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Abstract: In a regression analysis, a sample-selection bias arises when a dependent variable is partially
observed as a result of the sample selection. This study introduces a Maximum Entropy (MaxEnt)
process regression model that assumes a MaxEnt prior distribution for its nonparametric regression
function and finds that the MaxEnt process regression model includes the well-known Gaussian
process regression (GPR) model as a special case. Then, this special MaxEnt process regression
model, i.e., the GPR model, is generalized to obtain a robust sample-selection Gaussian process
regression (RSGPR) model that deals with non-normal data in the sample selection. Various properties
of the RSGPR model are established, including the stochastic representation, distributional hierarchy,
and magnitude of the sample-selection bias. These properties are used in the paper to develop
a hierarchical Bayesian methodology to estimate the model. This involves a simple and computationally
feasible Markov chain Monte Carlo algorithm that avoids analytical or numerical derivatives of
the log-likelihood function of the model. The performance of the RSGPR model in terms of the
sample-selection bias correction, robustness to non-normality, and prediction, is demonstrated through
results in simulations that attest to its good finite-sample performance.

Keywords: Gaussian process model; hierarchical Bayesian methodology; robust sample-selection
MaxEnt process regression model; Markov chain Monte Carlo; sample-selection bias; bias correction
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1. Introduction

The Bayesian nonparametric method is a powerful approach for regression problems when the
shape of the underlying regression function is unknown, the function may be difficult to evaluate
analytically, or other requirements such as design costs may complicate the process of information
acquisition process. Bayesian orthogonal basis expansion regression, spline smoothing regression,
wavelet regression, and Gaussian process regression (GPR) are powerful nonparametric Bayesian
approaches that address these regression problems. These regression techniques have been extensively
used in fields such as psychology, data science, engineering, neuroscience, and fishery [1–5].

Sample selection (or incidental truncation) in regression analysis is known to often arise in
a wide variety of practical problems and standard analysis of data with sample selection leads to
biased results because the selected sample represents only a subset of a full population; see [6–8].
Regression analysis also has problems regarding sensitivity to outliers and departures from the
normality of the dependent variable (see [9,10]). Thus, when one implements nonparametric Bayesian
regression with non-normal data with sample selection, the selection mechanism and non-normality
of the data must be jointly modeled with the Bayesian nonparametric regression model to correct the
sample-selection bias and to implement a robust statistical inference. In this regard, several estimation

Entropy 2018, 20, 262; doi:10.3390/e20040262 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/20/4/262?type=check_update&version=2
http://dx.doi.org/10.3390/e20040262


Entropy 2018, 20, 262 2 of 19

procedures have been considered in the literature to produce robust linear regression models that
are subject to sample selection including for instance [6,7], for frequentist methods, and [8,9,11]
for Bayesian methods. See [9,12] to obtain robust Bayesian sample-selection models other than the
regression model. In addition, no studies have generalized a nonparametric regression model to deal
with non-normal data with the sample selection.

The objective of this paper is to introduce the Maximum Entropy (MaxEnt) process regression
model as a new Bayesian nonparametric regression model and to then generalize this model to
propose a robust sample-selection Bayesian nonparametric regression model along with its inferential
methodology. The MaxEnt process regression model is obtained by assuming a MaxEnt prior
distribution for its nonparametric regression function, and it includes the GPR model as a special
case. This provides a relationship between the MaxEnt nonparametric regression approach and the
rationale to conduct a Gaussian regression analysis. This study focuses on the GPR model as a special
MaxEnt process regression model and a powerful analysis model towards nonparametric regression
problems. Then, the GPR model is generalized to obtain a robust sample-selection Gaussian process
regression (RSGPR) model. This RSGPR model extends the GPR model to account for the sample
selection scheme, and it is robust when the data are heavy-tailed or contain outliers.

The RSGPR model consists of two components. The first is a robust GPR model that determines
the level of the dependent variable of interest and the second is an equation that describes the
selection mechanism that determines whether we have observed the dependent variable or not.
The sample-selection bias arises when these two components are correlated and must be modeled
jointly. A Bayesian hierarchical methodology is developed here to estimate the RSGPR model.
This methodology relies on a stochastic representation technique (see, e.g., [13]) to set up the Bayesian
hierarchy of the RSGPR model, and it has three attractive features. First, given the likelihood function
of the model, the posterior of its parameters does not belong to any well-known parametric family,
but the methodology uses a simple Markov chain Monte Carlo (MCMC) algorithm that does not resort
to generating random draws from the complex posterior. Second, the output of the algorithm not only
provides a Bayesian analogue of confidence intervals for the regression function, but it also readily
gives an indication of the presence (or absence) of the sample-selection bias. Third, if there is prior
information, such as restrictions on the regression function, such information can be incorporated
easily through a prior distribution.

The remainder of this study is organized as follows. Section 2 introduces the MaxEnt process
regression model that strictly includes the GPR model. Then, this section formulates the RSGPR model
that is obtained by incorporating the GPR model with a class of scale mixtures of normal errors as
well as a selection model comprising a class of scale mixtures of the probit sample selection equations.
Properties of this RSGPR model are studied including the exact distribution of a selected observation,
a stochastic representation, a distributional hierarchy, and the magnitude of the sample-selection
bias. In Section 3, we construct a Bayesian hierarchical model for inference in the RSGPR model by
exploiting the stochastic representation and distributional hierarchy. Then we develop a Bayesian
estimation methodology based on the hierarchical model to provide a simple estimation procedure
for the RSGPR model. We further construct a computationally feasible MCMC algorithm through
a Bayesian hierarchical approach. Section 4 examines the finite-sample performance of the method
through a limited but informative simulation. This numerical illustration shows the usefulness of
the RSGPR model for the Gaussian process regression analysis of non-normal data with the sample
selection. The study then concludes with a discussion in Section 5. Proofs and additional details are
provided in the Appendix A.
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2. Robust Sample-Selection GPR Model

2.1. MaxEnt Process Regression Model

Consider the following nonparametric regression model,

yn = ηn(x) + εn, (1)

where yn = (y1, . . . , yn)> is n× 1 vector of responses, yi = η(xi) + εi, ηn(x) = (η(x1), . . . , η(xn))> is
n× 1 vector of regression function values satisfying η(xi) = E[yi|xi], i = 1, . . . , n, x = (x1, . . . , xn)>

is the n× p design matrix, and εn = (ε1, . . . , εn)> is a n× 1 vector of i.i.d. random noises with zero
mean vector. In the basic model structure of (1), the parametric form of the regression function ηn(x) is
not assumed, but ηn(x) is assumed to have specific types of functional structure. For example, ηn(x)
can be represented with a Fourier series [14], splines [15], kernels [16] and others.

In the Bayesian nonparametric regression, we assume that the regression function (or signal term)
ηn(x) is a random function that follows a particular distribution. This distribution is subjective in the
sense that the distribution reflects our uncertain prior information regarding the function. Sometimes,
we have a situation in which partial prior information on ηn(x) is available, outside of which it is
desirable to use a prior that is as non-informative as possible. In this situation, Boltzmann’s maximum
entropy theorem (see, e.g., [17]) yields a maximum entropy prior πmax(ηn(x)) that is an exponential
form and maximizes the entropy,

H(π) = −
∫
Rn

π(ηn(x)) log π(ηn(x))dηn(x),

in the presence of partial information for various moment functions of ηn(x). In a special case where
we only have partial prior information about the mean vector and covariance matrix functions of ηn(x)
of the Bayesian nonparametric regression model (1), Boltzmann’s maximum entropy theorem yields
the following prior distribution of ηn(x).

