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Abstract: A formula has been established, which is based on the size-dependence of a metal’s melting
point, to elucidate the atomic diffusion coefficient of nanostructured materials by considering the role
of grain-boundary energy. When grain size is decreased, a decrease in the atomic diffusion activation
energy and an increase in the corresponding diffusion coefficient can be observed. Interestingly,
variations in the atomic diffusion activation energy of nanostructured materials are small relative to
nanoparticles, depending on the size of the grain boundary energy. Our theoretical prediction is in
accord with the computer simulation and experimental results of the metals described.
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1. Introduction

In the field of materials science, much attention has been given to nanoparticles (NPs)
and nanostructured materials (NSs) because of their distinct chemical, physical, and mechanical
properties [1,2]. NSs are polycrystalline materials consisting of grains smaller than 100 nm in size,
while NPs refer to ultrafine free particles. NPs possess free surfaces, while the interfaces of NSs consist
of grain boundaries between grains. When L (L denotes the diameter of NPs, or the grain size of NSs) is
less than the critical value (~10–20 nm), 50% of the atoms are at the free surfaces or grain boundaries [3].
Evidence shows that the thermodynamic properties of NSs and NPs become size-dependent when
L enters the nanometer scale [4–6], resulting in different thermodynamic performances relative to
their bulk counterparts. One important reason for this is that the atomic coordination imperfection
exists at the surfaces or interfaces of the NSs/NPs. Since the coordination number of the atoms on
the grain boundaries is larger than the free surfaces, the grain boundary energy (γgb) is less than the
surface energy (γsv) [7]. NSs are widely used, but receive more attention in magnetic data storage,
ultra-large-scale integration, thermoelectric power generation, and structural engineering [8–10].
In order to provide the critical information for the above applications, the atomic diffusion property of
NSs should be taken into consideration regarding diffusion processing [2,11].

In materials engineering, atomic diffusion, either by the migration or jump of random individual
atoms, is an important topic in solid-state physics and chemistry, materials science, and physical
metallurgy [12]. For the purposes of materials development and engineering, it is necessary to
gain a complete understanding of diffusion in different materials. As an example, Guisbiers and
Buchaillot [13] claimed that thermo-mechanical behavior, such as creep, is an important factor
affecting device reliability at the nanoscale. Different stages of creep are attributed to grain boundary
diffusion, dislocation movement, and lattice diffusion. According to the so-called diffusion spectrum
of metals [12], self-diffusion in a regular lattice is several orders of magnitude slower than diffusion in
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dislocations and grain boundaries. Moreover, the diffusion shortcuts showed low diffusion activation
enthalpy, and the diffusivity discrepancy increased as the temperature decreased. Measurement
results show that the diffusion coefficient DT (L,T) of NSs increased as L declined [11,14], where T
denotes the temperature. The DT (L,T) of nanostructured Cu is about 10~16 orders of magnitude
higher than the bulk Cu when L is approximately 13 nm [15], while an increase in DT (L,T) from
0.33× 10−8 m2/s to 1.0× 10−8 m2/s was observed for nanostructured Ni when L decreased from 9 nm
to 4 nm [16]. Owing to this, NSs are usually used in diffusion processing, including coating [16,17],
nitriding [18], and carburizing [19], significantly improving the processing efficiency [20]. Since NSs
consist of nanoscaled grains with a solid–solid interface or grain boundary between them [21], the
increase in the diffusion shortcuts should have had a significant impact on raising the diffusivity.
Considering that the coordination imperfection exists at the interface, the diffusion might also have
been influenced. Compared to NPs with free surfaces, the coordination imperfection should have been
weak at the interface, influencing the diffusion of NSs. However, a theoretical way to elucidate this has
still remained unavailable.

As reviewed by Laughlin and Hono [12], different diffusion coefficient types were found in
the experimental observation, such as random walk, tracer self-diffusion, trace impurity diffusion,
intrinsic diffusion, and interdiffusion. In any case, the diffusion coefficients can be described by the
Arrhenius diffusion formula [22]. Therefore, the diffusion coefficient of atoms in bulk materials DT
(∞,T) can be expressed as DT (∞,T) = D0

T(∞) exp[−Ea(∞)/(RT)], where ∞ denotes the bulk size, D0
T

is the pre-exponential constant, the activation energy is denoted by Ea, and the ideal gas constant is
denoted by R. Upon the atomic diffusion in NPs, the surface effect on the diffusion coefficient of atoms,
denoted as DNP

T (L, T), has been considered and modeled [14]. According to this work, extending the
above DT (∞,T) expression into the nanometer regime, DNP

T (L, T) can be given as [22],

DNP
T (L, T) = D0

T(L) exp
[
−ENP

a (L)/(RT)
]

