoder with lattice chosen coarse enough that its encodings have rate rn. Randomly
bin the encodings down to rate ρn. At the base find the codeword jointly typical with the binned
encodings. Observe that probability of error is low by recognizing that the unbinned t-length encodings
from helpers approximately contain the joint-information content of the helper’s observations plus
Gaussian distortion.

• Transmitter setup

Generate a codebook mapping φ : [1 : 2TR]→ CT×1 where

φ(m) = (xm,1, . . . , xm,T) ∈ CT×1 (A49)

with each component xm,` drawn iid from CN (0, 1). Reveal φ to the transmitter and base.
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• Helper encoder setup

For each helper n, n ∈ [1 : N], generate a dither vector W̃Q,n = (W̃ `
Q,n)` ∈ (Ct×1)t,

where each successive t-segment is uniform in the base region of the Voroni partition P t
n of a regular,

white t−dimensional lattice Lt
n which has the following normalized-second-moment:

Gt(Lt
n,P t

n) =
‖hn‖2 + Σn,n

2ρn−ε − 1
. (A50)

These terms are detailed at the beginning of Reference [20]. Reveal W̃Q,n to the base and helper n.
Similarly at the base generate a dither vector W̃Q,0 = (W̃ `

Q,0)` ∈ (Ct×1)t with ρ0 chosen large enough
for Lemma 3 to hold.

For each receiver n ∈ [0 : N], form a random mapping Indexn : Lt
n → [1 : 2trn ] which takes on iid

values at each un ∈ Lt
n:

Indexn(un) ∼ Uniform
(
[1 : 2trn ]

)
(A51)

Indexn is the binning scheme used by receiver n. Distribute each Indexn to helper n and the base.

• Transmission

To send a message M ∈ [1 : 2TR], have the transmitter broadcast X = (X1, . . . , XT) = φ(M).

• Helper encoding

Helper n (n ∈ [0 : N]) observes a sequence of length T, Yn = (Y`
n)` ∈ (Ct×1)t. Now Yn − W̃Q,n =

(Y`
n − W̃ `

Q,n)` ∈ CT = (Ct)t is composed of t consecutive length-t segments. For the `-th length-t
segment, ` ∈ [1 : t], form a quantization U`

n ∈ Lt
n by finding the point in Lt

n associated with the region
in P t

n in which that segment resides. The properties of such Un are the subject of References [20,29].
Applying Lemma 2, then for large enough t, any S ⊆ [0 : N] has

1
t

H(U`
S|U`

SC , (W̃Q,n)n∈[0:N]) →t↑∞
I(ZS(ρ); YS|ZSC (ρ)) < ∑

n∈S
rn (A52)

where the right-hand inequality comes from choice of ρ.

• Helper joint-compression and forwarding

At receiver n ∈ [0 : N], form binned encodings (V`
n )`∈[1:t] where for each `, V`

n = Indexn(U`
n).

Note that |Range(Indexn)| ≤ 2t·rn so H(V`
n ) ≤ t · rn and H((V`

n )`) ≤ T · rn so that the LAN constraint
is satisfied.

Each receiver forwards (V`
n )` to the base.

• Decoding

At the base, receive all all the binned helper encodings V = ((V`
n )`)n.

Take AT
ε (X, U|WQ) to be the set of

(
xm, (u1, . . . , ut)

)
∈ Range(φ)×

(
N

∏
n=0
Lt

n

)t

(A53)

which are jointly ε-weakly-typical with respect to the joint distribution of (X, U), conditional on all the
dithers (W̃Q,n)n∈[0:N]. Weak- and joint-typicality are defined in Reference [14].

For an ensemble of bin indices from all the receivers, v = ((v`n)`)n ∈ ∏N
n=0[1 : 2t·rn ]t, define:

Bv ,

u ∈
(

N

∏
n=0
Lt

n

)t
∣∣∣∣∣∣Indexk(u`

k) = v`k, k ∈ [0 : N], ` ∈ [1 : t]

 . (A54)
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Each Bv represents the set of helper lattice quantizations represented by the ensemble of helper
bin indices v. At the base, find m̂ for which there is some û ∈ BV where (φ(m̂), û) ∈ AT

ε (X, U|WQ).
Declare the message associated with x̂ to be the broadcast.

• Error analysis

We have the following error events:

• EJT : X is not typical with anything in BV ,[0:N].
• Em̂,S: For S ⊆ [0 : N], there is some m̂ 6= M and û = (ûS, ûSC ) ∈ BV where (φ(m̂), û) ∈

AT
ε (X, U|WQ) and ûSC = USC , but any n ∈ S has ûn 6= Un. Em̂,S denotes the situation where the

base identifies the wrong quantizations for all the receivers in S.