Lemma 1. Let n× 1 regression function vector ηn(x) have a prior distribution on Rn whose partial information
on the mean and covariance functions are m(x) = (m(x1), . . . , m(xn))> and K(x) = {κ(xi, xj)}, respectively.
Then the maximum entropy prior of ηn(x) is

πmax(ηn(x)) = (2π)−n/2|K(x)|−1/2 exp
{
− 1

2
(ηn(x)−m(x))>K(x)−1(ηn(x)−m(x))

}
(2)

for ηn(x) ∈ Rn. This is a density of GP(m(x), K(x)), a Gaussian process defined by the mean function m(x)
and the covariance function K(x).

Note that the Gaussian process GP
(
m(x), K(x)

)
defines a collection of random functions wherein

any finite subset of the process has multivariate normal (Gaussian) distribution. From now on, we will
write the Gaussian process as ηn(x) ∼ GP

(
m(x), K(x)

)
. The only restriction on the Gaussian process is

that the covariance function K(x) must be an n× n positive definite symmetric (pds) matrix. If K(x) is
not a pds matrix, then the corresponding value of H(πmax) = p(1 + log(2π))/2 + log(|K(x)|)/2 will
not be defined (see, e.g., [18]). As a result, this paper introduces yet another Bayesian nonparametric
regression model by combining the regression model (1) and the MaxEnt prior in Lemma 1 and
introducing a normal regression error distribution. The model is named as a “MaxEnt process
regression model” and defined by

yn = ηn(x) + εn, εn ∼ Nn(0, σ2In), (3)

σ2 ∼ IG(ν1, ν2),

ηn(x) ∼ GP
(
m(x), K(x)

)
,
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where Nn(0, σ2In) is an n-variate normal distribution with mean vector 0 and covariance matrix σ2In,
IG(ν1, ν2) denotes an inverse gamma distribution with shape parameter ν1 and scale parameter ν2,
ηn(x) is independent of σ2 and εn, the mean function m(xi) reflects the expected function value at input
xi, i.e., m(xi) = E[η(xi)], and the covariance function κ(xi, xj) models the dependence between the
function values at different input points xi and xj, i.e., κ(xi, xj) = E[(η(xi)−m(xi))(η(xj)−m(xj))],
i, j = 1, . . . , n. See [19] for choice of an appropriate covariance function based on assumptions such
as smoothness and likely patterns to be expected in the data. A commonly used isotropic covariance
function in practice is the squared exponential covariance function given by

κ(xi, xj) = Cov(η(xi), η(xj)) = u0 exp
{
− w0

2
(xi − xj)

>(xi − xj)
}

, (4)

where u0 and w0 are hyperparameters and which are relevant for the shape of MaxEnt process
regression. Here u0 stands for global scale of the covariance matrix K(x) and w0 stands for smoothing
parameter, respectively.

We can easily see that the MaxEnt process regression model (5) is the same as the GPR
model considered by [19,20]. This proves the following corollary and can hence be used as an
information theoretic justification for using the GPR model as a Bayesian approach for a nonparametric
regression analysis.

Corollary 1. Suppose E[ηn(x)] = m(x) and Cov(ηn(x)) = K(x) are all the prior information on ηn(x) for
the Bayesian nonparametric regression model (1). Then MaxEnt prior distribution of ηn(x) is GP

(
m(x), K(x)

)
which defines the GPR model.

According to Corollary 1, we shall denote the MaxEnt process regression model by the GPR
model. When there is no functional constraint in the GPR model, then the prior specification in the
model (3) can be used, and posterior inference can be performed without difficulty. It is seen, from [20],
that the conditional posterior distribution of ηn(x) is normal with the mean and covariance given by

E[ηn(x)|(yn, x), σ2] = K(x)(K(x) + σ2In)
−1yn + σ2In(K(x) + σ2In)

−1m(x), (5)

Var[ηn(x)|(yn, x), σ2] = (K(x)−1 + σ−2In)
−1 = σ2K(x)(K(x) + σ2In)

−1.

However, in the GPR analysis, a sample-selection scheme often applies to the response variable
that results in missing not at random (MNAR) observations on the variable. In this case, the regression
analysis using only the selected cases will lead to biased results (see, e.g., [6–8]). This study provides
a bias correction procedure for the GPR analysis with MNAR data generated from the sample-selection
scheme. For the analysis, we propose a robust sample-selection GPR (RSGPR) model based on
a family of scale mixtures of normal (SMN) distributions (see [21,22] for details). This approach
reflects the MNAR mechanism as well as its robustness against departures from the normality
assumption (see, e.g., [11,12]), and proposes a robust GPR model to analyze the partially observed
sample-selection data.

2.2. Proposed Model

We propose the RSGPR model through the following steps. First, we modify the GPR model (3) by
incorporating the SMN error distribution for a robust GPR analysis. Then, we connect the robust GPR
model directly to a sample-selection model by introducing some latent variables to explain the partially
observed sample-selection data. To model the sample-selection mechanism, we need to introduce
some notation for the partially observed data.

Let si be a binary variable that takes on value 1 if yi of subject i is observed using the
sample-selection scheme, and 0 if that of the subject is not observed using the same scheme. Then,
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we introduce the following RSGPR model to represent the regression equation of the observable
variable yi :

yi =

{
η(xi) + εi for si = I(zi ≥ 0),
missing for si = I(zi < 0),

(6)

zi = v>i γ + εi, i = 1, . . . , n,

(
εi
εi

)
iid∼ SMN 2(0, Σ, δ, G),

ηn(x) ∼ GP
(
m(x), K(x)

)
,

where I(·) is an indicator function, SMN 2(0, Σ, δ, G), a scale mixture of bivariate normal distributions

with mixture function δ(ω) and mixing variable ω ∼ G. Here γ = (γ1, . . . , γq)> and Σ =

(
σ2 ρσ

ρσ 1

)
are parameters to be elicited by using the priors p0(γ) and p0(Σ).

Without loss of generality, we assume that the single sample selection scheme si = I(zi ≥ 0) is
applied to a random sample of n observations (yi’s) associated with the model (1) and gives only the
first n1 observed values of yi’s out of the n (n > n1) observations according to the sample-selection
scheme. Thus, the overall available data information of the RSGPR model consists of the set of si binary
values and the n1-tuples of observations (yi, vi) corresponding to individuals with si = 1, while vi
for those with si = 0. The purpose of this study is to estimate the regression function ηn(x) based on
partially observed data (i.e., sample-selection data) with size n1.