(1)

where ENP
a (L) = Ea(∞)TNP

m (L)/Tm(∞) with Tm being the melting point. Moreover, based on
Lindemann’s criterion and Mott’s equation of vibrational entropy, the size-dependent Tm of NPs
denoted as TNP

m (L) is formulated as [23]

TNP
m (L) = Tm(∞) exp[−(αNP − 1)/(L/L0 − 1)] (2)

where αNP = 2Svib(∞)/3R + 1 denotes the surface effect factor, Svib is the vibrational contribution of
the overall melting entropy of the bulk crystals. L0 is the critical diameter of a nanoparticle, where
almost all atoms are located on the surface, where L0 = 2(3 − d)h, d represents the dimension of the
nanoparticle, with d = 0 for nanoparticles, d = 1 for nanowires, d = 2 for thin films, and h is the atomic
diameter [24]. In light of this, TNP

m (L) decreased as L was lowered [23]. An important reason for this
change is relevant to the decrease in atomic cohesive energy associated with the atomic coordination
imperfection at the surfaces. Based on Equation (1), and with the help of Equation (2), as L decreases,
the diffusion coefficient DNP

T (L, T) is increased by several orders of magnitude [14,25]. When L is
as small as several nanometers, DNP

T (L, T)/DT(∞, T) could be greater than 1010 due to the drop of
ENP

a (L). Moreover, the diffusion temperature could be lowered by several hundred degrees when a
constant diffusion coefficient is required [14]. This increase is believed to be attributed to the surface
energy, which is associated with the coordination imperfection at the surface.

However, Equation (1) is not able to depict the diffusion in NSs, because the grain boundary
energy is lower than the surface energy. Therefore, in order to explain the change in the experimental
data of the diffusion coefficient of NSs, it is necessary to establish the diffusion model DNS

T (L, T) by
considering the role of grain boundary energy.

In this paper, a formula will be proposed to elucidate the size-dependence of the diffusion
coefficient in NSs in reference to NPs. Based on the modeling of the atomic diffusion activation energy
of NSs, ENS

a (L), the corresponding diffusion coefficient DNS
T (L, T) was worked out with the help of



Entropy 2018, 20, 252 3 of 8

TNS
m (L). The role played by the grain boundary energy will be considered. The model predictions

show good agreement with the experimental results.

2. Model

Although the interfaces of the NSs (grain boundaries) and the NPs (free surfaces) are different,
grains in the NSs have a similar crystalline structure to the NPs. With reference to NPs, the self-diffusion
or intrinsic diffusion coefficient DNS

T (L, T) of NSs can thus be expressed by extending the DNP
T (L, T)

expression to the NSs case, and it reads [22]

DNS
T (L, T) = D0

T(L) exp
[
−ENS

a (L)/(RT)
]

(3)

On the basis of Equation (3), DNS
T [L, TNS

m (L)] = DT [∞, Tm(∞)] is assumed [22], and one sees
DNS

T [L, TNS
m (L)] = D0

T(L) exp
{
−ENS

a (L)/[RTNS
m (L)]

}
= D0

T(∞) exp{−Ea(∞)/[RTm(∞)]}. In terms of
the point defect mechanism [14], ENS

a (L) in this expression means the activation enthalpy with
∆H = ENS

a (L), and D0
T is an amount proportional to λ2, Z and exp(∆SNS/R), where λ is the interplanar

crystal spacing, Z is the nearest neighbor gap number and ∆SNS is the activation entropy. The sizes
of λ, Z, and ∆SNS do not affect the thermal vibration energy. According to the thermodynamic
knowledge [14], T [∂∆SNS(L)/∂T]P = [∂ENS

a (L)/∂T]P, where P = 4f /L is the internal pressure of the
sphere particles under a specific size. Hence, ∆SNS(L) changes with ENS

a (L). However, regarding
the activation process, the change in ∆SNS (L) caused by the change of vibrational frequency is less
than 5%, which is quite small even when L is changed from the bulk size to 4–6 nm [26]. ENS

a (L)
is therefore temperature independent. D0

T(L) is a weak function of L, but the exponential effect
exp

{
−ENS

a (L)/
[
RTNS

m (L)
]}

on D0
T(L) is very strong. As a first order approximation, assuming

D0
T(L) ≈ D0

T(∞) [14], we thus have,

ENS
a (L) = Ea(∞)TNS

m (L)/Tm (∞) (4)

In light of Equation (4), ENS
a (L) can be worked out if TNS

m (L) is known. In fact, the TNS
m (L) function

can be deduced based on the expression of TNP
m (L) in Equation (2), by considering the grain boundary

energy effect. According to our previous work [11], it reads,

TNS
m (L) = Tm(∞) exp[−δ(αNP − 1)/(L/L0 − 1)] (5)

with δ = 1/{1 + [γsv(∞)/γgb(∞) − 1]αNP} where δ is an additional parameter showing the role of grain
boundaries relative to free surfaces. Thus, by substituting Equation (5) into Equation (3) with the help
of Equation (4), we get,

DNS
T (L, T) = D0

T(L) exp[−Ea(∞)

RT
exp[−δ(αNP − 1)× 1

L/L0− 1
]] (6)

In light of Equation (6), DNS
T (L, T) can be worked out as the function of L.