By the law of large numbers and properties of typical sets, as t becomes large, eventually P(EJT) < ε.
For each S ⊆ [0 : N], take AT

ε (U|WQ) to be the collection of jointly-typical sequences in
(
∏n Lt

n
)t up

to the joint distribution on (U`
n)n∈S (any ` ∈ [1 : t]), conditioned on (W̃Q,n)n. Now compute:

∑
m̂ 6=M

P(Em̂,S) ≤ 2TR · ∑
ũ∈AT

ε (U|WQ):
ũSC=USC

1BV (ũ) · P
(
(X̃, ũ) ∈ AT

ε (X, U|WQ)
)

(A55)

where X̃ is a random variable independent of and distributed identically to X. Then, with high
probability for large enough t,

∑
m̂ 6=M

P(Em̂,S) ≤ 2TR · ∑
ũ∈AT

ε (U|WQ):
ũSC=USC

1BV (ũ) · 2
−t·(I(X;U|(WQ,n)n)−3ε) (A56)

≤ 2TR ·
∣∣∣{ũ ∈ AT

ε (U|WQ)|ũSC = USC}
∣∣∣ · (1 + ε) · P(U ∈ BV )· (A57)

2−t·(I(X;U|(WQ,n)n)−3ε)

≤ 2TR · 2t·(H(US |USC ,(WQ,n)n)+ε) · 2−t·(t·∑n∈S rn−ε) · 2−t·(I(X;U|(W `
Q,n)n)−3ε) (A58)

where Equation (A58) follows by construction of BV . Taking the log,

log

(
∑

m̂ 6=M
P(Em̂,S)

)
(A59)

≤TR + t · (H(US|USC , (WQ,n)n) + ε)− t · (t · ∑
n∈S

rn − ε)− t ·
(

I(X; U|(WQ,n)n)− 3ε
)
+ ε (A60)

≤t · (H(US|USC , (WQ,n)n)− t ·∑n∈S rn + tR− I(X; U|(WQ,n)n) + 6ε) (A61)

≤t2 · (I(YS; ZS(ρ− 1 · ε)|ZSC (ρ− 1 · ε))−∑n∈S rn + R− I(X; Z(ρ− 1 · ε)) + 8ε/t). (A62)

Equation (A62) follows by using Lemma 2 on H(US|USC )/t and using reasoning identical to
Equations (A45)–(A48) on I(X; U|(WQ,n)n). Recall that R was chosen so that R ≤ RG(ρ− 1 · ε)− λ =

I(X; Z(ρ − 1 · ε)) − λ. Then, Equation (A62) will approach −∞ as t → ∞ (thereby P(∪m̂,SEm̂,S)

approaches 0) if all S ⊆ [0 : N] satisfy:

I(YS; ZS(ρ− 1 · ε)|ZSC (ρ− 1 · ε)) < λ + ∑
m∈S

rm − 8ε. (A63)

By assumption that ρ ∈ Rλ
DC(r) and for small enough ε, then Equation (A63) holds for each S.

Since all error events approach 0, then a rate of RG(ρ− 1 · ε)− λ is achievable. For small enough ε,
by lower semi-continuity of mutual information RG(ρ− 1 · ε)− λ can be made arbitrarily close to
RG(ρ)− λ.
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Appendix C. Proof of Conditional Capacity

Remark 7. The capacity of the system is RDC(L) under the following restrictions:

• Σ is diagonal (no interference).
• The base does not have its own full-precision observation of the broadcast (h0 = 0).
• The broadcaster must transmit a Gaussian signal.
• Construction of helper messages is independent of the transmitter’s codebook X .

Proof. By Theorem 5 in Reference [1] (variable names altered, constants adapted for complex variables),
the capacity of the system under the assumed restrictions is

max
r∈RLAN(L),

V∈V

Cr,V (A64)

Cr,V , min
S⊆[1:N]

{
∑

m∈S
[rm − I(Vm; Ym|X)] + I(VSC ; X)

}
. (A65)

In Equation (A65), V is the collection of random vectors V = (V1, . . . , VN) whose components are
of the form Vn = Yn + W̃n with independently distributed W̃n:

W̃n ∼ CN
(

0, σ2
n ·

2−2vn

1− 2−2vn

)
(A66)

for any vn ≥ 0. Since both the variance in Equation (A66) as a function of vn and Equation (26) as a
function of rn are injective on (0, ∞), then for any V ∈ V there is some ρ (in the context of Equation (37);
either inside or outside ∪λ∈RRλ

DC(L) ) which will yield a variable Z(ρ) with identical distribution to V .
Fixing helper rates r, for any S ⊆ [1 : N], we can instead write Cr,V as:

Cr,V = max

{
c : ∀S ⊆ [1 : N], c ≤ I(VSC ; X) + ∑

m∈S
rm − I(Vm; Ym|X)

}
(A67)

≤ max

{
c : ∀S ⊆ [1 : N], c− I(VS; X) + I(VS; YS|X) ≤ ∑

m∈S
rm

}
(A68)

≤ max

{
c : ∀S ⊆ [1 : N], [c− I(X; V)] + I(YS; VS|VSC ) ≤ ∑

m∈S
rm

}
(A69)

= max
λ∈R

max

{
I(X; V)− λ : ∀S ⊆ [1 : N]I(YS; VS|VSC ) ≤ ∑

m∈S
rm + λ

}
(A70)

where I(VS; YS|X) ≤ ∑m∈S I(Vm; Ym|X) follows because, for each n, Vn ↔ (X, Yn)↔ (V{j 6=n}, Y{j 6=n})

is a Markov chain. Maximizing over r, Equation (A70) is identical to the set of rates shown in
Theorem 7.
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Figure A1. Achievable rates versus K. Four helpers with an observation available at the base and LAN
constraint L = 5 bits shared among helpers. Averaged over 500 channel realizations with uniform
independent phase and average receiver SNR fixed at 0 dB. Scattering environment has negligible
impact on achievable rates for these bounds, except in the Broadcast bound where receive diversity is
not well utilized. Similar results are obtained when the base does not have its own observation.
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