For fixed η(xi), the density of the RSGPR model (6) is composed of a continuous component
h(yi|si = 1) and a discrete component p(si). The discrete component is

p(si) = [F̄(Ci; 0, 1)]si [1− F̄(Ci; 0, 1)]1−si , (7)

where F̄(Ci; d, τ) =
∫ ∞

0 Φ̄(Ci; d, δ(ω)τ)dG(ω) with a selection interval Ci = (αi, ∞), αi = −v>i γ,
and Φ̄(Ci; d, κ(ω)τ) =

∫
Ci

φ(x; d, δ(ω)τ)dx denotes the probability of the interval Ci under the
N (d, δ(ω)τ) distribution with the density φ(x; d, δ(ω)τ). The continuous component is a density

of [yi|η(xi), si = 1] d
= [yi|η(xi), εi ∈ Ci] for i = 1, . . . , n1. This density is given by

h(yi|si = 1) =

∫ ∞
0 φ(yi; η(xi), δ(ω)σ2)Φ̄

(
Ci; θεi |yi

, δ(ω)σ2
εi |yi

)
dG(ω)

F̄(Ci; 0, 1)
, yi ∈ R, (8)

where θεi |yi
= ρ[yi − η(xi)]/σ, and σ2

εi |yi
= 1− ρ2. This distribution is essentially a member of the

class of skew-scale mixtures of normal (skew-SMN) distributions discussed by [13,23,24]. We will
denote the distribution law of [yi|η(xi), si = 1] with density (8) by skew-SMN (Ci; θi, Σ, δ, G),
where θi = (η(xi), 0)>. The following lemma is useful to generate the partially observed yi’s and
indicate the difference between the RSGPR model (6) and the GPR model (3).

Lemma 2. For a given value of η(xi), the selected observation [yi|η(xi), si = 1] for the RSGPR model can be
represented by the following two-stages of distributional hierarchy:

[yi|ω, η(xi), si = 1] d
= η(xi) + ρσZCi + σ(1− ρ2)1/2Ui, i = 1, . . . , n1, (9)

ω ∼ G(ω),

where Ui
iid∼ N (0, δ(ω)) and ZCi

ind∼ T N Ci (0, δ(ω)) are independent conditionally on ω, and T N Ci (0, δ(ω))

denotes a N (0, δ(ω)) distribution truncated to the interval Ci = (αi, ∞).

Lemma 2 shows that the RSGPR model applies to relax the classic assumption of the underlying
normality as well as to reflect the sample-selection scheme. This lemma also indicates that the partially
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observed data yi’s does not represent a random sample from the GPR model generating yi’s, even after
controlling for the regression function η(xi). If we want to apply a GPR analysis to the partially
observed sample-selection data, a fitted model should be the RSGPR model. The RSGPR model
changes depending on the choice of the distribution of ω and its function δ(ω). In the special case
wherein the distribution of ω degenerates at δ(ω) = 1, the RSGPR model produces a sample-selection
Gaussian process normal error regression (SGPRN) model. When we choose ω ∼ G(ν/2, ν/2),
a gamma distribution with mean 1 and δ(ωi) = 1/ωi, the model becomes a sample-selection Gaussian
process tν error regression (SGPRtν ) model, allowing to regulate the tail distribution of the model by
means of the degrees of freedom. We also see that the RSGPR model strictly includes the GPR model
because the latter is obtained by setting ρ = 0. For the remainder of this study, we use the symbols in
the preceding sections with the same definitions.

2.3. The Sample-Selection Bias

As indicated by the density (8) and Lemma 2 the selected observations [yi|si = 1]’s do not
represent a random sample from the GPR model generating yi’s, but they are missing not at random
(MNAR) [25] inducing a sample-selection bias. The following results on the sample-selection bias are
noted in the Bayesian estimation of the GPR model with the partially observed data.

Lemma 3. Given the RSGPR model (6), a stochastic representation of conditional posterior distribution of the
regression function ηn1

= (η(x1), . . . , η(xn1))
> is

[ηn1
|y, ω, Ψ]

d
= θ1 + ΓΩ−1

2 W
Cβ

1 + W2, (10)

where Ψ = {σ2, ρ, γ}, W1 ∼ Nn1(0, Ω2) and W2 ∼ Nn1(0, Ω1 − ΓΩ−1
2 Γ>) are independent random

vectors, W
Cβ

1
d
= [W1|W1 ∈ Cβ], Cβ = ∩n1

i=1{w1i; βi ≤ w1i ≤ ∞}, W1 = (w11, . . . , w1n1)
>, βi = (αi −

θ2i)/
√

δ(ω), θ1 = K11(x)−1H−1yn1
+ δ(ω)σ2H−1m1(x), θ2 = (θ21, . . . , θ2n1)

> = ρ(yn1
− m1(x))/σ,

Γ = −ρΩ1/σ, H =
(

K11(x) + δ(ω)σ2 In1

)
, Ω1 = δ(ω)σ2K11(x)H−1, Ω2 = (1− ρ2)In1 + ρ2Ω1/σ2,

yn1
= (y1, . . . , yn1)

> be an n1 × 1 observed vector, m1(x) = (m(x1), . . . , m(xn1))
>, and K11(x) is the first

n1 × n1 diagonal sub-matrix of K(x).

As shown in Lemma 3, if we use the partially observed yi’s to estimate the GPR model,

the existence of the truncated normal distribution term (i.e., W
Cβ

1 ) in Equation (10) induces a biased
estimation of the regression function. Note that the distribution becomes normal (i.e., W1 ∼ Nn1(0, Ω2))
in the GPR model for the case where yi’s are fully observed. Therefore, the usual estimation of
the regression function based on the GPR model will produce inconsistent results when ρ 6= 0.
This clearly reveals that sample-selection bias occurs in Bayes estimation of the regression function ηn1

.
The magnitude of this bias is as follows.

Corollary 2. Instead of the SGPRN , if the GPR model is used for estimating ηn1
based on observed data yn1

then a sample-selection bias occurs in its conditional posterior mean. This bias is

E[ηn1
|yn1

, Ψ]− E[ηn1
|yn1

, σ2] = −
( ρ

σ
In1 +

σ(1− ρ2)

ρ
Ω∗−1

1

)−1
ξ,

where ξ = E[W
Cβ

1 ] = (ξ1, . . . , ξn1)
>, ξi = ω∗iiφ(βi; 0, ω∗ii)/[1−Φ(βi/

√
ω∗ii)], ω∗ii denotes the i-th diagonal

element of Ω∗2 , Ω∗1 = Ω1

∣∣∣
δ(ω)=1

, and Ω∗2 = Ω2

∣∣∣
δ(ω)=1

.

The sample-selection bias in calculating the marginal effect (or propensity) of a predictor can be
also expected.
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Corollary 3. Suppose that vki = xki, where vki and xki are k-th element of vi and xi, then difference in the
marginal effect of the predictor xki on the selected observation yi between the RSGPR model and the GPR model is

γkρσEω

[ 1
δ(ω)

(
δ2(v>i γ, ω)− δ1(v>i γ, ω)2

)]
, (11)

where γk is the k-th element of γ,

b1(v>i γ, ω) = δ(ω)φ(αi; 0, δ(ω))/
[
1−Φ

(
αi/
√

δ(ω)
)]

,

b2(v>i γ, ω) = αiδ(ω)φ(αi; 0, δ(ω))/
[
1−Φ

(
αi/
√

δ(ω)
)]

,

αi = −v>i γ, and Eω denotes the expectation is taken with respect to the distribution of ω ∼ G(ω).