3. Results and Discussion

Figure 1 shows the ENS
a (L) functions of (a) Au, (b) Bi in Cu, (c) Cu, and (d) Fe in terms of

Equations (4) and (5) in comparison with experimental results, where Au in (a), Cu in (c), and Fe
in (d) give the self-diffusion data for the NSs, where Bi in Cu in (b) means the diffusion of Bi in
nanostructured Cu. ENP

a (L) is also plotted in terms of Jiang’s prediction [14] for comparison. ENS
a (L)

and ENP
a (L) decreased when L was lowered, with ENP

a (L) < ENS
a (L) < Ea (∞). A significant decrease

in ENS
a (L) occurred at about L ≈ 5 nm, although the decrease of ENP

a (L) was observed at around
L ≈ 10 nm. When L > 10 nm for NSs or L > 20 nm for NPs, Ea (L)→ Ea (∞). Compared to the bulk case,
the decrease in Ea(L) should be relevant to large thermal vibrational energies of atoms at the surfaces
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or grain boundaries. The observation that ENS
a (L) > ENP

a (L) was attributed to the thermal vibration
energy of atoms at the grain boundary being lower than that at the surface. The model prediction
agrees roughly with the experimental results.

Figure 1. ENS
a (L) as the function of L (solid) in terms of Equations (4) and (5) for (a) Au, (b) Bi in Cu,

(c) Cu, and (d) Fe, where Bi in Cu in (b) means the diffusion of Bi in nanostructured Cu and Au in
(a), Cu in (c), and Fe in (d) give the self-diffusion data. ENP

a (L) functions (dashed) are also plotted
with Jiang’s prediction [14] for comparison. The symbols show experimental results: (a) � [22] for Au
nanostructured materials (NSs), (b) � [15] for Bi in Cu NSs, (c) [27] and N [28] for Cu nanoparticles
(NSs), and (d) # [4] for Fe NPs. The parameters for the calculation are shown in Table 1.

Table 1. The necessary data used for the calculations.

h [29] (nm) Tm (∞) [30] (k) Svib (∞) [29]
(Jmol−1·k−1)

γsv (∞) [24]
(Jm−2)

γgb (∞) [24]
(Jm−2)

D0
T(m

2·s−1)
Ea (∞)

(kJ·mol−1)

Ag 0.289 1234 7.82 1.250 0.392 - -
Pb 0.350 600.61 6.65 0.600 0.111 - -
Sn 0.281 505.08 9.22 0.649 0.179 - 56.93 [31]
Fe 0.248 6.82 2.420 0.528 - 79.11 [4]
Au 0.288 7.62 1.500 0.400 - 169.81 [22]

Cu 0.256 7.85 1.790 0.601
- 95.52 [15]

2 × 10−18 [27] 66.57 [27]
Ni 0.249 8.11 2.380 0.866 1.77 × 10−7 [16] 43.65 [16]

Based on the results in Figure 1, Figure 2 further depicts the DNS
T (L, T) functions of (a) Cu and

(b) Ni in terms of Equation (6) for NSs in comparison to available experimental results. The case of
DNP

T (L, T) is also plotted with Equations (1) and (2). DNS
T (L, T) increased on lowering L to L0, where

DNP
T (L, T) > DNS

T (L, T) > DT (∞,T). An obvious increase of DNS
T (L, T) occurred at about L ≈ 4 nm,

although the increase of DNP
T (L, T) happened at around L≈ 6 nm. When L > 10 nm for NSs or L > 20 nm

for NPs, the values of DNS
T (L, T) and DNP

T (L, T) approached DT (∞, T). The increase in DNS
T (L, T) is

related to the decrease of ENS
a (L) because of the coordination imperfection at grain boundaries. It can
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also be seen that DNS
T (L, T) < DNP

T (L, T), which is attributed to the fact that the thermal vibration of
atoms at the grain boundary is weaker than at the surface. The model prediction is consistent with the
experimental results.