To compare the SGPRN model with the GPR model, various values of the sample-selection bias
associated with the posterior mean (see, Corollary 2) and the difference in the marginal effect of the
k-th predictor (see, Corollary 3) were calculated and are depicted in Figure 1. For the calculation,
we set σ = 1, γk = 1, and K11(x) = 0.5In1 + 0.51n11>n1

/n1, an intra-class covariance matrix, where 1n1

is an n1 × 1 summing vector whose elements are all one. The left panel in Figure 1 is a graph of the
sample-selection bias for different values of βi and ρ. This graph shows the values of the first element
of the bias vector given in Corollary 2. From the graph, we see that the sample-selection bias occurs
in the GPR analysis with sample selection, and its magnitude becomes larger as the values of |ρ| or
βi become larger. The sign of the bias is opposite to that of ρ. The right panel shows a graph of the
difference in the marginal effect (defined by Equation (11)) as a function of αi and ρ. This graph shows
that the absolute value of the difference increases rapidly as αi tends to have a large value, and this
difference tends to be larger as the absolute value of ρ becomes larger. Furthermore, the signs of the
difference and ρ are different, which is expected for the case where γk > 0. These panels imply that an
inconsistent nonparametric regression analysis is unavoidable, provided that the GPR model is fitted
to the partially observed sample-selection data. Instead, the proposed RSGPR model should be used
to correct the sample-selection bias and to estimate the true marginal effect of each predictor in the
regression analysis.
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Figure 1. Graphs of the sample-selection bias and the difference in marginal effect of the k-th predictor.
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3. Bayesian Hierarchical Methodology

3.1. Hierarchical Representation of the RSGPR Model

Let us revisit the RSGPR model (6) in Section 2.2. From Equations (7) and (8), we see that the
log-likelihood function of the RSGPR model based on the partially observed n-tuples of observations
(yi, xi, vi, si) is

l(ηn1
, γ, ρ, σ2) =

n

∑
i=1

[
si

{
ln F̄

(
Ci; 0, 1

)
+ ln h(yi|si = 1)

}
+ (1− si) ln

{
1− F̄(Ci; 0, 1)

}]
. (12)

This is a complex function for the Bayesian estimation of the parameters (ηn1
and Ψ) of the RSGPR

model. Instead, the following hierarchical representation of the RSGPR model is useful for a simple
estimation of the parameters.

First, the likelihood function in Equation (12) can be represented by the following
distributional hierarchy.

Theorem 1. For the n-pairs of independent observations, (yi, si), generated from the RSGPR model defined by
Equation (6), their distribution can be written by the following Bayesian hierarchical model:[

yi|ωi, zCi , si = 1
]
∼ N (η(xi) + ζzCi , δ(ωi)τ

2),

p(si|zi, ωi) = I(zi ≥ 0)I(si = 1) + I(zi < 0)I(si = 0),[
zi|ωi

]
∼ N (v>i γ, δ(ωi)),

ωi ∼ G(ωi), i = 1, . . . , n,

ηn1
∼ Nn1(m1(x), K11(x)),[

ζ|τ2] ∼ N (θ0, σ0τ2),

τ2 ∼ IG(c, d),

γ ∼ Nq(γ0, Ω0),

where zCi = zi − v>i γ, ζ = ρσ, τ2 = σ2(1− ρ2), IG(c, d) denotes an inverse gamma distribution with the
p.d.f. IG(τ2; c, d) = dcτ−2(c+1)e−d/τ2

/Γ(c), and G(·) is a distribution function of the scale mixing variable ω.

When the prior information on ξ, τ2, and γ is not available, a convenient strategy of avoiding
improper posterior distribution is to use proper priors with their hyperparameters fixed as appropriate
quantity to reflect the diffuseness of the priors (i.e., limiting non-informative priors). For this
convenience, the prior distributions in Theorem are used to elicit the prior distributions of ξ, τ2,
and γ. All hyperparameters that appeared in the prior distributions of the Bayesian hierarchical model
are assumed to be given from the prior information of previous studies or other sources.

3.2. Full Conditional Posteriors

Let yn1
= (y1, . . . , yn1)

>, V = (v1, . . . , vn), and s = (s1, . . . , sn)> be observed. Further suppose
that z = (z1, . . . , zn)> and ω = (ω1, . . . , ωn)> are the latent observation vector and the scale mixing
vector, respectively. Then, based on the RSGPR model, we obtained joint posterior distribution of
Θ = {ηn1

, τ2, ζ, γ, z, ω} given the observed data set Dn = {yn1
, V, s} :
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p(Θ | Dn) ∝
n1

∏
i=1

φ(yi; η(xi) + ζzCi , δ(ωi)τ
2) (13)

×
n

∏
i=1

[
p(si|zi, ωi)φ(zi; v>i γ, δ(ωi))g(ωi)

]
× IG(τ2; c, d)φ(ζ; θ0, σ0τ2)φn1(ηn1

; m1(x), K11(x))φq(γ; γ0, Ω0),

where g(·) is the p.d.f. of the scale mixing variable ω. Note that the joint posterior in (13) is not
simplified in an analytic form of the known density and is thus intractable for posterior inference.
Instead, we derive conditional posterior distribution of each parameter in Θ in an explicit form,
which will be useful for posterior inference by using a Markov chain Monte Carlo (MCMC) method.

Given the joint posterior distribution (13), we can obtain the following posterior distributions
whose derivations are provided in Appendix A:

(1) The full conditional posterior distribution of ηn1
is given by[

ηn1
| Θ\ηn1

,Dn
]
∼ Nn1(θηn1

, Σηn1
), (14)

where θηn1
= Σηn1

(
K11(x)−1m1(x) + D1(δ(w))−1(yn1

− ζzC)/τ2
)

, Σηn1
=
(

K11(x)−1 +

D1(δ(w))−1/τ2
)−1

, D1(δ(ω)) = diag{δ(ω1), . . . , δ(ωn1)}, zC = (zC1 , . . . , zCn1
)>,

and zCi = zi − v>i γ.
(2) The full conditional posterior distribution of τ2 is an inverse Gamma distribution:

[
τ2 | Θ\τ2 ,Dn

]
∼ IG

(
c +

n1 + 1
2

, d +
1
2

n1

∑
i=1

(yi − η(xi)− ζzCi )
2

δ(ωi)
+

(ζ − θ0)
2

2σ0

)
. (15)

(3) The full conditional posterior distribution of ζ is a normal distribution:[
ζ | Θ\ζ ,Dn

]
∼ N (θζ , σ2

ζ ), (16)

where

θζ =
θ0/σ0 + ∑n1

i=1(yi − η(xi))zCi /δ(ωi)

1/σ0 + ∑n1
i=1 z2

Ci
/δ(ωi)

and σ2
ζ =

( 1
σ0τ2 +

∑n1
i=1 z2

Ci

δ(ωi)τ2

)−1
.

(4) The full conditional posterior distributions of zi’s are independent and their distributions are
given by

[
zi|Θ\zi

,Dn
] ind∼

{
T N (−∞,0)(v>i γ, δ(ωi)) if si = 0,
T N (0,∞)(θzi , σ2

zi
) if si = 1

(17)

for i = 1, . . . , n, where

θzi = v>i γ +
ζ(yi − η(xi))

ζ2 + τ2 and σ2
zi
=

δ(ωi)τ
2

ζ2 + τ2 .

(5) The full conditional posterior density of γ is:[
γ | Θ\γ,Dn

]
∝ Nq(θγ, Σγ), (18)
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where θγ = Σγ

(
∑n

i=1
1

δ(ωi)
zivi + ∑n1

i=1
ζ

τ2δ(ωi)
(ζzi + η(xi)− yi)vi + Ω−1

0 γ0

)
and Σγ =

(
Ω−1

0 +

∑n
i=1

1
δ(ωi)

viv>i + ∑n1
i=1

ζ2

τ2δ(ωi)
viv>i

)−1.

(6) The full conditional posterior densities of ωi’s are independent and they are given by

p(ωi|Θ\ωi
,Dn) ∝ φ(yi; η(xi) + ζzCi , δ(ωi)τ

2)φ(zi; v>i γ, δ(ωi))g(ωi)I(i ≤ n1) (19)

+ φ(zi; v>i γ, δ(ωi))g(ωi)I(i > n1).

3.3. Markov Chain Monte Carlo Method

The MCMC scheme, working with the full conditional distributions of the parameters in Θ, is not
complicated to implement. A routine Gibbs sampler can be used to generate posterior samples of ηn1

,
τ2, ζ, zi, and γ based on each of their full conditional posterior distributions obtained in Section 3.2.
In posterior sampling of ωi’s, Metropolis–Hastings (M–H) within the Gibbs algorithm can be applied
because their conditional posterior densities may not have explicit form of known distribution as in
Equation (19). For Gibbs sampling, one should note the following points:

(1) Given the initial values of Θ(0), the implementation of the Gibbs sampler involves R iterative
sampling from each of the full conditional posterior distributions obtained in Equation (14)
through Equation (19).

(2) Gibbs samples of ρ and σ2 can be obtained by using those of ζ = ρσ and τ2 = σ2(1− ρ2).
(3) If ωi degenerates at δ(ωi) = 1, the RSGPR model can be reduced to the SGPRN model.

In this case, the MCMC procedure excludes the Gibbs sampling of ωi’s by using the posterior
distribution (19).

(4) For various distributions of mixing variable ωi and mixing functions δ(ωi) of the SMN
distributions such as tν, logit, stable, slash, and exponential power models (see, e.g., [21,22]).

(5) When ωi
iid∼ G(ν/2, ν/2) and δ(ωi) = 1/ωi, the RSGPR model becomes the SGPRtν model.

For generating ωi’s, we may use the following posteriors

ωi
ind∼


G
(

ν+2
2 ,

ν+z2
Ci

2 +
(yi−η(xi)−ζzCi

)2

2ξ2

)
for i ≤ n1,

G
(

ν+1
2 ,

ν+z2
Ci

2

)
for i > n1,

(20)

where zCi = zi − v>i γ. Except for the SGPRN and SGPRtν , we need to adopt the
Metropolis–Hastings algorithm within the Gibbs sampler because the conditional posterior
density of ωi does not have explicit form of known distribution. See [26,27] for the algorithm
for sampling ωi from the posterior density.

(6) When the squared exponential covariance function K(x) in Equation (4) is chosen with unknown
hyperparameters u0 and w0, we need to elicit the priors of u0 and w0 for the full Bayes methods
based on the MCMC method. The priors considered by [28] can be used for this assessment as
follows. The prior distributions are a conjugate u0 ∼ IG(a, b) and w0 ∼ HC(c, d). HereHC(c, d)
denotes the half-Cauchy distribution with the p.d.f. HC(w0; c, d), location parameter c, and scale
parameter d. See [28], for compatibility with w0 ∼ HC(c, d) to elicit the prior information on w0.

(7) Full conditional posterior distributions of u0 and w0 are

[u0|Θ, w0,D] ∼ IG(a∗, b∗) and p(w0|Θ, u0,D) ∝ φn1(ηn1
; m1(x), K11(x))HC(w0; c, d),

where a∗ = a + n1/2 and b∗ = b + u0(ηn1
− m1(x))>K11(x)−1(ηn1

− m1(x)). Note that
the conditional posterior density of w0 does not have explicit form of known distribution.
This implies the use of the Metropolis–Hastings algorithm within the Gibbs sampler to generate
w0 from the posterior density.
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(8) After obtaining the Gibbs samples of Θ, we can use them for Monte Carlo estimation of
regression function ηn2

and missing observations yn2
. They can be also used for predicting

regression functions and y′is evaluated at new predictors (see, e.g., [26]).

3.4. Prediction with Bias Corrected Regression Function

According to the Gaussian (i.e., MaxEnt) process prior, the joint distribution of the training outputs
(ηn1

) and test outputs (ηn2
) is(

ηn1

ηn2

∣∣∣ x

)
∼ Nn

(
m(x) =

(
m1(x)
m2(x)

)
, K(x) =

[
K11(x) K12(x)
K21(x) K22(x)

])
,

where ηn = (η>n1
, η>n2

)>, K12(x) denotes the n1 × n2 matrix of the covariances evaluated at all pairs of
training points {xi|i = 1, . . . , n1} and test points {xj|j = n1 + 1, . . . , n}, and similarly for the other
entities K11(x), K21(x), K22(x). The RSGPR framework provides a straightforward way of predicting
test outputs based on the relevant test points and the training outputs. Conditioning the joint Gaussian
prior distribution on the training observations, we arrive at the predictive distribution for the future
(or missing) regression function given by

[ηn2
|ηn1

, x] ∼ Nn2

(
m2(x) + K21(x)K11(x)−1(ηn1

−m1(x)), K22(x)− K21(x)K11(x)−1K12(x)
)
. (21)

The regression function (ηn2
) value can be sampled from the predictive distribution (21) by

evaluating the mean and covariance matrix of the distribution. Thus, it can be generated within the
preceding MCMC algorithm for estimating the RSGPR model: We can generate ηn2

and unobserved
observation vector yn2

= (yN1+1, . . . , yn)> in the r-th iteration of the algorithm whose Markov chain is
augmented by the following conditional distributions.

[
η
(r)
n2 | η

(r)
n1 , x

]
∼ Nn2

(
m2(x) + K21(x)K11(x)−1(η

(r)
n1 −m1(x)), K22(x)− K21(x)K11(x)−1K12(x)

)
,[

y(r)
n2 | Θ(r), yn1

, x
]
∼ N (η

(r)
n2 , σ2,(r)D2(δ(ω))(r)),

where η
(r)
n2 = (η(xn1+1)

(r), . . . , η(xn)(r))> and D2(δ(ω))(r) = diag{δ(ωn1+1)
(r), . . . , δ(ωn)(r)}.

Let η
(1)
n2 , . . . , η

(R)
n2 and y(1)

n2 , . . . , y(R)
n2 are respective samples generated from R iterations, then bias

corrected expected value of ηn2
and that of posterior predictive distribution of yn2

can be approximated
via Monte Carlo by

η̂n2
= E[ηn2

|x] ≈ 1
R

R

∑
r=1

η
(r)
n2 and E[yn2

|yn1
, x] ≈ 1

R

R

∑
r=1

y(r)
n2 .