Figure 2. DNS
T (L, T) as a function of L (solid) in terms of Equation (6) for (a) Cu and (b) Ni; DNP

T (L, T)
functions (dashed) are also plotted with Equations (1) and (2) for comparison. The symbols denote the
experimental results with H [27] for Cu NSs and N [16] for Ni NSs. The parameters for the calculation
are shown in Table 1.

In light of Equations (4) and (5), ENS
a (L) can be affected by the γgb (∞)/γsv (∞) ratio. To show

how ENS
a (L) will vary with γgb (∞)/γsv (∞), Figure 3 shows a plot of ∆ENS

a (L)/∆ENP
a (L) as the

function of γgb (∞)/γsv (∞) at L = 4 nm using Equations (4) and (5) with ∆ENS
a (L)/∆ENP

a (L) =
[ENS

a (L)− Ea(∞)] / [ENP
a (L)− Ea(∞)]. It can be seen that ∆ENS

a (L)/∆ENP
a (L) increases almost linearly

as γgb (∞)/γsv (∞) rises. Since 0 < ∆ENS
a (L)/∆ENP

a (L) < 1 exists in the range 0 < γgb (∞)/γsv (∞) < 1,
∆ENS

a (L) < ∆ENP
a (L) is available in the whole γgb (∞)/γsv (∞) range, while ∆ENS

a (L) approaches
∆ENP

a (L) as γgb (∞)/γsv (∞) tends to be in unity. Thus, the weakening of the ∆ENS
a (L) function can be

scaled by the γgb (∞) size.
In light of Equation (6), the decrease in ENS

a (L) and the increase in DNS
T (L, T) essentially originated

from the melting depression of TNS
m (L), which will be verified here. Figure 4 shows TNS

m (L) functions
of (a) Ag, (b) Sn, and (c) Pb in terms of Equation (5) in comparison with the experiment or simulation
results. The TNP

m (L) curves are also plotted with Equation (2) for the comparison purpose. TNS
m (L)

decreased as L declined with TNP
m (L) < TNS

m (L) < Tm (∞), and a significant decrease occurred at about
L ≈ 5 nm for TNS

m (L) but at around L ≈ 10 nm for TNP
m (L). The Tm (L) value was closer to Tm (∞) when

L > 10 nm for the NSs or L > 20 nm for the NPs. The decrease in Tm (L) is related to the coordination
imperfection at the interface and the surface. Regarding TNP

m (L) < TNS
m (L), this could be due to the

fact that γgb (∞) < γsv (∞), since the coordination imperfection at the grain boundary is weak relative
to that at the surface. The validity of Equation (5) can be confirmed by the available experiments
and computer simulation results, showing that the L-dependences of ENS

a (L) and DNS
T (L, T) can be

influenced by the grain boundary energy effect.
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Figure 3. ∆ENS
a (L)/∆ENP

a (L) as the function of γgb (∞)/γsv (∞), with L = 4 nm in terms of Equations (4)
and (5) for seven elements. The averaged values of Svib and L0 among these seven elements are used
for the calculation with Svib = 7.251 Jmol−1·K−1 and L0 = 1.578 nm. Other parameters are shown in
Table 1.

Figure 4. TNS
m (L) as the function of L (solid) in terms of Equation (5) for (a) Ag, (b) Sn, and (c) Pb,

where the case of TNP
m (L) (dashed) is also given for comparison with Equation (2). The symbols show

experimental or simulation results with (a) H [7] for Ag NSs and 5 [32] for Ag NPs, (b) � [33] and
[34] for Sn NSs, and (c) � [35] for Pb NPs andF [33] for Pb NSs. The parameters necessary for the

calculation are shown in Table 1.

It should be noted, that a degree of deviation can be observed in Figures 1, 2 and 4. Such a
deviation can be explained by the error in the grain size measurement. The grain size detected by
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transmission electron microscopy is larger than that detected by X-ray diffraction [36]. Measurement
techniques can also lead to errors in the thermodynamic amounts. In addition, the deviation may also
be caused by contributions from the diffusion shortcuts (such as dislocation) and the elastic stress,
which should be considered further in future.

4. Conclusions

In this paper, we investigated the atomic diffusion coefficient in NSs by considering the role of the
grain boundary energy. When L was decreased, a decrease in the atomic diffusion activation energy
was observed, which led to an increase in the corresponding diffusion coefficient. However, relative to
nanoparticles, the variation in the atomic diffusion activation energy of a nanostructured material is
small, and is associated with the ratio of the grain boundary energy to the surface energy; the atomic
diffusion activation energy of NSs approaches that of nanoparticles, if the grain boundary energy is
close to the surface energy. The model prediction for the above functions is in fair accord with the
experimental results.
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