Note that Cov(ηn2
|x) = K22(x)− K21(x)K11(x)−1K12(x).

4. Numerical Illustrations

This section presents empirical results of the Bayesian hierarchical RSGPR analysis of non-normal
data with the sample selection. We provide results obtained from simulated data applications
comparing the performance of the RSGPR model with that of the GPR model. We developed our
program written in R (see, e.g., [29]), which is available from the authors upon request.

4.1. Simulation Scheme

In this simulation, we evaluated the finite-sample performance of the RSGPR model by using
sample-selection data generated for different sizes. The performance was assessed in terms of
sample-selection bias correction and robustness to non-normal model errors. These could be measured
by comparing the posterior estimation and prediction results of the RSGPR model with those based on
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the GPR model. Specifically, we compared the results obtained from the SGPRN (or SGPRt10 ) analysis
with the results of the GPR (or GPRt10) analysis based on a partially observed sample-selection data.
This study also demonstrated that the SGPRtν model is more robust against outliers compared to
the SGPRN model. To evaluate the performance, we generated M = 300 sets of partially observed
sample-selection data with size n = 300 with n1 = 150 (i.e., the missing rate is 0.5) from each of the
three models (see details below). The general form of the three models is as follows:

yi =

{
50 xi + 5 sin(10xi) + εi for si = 1, xi ∈ (0, 1),
missing for si = 0, i = 1, . . . , n,

(22)

zi = γ + εi,
( εi

εi

)
iid∼ SMN 2(0, Σ, δ, G),

where si = I(zi ≥ 0), γ = 0, ρ = 0.5, and σ = 3.
Model 1 was defined by assuming that the distribution G degenerates at ω = 1. Model 2 was

obtained from the model (22) by setting δ(ω) = 1/ω and G ∼ G(10/2, 10/2). Model 3 assumed
a mixture of bivariate normal errors instead of the SMN 2(0, Σ, δ, G) distribution. Throughout our
simulation, the hyper-parameters for the Bayesian hierarchical model in Theorem 1 were chosen to
reflect the diffuseness of the priors. To obtain the limiting non-informative priors of ζ, τ2 and γ,
their hyper-parameters were assessed as θ0 = 0, σ0 = 10, c = 0.001, d = 0.001, γ0 = 0, and Ω0 = 10.
Note that when our observational data were augmented through proper prior information, as in this
simulation study, the issue to identify the parameters in the RSGPR model disappeared.

In the simulation, we proceeded as follows to estimate the parameters. Using each of M = 300
datasets generated from the models (Model 1, Model 2, and Model 3), we fitted the RSGPR and GPR
models and applied the proposed Bayesian hierarchical methodology to estimate the parameters of
the fitted models by assuming the above prior distributions. To implement the methodology by using
each generated dataset, we obtained 15,000 posterior samples from the developed MCMC algorithm
(in Section 3) with 5 thinning periods after a burn-in period of 5000 samples. This sampling plan
guaranteed a convergence of the chain of the MCMC algorithm. The MCMC method (applied to each
of M = 300 datasets) gave estimates (or predictions) of the nonparametric regression function (η(x))
as well as the other parameters of the RSGPR model.

The variability in the regression function estimates (η̂n1
) and predictions (η̂n2

) obtained by using
a dataset were then visualized as shown in Figures 2 and 3. These figures compare the estimates
(or predictions) of the nonparametric regression function obtained from two models (the RSGPR
and GPR models). The black line of each graph in the figures shows the true regression function
of the model (22). The red dashed line denotes the posterior mean (or predicted value) of the
regression function of the model (22) obtained by using a Bayesian hierarchical RSGPR analysis
with the sample-selection data of size n1 = 150, while the blue dashed line depicts that obtained
by using a GPR analysis of the sample-selection data. The 97.5th quantile and 2.5th quantile of
3000 posterior samples (predictions) of each regression function (η(xi)) in the RSGPR model were also
calculated. In each figure, these quantiles were used to draw 95% posterior (or prediction) intervals of
η(xi)’s by using the gray band. The accuracy of parameter estimates was calculated by using the mean
absolute bias (MAB) and the root mean square error (RMSE):

MAB =
1
M

M

∑
k=1

p

∑
`=1
|θ̂k` − θ`| and RMSE =

{
1
M

M

∑
k=1

p

∑
`=1

(θ̂k` − θ`)
2

}1/2

,

where M = 300 and θ̂k` is the posterior estimate of `-th element of p× 1 parameter vector θ in the
k-th replication.
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Figure 2. Graphs of estimated regression functions (left panel) and predicted regression functions
(right panel): (i) black lines are used for the true regression function; (ii) red dashed lines for the robust
sample-selection Gaussian process regression (RSGPR) models; (iii) blue dashed lines for the Gaussian
process regression (GPR) models.
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Figure 3. Graphs of regression functions: estimated regression functions (left panel) and predicted
regression functions (right panel).

4.2. Performance of the RSGPR Model

4.2.1. Sample-Selection Data Generated from Model 1

If the distribution G is degenerated at ω = 1, we then obtain the SGPRN model from the RSGPR
model (6). Using each of M = 300 datasets generated from Model 1, the proposed Bayesian hierarchical
methodology was applied to estimate the parameters of the model. If we set ρ = 0, the methodology
yielded posterior estimates of the GPR model. The estimation results for the parameter ηn1

of our
primary interest, based on the SGPRN and GPR models, are shown in the left panel of Figure 2. The left
panel provides the following results. First, the posterior estimates of ηn1

based on the proposed
SGPRN model (red dashed line) are close to their true values (black line), while those based on the
GPR model (blue dashed line) tend to have severe sample-selection bias. Second, when the SGPRN
model was used to fit the generated sample-selection dataset, the posterior estimates of regression
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function based on the model concentrated true values of the η(xi)’s as shown in their 95% posterior
intervals (gray band). Third, the difference between the true regression function (black line) and
the estimated regression function obtained by using the GPR model (the blue dashed line) confirms
Lemma 4, which shows the existence of the sample-selection bias in the GPR regression for data
with the sample selection. In summary, the left panel of Figure 2 illustrates the existence of the
sample-selection bias in the GPR analysis with the sample-selection data, as discussed in Section 2.3.
It also demonstrates the performance of the proposed methodology based on the SGPRN model to
eliminate the sample-selection bias (or inconsistency in estimating the regression function), which could
not be achieved by using the GPR model.

The mean of M = 300 estimation results for the other parameters were listed in Table 1. As shown
in Table 1, the MCMC parameter estimates were close to their true values for the SGPRN model,
while those based on the GPR model were severely biased. In addition, the MAB and RMSE values
in the table ensure that the performance of the SGPRN model is far better than the GPR model when
the sample selection data was used for Bayesian nonparametric regression analysis. For both models,
the small values of Monte Carlo (MC) error (compared to the RMSE) of each parameter suggests that
approximate convergence was reached and the sequence generated from the MCMC samples was
well mixed.

Table 1. Posterior Summary.

True Value
SGPRN Model GPR Model

Mean s.d. RMSE MAB MC Error Mean s.d. RMSE MAB MC Error

σ = 3 2.831 0.308 0.351 0.426 0.018 2.094 0.104 0.912 0.800 0.002
ρ = 0.5 0.380 0.376 0.563 0.287 0.064 NA NA NA NA NA

SGPRt10 Model GPRt10 Model

σ = 3 2.880 0.974 0.509 0.515 0.050 2.130 0.109 0.876 0.800 0.003
ρ = 0.5 0.435 0.275 0.627 0.422 0.032 NA NA NA NA NA

s.d.: standard deviation; SGPRN : sample-selection Gaussian process normal error regression; RMSE: root
mean square error; MAB: mean absolute bias; MC: Monte Carlo; GPR: Gaussian process regression.

4.2.2. Data Generated from Model 2

The proposed Bayesian hierarchical methodology for the SGPRt10 model was applied to each
of M = 300 datasets generated from Model 2. The SGPRt10 model can be obtained from the SGPR
model (6) by setting δ(ω) = 1/ω and ω ∼ G(10/2, 10/2). If we set ρ = 0, the methodology could
also be used to obtain posterior samples to estimate the GPRt10 model (GPR model with t10 errors).
The results of the simulation appear in the right panel of Figure 2 and Table 1. Graphs in the right panel
of Figure 2 depict the prediction results of ηn2

based on the SGPRt10 and GPRt10 models. The graphs
clearly show that the sample-selection bias in predicting η(xi)’s based on the GPRt10 model is too
large to allow for a prediction of the true regression function ηn2

(or future regression function).
However, the proposed methodology using the SGPRt10 model correctly predicted the true regression
function; see 95% prediction interval and η̂n2

, i.e., red dashed line. The prediction of ηn2
based

on the SGPRt10 model is far better than that based on the GPRt10 model. Compared to the GPRt10

model, the methodology based on the SGPRt10 model yields smaller MAB and smaller RMSE of the
parameter estimates; see Table 1. Table 1 shows that the parameter estimates of the SGPRt10 model
with heavy-tailed errors tend to produce larger estimation errors (MAB and RMSE) than those of
the SGPRN model. The results of the above simulation demonstrate the superior performance of the
SGPRt10 model and the usefulness of the proposed Bayesian hierarchical methodology to remedy the
sample-selection bias in the prediction that occurred in the GPRt10 analysis of the sample-selection data.
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4.2.3. Data Generated from Model 3 with Normal Mixture Errors

We generated datasets from Model 3 with size n = 300. Model 3 was defined by the model (22)
with independent bivariate normal mixture errors: viz.

0.4N2(0, Σ(1)) + 0.2N2(0, Σ(2)) + 0.2N2(0, Σ(4)) + 0.1N2(0, Σ(8)) + 0.1N2(0, Σ(16)),

where 50% of the outcomes were missing in each dataset and Σ(k) was equal to Σ whose value of σ2

was 9k. The generated dataset was fitted to the SGPRN , SGPRt5 , and SGPRt10 models in turn. Based on
posterior samples, we calculated the Bayes estimates of the three models’ parameters together with
their deviance information criterion (DIC) values introduced by [30]. The average DIC values obtained
from the dataset were found to be 2727.06, 1477.43, 1396.24 for the SGPRN , SGPRt10 , and SGPRt5

models, respectively. This suggested that the SGPRt5 model is the best fitting model among the three
models, while the SGPRN model is the worst.

The graphs in the left panel of Figure 3 show the true regression function (black line) and
estimated regression functions (η̂n1

) under the best fitting SGPRt5 model (red line) and the SGPRN
model (blue line). The graphs in the right panel of Figure 3 depict predicted regression function (η̂n2

)
based on the best fitted model (in red), the SGPRN model (in blue), and the true regression function
(in black). Even though the best fitted model based on bivariate t5 error distributions was misspecified,
95% posterior intervals (or prediction intervals) of η(xi) obtained from the SGPRt5 model did include
the true regression function values (see gray bands in Figure 3). The prediction result of the SGPRt5

and SGPRN models are very wild due to outliers generated by the normal mixture errors, while the
graphs of the SGPRt5 are more robust for the model misspecification.

5. Conclusions

This study considered a MaxEnt approach to develop a Bayesian nonparametric regression
analysis of non-normal data with the sample selection. For this purpose, by using Boltzmann’s
maximum entropy theorem, we introduced a MaxEnt process regression model that reflects partial
prior information for an uncertain regression function. We found that a special case of the MaxEnt
regression model reduced to the well-known GPR model. Second, we generalized the GPR model
to propose the RSGPR model and explored its theoretical properties. These properties showed that
the new model was well-designed to correct the sample-selection bias and implement a robust GPR
analysis. Third, we developed a hierarchical RSGPR model based on a stochastic representation
of the RSGPR model and proposed a Bayesian hierarchical methodology for the RSGPR analysis
of a non-normal data with sample selection. A simulation study showed that the finite sample
performance of the proposed methodology eliminated the sample selection bias and estimated the
population model parameters with robustness and high accuracy. In a comparative numerical study
on the analysis of nonparametric regression models with sample selection data, we found that the
estimation results using the RSGPR model outperformed those using the GPR model for both in-sample
estimation and out-of-sample forecasts.

The theoretical results of the RSGPR model and the methodology for the RSGPR analysis
proposed in this study have several interesting issues that are worth considering further. First,
the RSGPR framework using the MaxEnt process prior can be generalized to the so called stochastically
constrained RSGPR regression that uses the constrained MaxEnt process as the prior distribution of
the regression function with uncertain constraints. Second, an empirical study with real data as
well as an asymptotic evaluation, such as consistency, would be particularly noteworthy to explore.
For example, estimating monotone regression function with or without uncertainty and testing the
monotonicity of the regression function can be considered in the context of a constrained RSGPR
analysis with sample-selection data. Finally, the Bayesian hierarchical methodology can be broadened
in various regression models with the general class of skew-SMN error distributions considered
by [11]. For example, this methodology can be applied to a von Bertalanffy growth curve analysis
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of heavy-tailed fishery data with sample selection (see, e.g., [28]). We hope to address all of these in
the future.
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Appendix A

Appendix A.1. Proof of Lemma 1

Proof. The proof proceeds along the lines of Corollary 1 of [18] by changing the partial prior
information on θ to that on ηn(x).

Appendix A.2. Proof of Lemma 2

Proof. Equation (8) shows that the distribution of [yi|η(xi), si = 1] is skew-SMN p(Ci; θi, Σ, κ, G)

with the density (8). Thus, the result by [13] yields a stochastic representation of a conditional
skew-SMN p(Ci; θ, Σ, κ, G) distribution given on ω, which is

[yi|ω, η(xi), si = 1] d
= η(xi) + ρσZCi + σ(1− ρ2)1/2Ui,

where Ui is independent of ZCi . Introducing ω ∼ G(ω) to the conditional stochastic representation,
we have the two-stages of distributional hierarchy for the distribution of [yi|η(xi)si = 1].

Appendix A.3. Proof of Lemma 3

Proof. For the RSGPR model, let z1 = (z1, . . . , zn1)
> be the latent variables vector which corresponds

to the observed vector yn1
. Then, for fixed ηn1

and ω, the joint distribution of yn1
and z1 is (y>n1

, z>1 )
> ∼

N2n1(µ
∗, δ(ω)Σ⊗ In1), where µ∗ = (η>n1

, µ>1 )
> and µ1 = (v>1 γ, . . . , v>n1

γ)>. This yields the density of
selected observations (i.e., [yn1

|(δ(ω))−1/2(z1 − µ1) ∈ Cα] is given by

f (yn1
|ηn1

, Ψ) =
[
φn1

(
y1; ηn1

, δ(ω)σ2 In1

)
Φ̄n1

(
Cα;

ρ

σ
(yn1
− ηn1

), (1− ρ2)In1

)]
/Φ̄n1

(
Cα; 0, In1

)
,

where φp(·; µ, Σ) is the p-variate normal density with mean vector µ and covariance matrix Σ,

and Φ̄p(C; µ, Σ) =
∫

C φp(v; µ, Σ)dv. Applying the Gaussian process prior p0(ηn1
) ∝ exp

{
− 1

2 ((ηn1
−

m1(x))>K11(x)−1(ηn1
−m1(x))

}
to the likelihood yields a conditional posterior density:

p(ηn1
|yn1

, Ψ) =
[
φn1

(
ηn1

; θ1, Ω1

)
Φ̄n1

(
Cα; θ2 + ΓΩ−1(ηn1

− θ1), Ω2 − ΓΩ−1
1 Γ>

)]
/Φ̄n1

(
Cα; θ2, Ω2

)
,

which is the skew-normal distribution whose properties were well developed by [13,23]. According to
this literature, we can easily obtain the stochastic representation (10).

Appendix A.4. Proof of Corollary 2

Proof. Setting η(ω) = 1 (i.e., the distribution of ω degenerates at ω = 1 and η(ω) = ω, the RSGPR
model reduces to the SGPRN model. Applying Lemma 3 for the SGPRN model and the mean of
a truncated normal distribution given in [31] yield the conditional posterior mean of the regression
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function: E[ηn1
|yn1

, Ψ] = θ1 + ΓΩ−1
2 E[W

Cβ

1 ]. Difference between this posterior mean with that in the
first n1 × 1 sub-vector of the Equation (5) gives the result.

Appendix A.5. Proof of Corollary 3

Proof. Under the RSGPR model E[yi|η(xi), si = 1] = η(xi) + ρσE
[
δ1(v>i γ, ω)

]
by Lemma 2 and

the expression (see, e.g., [31]) of E[ZCi |ω], where η(xi) is the regression function and αi = −v>i γ.
A straightforward derivation of E[yi|η(xi), si = 1] with respect to xki gives

∂E[yi|η(xi), si = 1]
∂xki

=
∂η(xi)

∂xki
+ γkρσEω

[ 1
δ(ω)

(
δ2(v>i γ, ω)− δ1(v>i γ, ω)2

)]
.

Comparing with ∂E[yi |η(xi)]
∂xki

= ∂η(xi)
∂xki

for the GPR model, we see that the expression (11)
is the magnitude of the sample-selection bias in estimating the marginal effect of the k-th
independent variable.

Appendix A.6. Proof of Theorem 1

Proof. The first four stages of the distributional hierarchy reduce to the stochastic representation in
Lemma 2 where marginal density of [yi|si = 1] is h(yi) which is given by Equation (8). We also see that
the 2nd to 4th stages of the distributional hierarchy yield the probability mass function p(si), which is∫ ∞

0

∫ ∞

−∞
p(si|zi, ωi)φ(zi; v>i γ, δ(ωi))dzidG(ωi) = F̄(Ci; 0, 1)si

(
1− F̄(Ci; 0, 1)

)1−si .

This is equivalent to Equation (7). As a result, the logarithm of the joint density of the n pairs of
independent observations, (yi, si) under the hierarchy is equal to the right hand side of Equation (12).
Thus, the first four stages of the hierarchy defines a hierarchical RSGPR model. Introducing the
GP prior of ηn1

and priors of Ψ to elicit our prior information about them, we have the Bayesian
hierarchical model.

Appendix A.7. Derivation of Conditional Posterior Distributions

(1) Full conditional distribution of ηn1
: Equation (13) states that the full conditional density of ηn1

is

p
(
ηn1

∣∣ Θ\ηn1
,Dn

)
∝ φn1

(
yn1

; ηn1
+ ζzC, τ2D1(δ(w))

)
φn1(ηn1

; m1(x), K11(x)),

∝ exp
{
− 1

2
η>n1

Σ−1
ηn1

ηn1
+ θ>ηn1

Σ−1
ηn1

ηn1

}
,

∝ exp
{
− 1

2
(ηn1
− θηn1

)>Σ−1
ηn1

(ηn1
− θηn1

)
}

,

which is the kernel of Nn1(θηn1
, Σηn1

) distribution.

(2) Full conditional distribution of τ2: We see from Equation (13) that the full conditional posterior
density is

p(τ2 | Θ\τ2 ,Dn) ∝
n1

∏
i=1

φ(yi; η(xi) + ζzCi , δ(ωi)τ
2)IG(τ2; c, d)φ(ζ; θ0, σ0τ2),

∝ τ−(n1+2c+3)exp
{
−
(

d +
1
2

n1

∑
i=1

(yi − η(xi)− ζzCi )
2

δ(ωi)
+

(ζ − θ0)
2

2σ0

)
/τ2

}
.

This is the kernel of IG
(

c + n1+1
2 , d + 1

2 ∑n1
i=1

(yi−η(xi)−ζzCi
)2

δ(ωi)
+ (ζ−θ0)

2

2σ0

)
distribution.
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(3) Full conditional distribution of ζ: Equation (13) gives the full conditional density of ζ given by

p(ζ | Θ\ζ ,Dn) ∝
n1

∏
i=1

φ(yi; η(xi) + ζzCi , δ(ωi)τ
2)φ(ζ; θ0, σ0τ2),

∝ exp
{
−

ζ2 − 2θζ ζ

2σ2
ζ

}
∝ exp

{
−

(ζ − θζ)
2

2σ2
ζ

}
,

which is the kernel of N (θζ , σ2
ζ ) distribution.

(4) Full conditional distributions of zi’s: Equation (13) indicates that the full conditional posterior
densities of zis are mutually independent, and that for each i,

p(zi | Θ\i
,Dn) ∝

[
φ
(
yi; η(xi) + ζ(zi − v>i γ), δ(ωi)τ

2)φ(zi; v>i γ, δ(ωi))
]si
[
φ(zi; v>i γ, δ(ωi))

]1−si

∝
[
φ
(
zi; θzi , σ2

zi
)]si
[
φ(zi; v>i γ, δ(ωi))

]1−si
.

Since the support of zi is {zi; zi ≥ 0} for si = 1, while {zi; zi < 0} for si = 0, we have the
truncated normal distributions.

(5) Full conditional distribution of γ: The full conditional posterior density of γ is given by

p(γ | Θ\γ,Dn) ∝
n1

∏
i=1

φ
(
yi; η(xi) + ζ(zi − v>i γ), δ(ωi)τ

2)
× φq(γ; γ0, Ω0)

n

∏
i=1

φ(zi; v>i γ, δ(ωi))

∝ exp
{
− 1

2
(γ− θγ)

>Σ−1
γ (γ− θγ)

}
,

which is the kernel of Nq(θγ, Σγ) distribution.
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