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Abstract: To describe the movement of asset prices accurately, we employ the non-extensive statistical
mechanics and the semi-Markov process to establish an asset price model. The model can depict the
peak and fat tail characteristics of returns and the regime-switching phenomenon of macroeconomic
system. Moreover, we use the risk-minimizing method to study the hedging problem of contingent
claims and obtain the explicit solutions of the optimal hedging strategies.
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1. Introduction

Describing asset price changes accurately is a basis for pricing and risk management of financial
derivatives. Usually, a geometric Brownian motion was employed to portray the changes of asset
prices [1–3]. The assumption that the asset price obeys the geometric Brownian motion means that
the distribution of the asset returns is normal. However, many empirical results have shown that
the distribution of the yield rate has the characteristics of high peak and fat tail, it is not a normal
distribution [4–6].

Fortunately, in the field of non-extensive statistics, several scholars have found that the Tsallis
distribution derived from non-extensive Tsallis entropy can depict the characteristics of high peak and
fat tail of returns. For example, Kozuki found that the Tsallis distribution qualitatively agrees with the
fat-tailed data of foreign exchange market [7]. Tsallis et al. found that the distribution of stock yield
obeys a Tsallis distribution [8]. Moreover, Borland proposed an option pricing model, in which the
underlying stock price was driven by a stochastic process constructed by the maximizing non-extensive
Tsallis entropy. Furthermore, he obtained the formula for pricing European options [9]. Those studies
showed that the Tsallis non-extensive statistical theory is better than the classical extensive statistical
method in the financial field.

In addition, the above asset price model is a short-term microcosmic model and ignores the
impact of long-term macro-economy, such as the adjustment of the economic structure, the change
of the market system and the cycle of the business cycle. However, several empirical studies have
shown that there is a phenomenon of regime switching in the long-term financial market. For example,
Mary proposed a regime-switching lognormal model and found that the fitting of stock prices is more
accurate using the regime-switching model than other common econometric models [10]. In recent
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years, the pricing and the optimal investment of financial derivatives based on the regime-switching
model have been paid more and more attention by financial scholars. Elliott considered the pricing
problem of European options when the risky asset was driven by the regime-switching geometric
Brownian motion [11]. Chi studied the pricing problem of barrier and lookback options when the
underlying assets were driven by the regime-switching jump-diffusion process [12]. Yiu and zhu
proposed an optimal portfolio selection model with a value-at-Risk constraint. In the model the risky
assets were driven by the regime-switching geometric Brownian motion [13,14]. Zhang considered the
mean-variance portfolio selection problem when the risky assets were driven by the regime-switching
geometric Brownian motion [15].

In this study, to describe the movement of asset prices accurately, we employ the Tsallis entropy
distribution and the semi-Markov process to establish an asset price model. The model can depict
the characteristics of high peak and fat tail of asset returns and the regime-switching phenomenon of
macroeconomic system. Moreover, we use the risk-minimizing method to study the hedging problem
of contingent claims and obtain the explicit solutions of the optimal hedging strategies.

The paper is organized as follows. In Section 2, we use the non-extensive statistical theory to
establish the asset price model that can depict the phenomenon of high peak and fat tail of asset
returns. In Section 3, we embed the semi-Markov process into the above model so that it can be
developed to portray the macroeconomic impact. In Section 4, under the framework of minimizing
risk, the hedging problem of financial derivatives is studied. Furthermore, the explicit solutions to the
optimal hedging problem are obtained by the use of the minimal martingale measure method and the
Föllmer–Schweizer decomposition technique. In the last Section 5, the summary of the paper is given.

2. Asset Price Model

It is well known that the price movement of risky assets is affected by many interrelated factors,
which brings about the fat-tail characteristics of return distribution. However, the asset price driven by
the classical geometric Brownian motion is normal, which cannot describe the fat-tail characteristics
of returns. Thus, to accurately fit the price changes of risky assets, we employ a stochastic process
derived from the non-extensive statistical theory to replace the classical geometric Brownian motion
(see [9]). Furthermore, the price process of risky asset can be written as

dS(t) = µS(t)dt + σS(t)dΩ(t) (1)

where
dΩ(t) = P(Ω, t)

1−q
2 dW(t) (2)

W(t) is a Wiener process. P(Ω, t) is a probability density function satisfying the maximum Tsallis
entropy. It is given by:

P(Ω, t) =
1

z(t)
(1− β(t)(1− q)Ω2)

1
1−q (3)

with
z(t) = ((2− q)(3− q)ct)

1
3−q (4)

β(t) = c
1−q
3−q ((2− q)(3− q)t)−

2
3−q (5)

and

c =
π

q− 1

Γ2( 3−q
2(q−1) )

Γ2( 1
q−1 )

(6)

In the limit q→ 1, the above probability density function degenerates into a normal distribution,
which is the case of the classical geometric Brownian motion. However, when 1 < q < 5

3 , it has
a sharper peak and thicker tails than a normal distribution. Hence, the asset price model can depict
the characteristics of high peak and fat tail of returns and accurately fit the changes of asset prices.
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3. Regime-Switching Asset Price Model

Let T be a positive number, denoted a finite time horizon. Let (Ω,F , (Ft)0≤t≤T , P) be a probability
space. The above probability space satisfies the usual conditions of right-continuity and completeness.

In the market, we suppose that there are two underlying assets: a risk-free bond and a risky stock.
The price process of the risk-free bond is written as follows{

dB(t) = rB(t)dt, t ∈ [0, T]
B(0) = B0

(7)

where r is a positive constant called the risk-free interest rate. The price process of the risky stock is
given by

dS(t) = µ(Yt)S(t)dt + σ(Yt)S(t)dΩ(t) (8)

where
dΩ(t) = P(Ω, t)

1−q
2 dW(t) (9)

W(t) (0 ≤ t) is a Wiener process. P(Ω, t) is the Tsallis distribution of index q, which can
depict the characteristics of high peak and fat tail of the stock returns. Yt is a semi-Markov

process at the phase space (Y, Υ), Yt = Yκ(t), κ(t) = max{n : τn ≤ t}, τn =
n
∑

k=1
θk. Suppose that

P{ω : Yn+1 ∈ B, θn+1 ≤ t | Yn = y} = P(y, B)×Vy(t), B ∈ Υ, y ∈ Y. Vy(t) is a differentiable function

of t and vy(t) =
dVy(t)

dt . This semi-Markov process can describe regime switching of the macro economy.
In addition, we suppose that the Wiener process Wt and the semi-Markov process Yt are independent,
a semi-Markov process. The filtration Ft is generated by the random processes Wt and Yt.

4. Risk-Minimizing Hedging

Now, we consider the hedging problem of the European call option. That is, we try to hedge
against the contingent claim by means of portfolio strategies. Let K be a strike price and T be a maturity
date. Then, at the maturing time T, the payment of the European call option is H = (S(T)− K)+.
The hedging portfolio strategy defines a portfolio with the number of units of the stock αt and the
number of units of the bond βt. Let ϕ = (αt, βt) represent a portfolio strategy and satisfy

E
∫ T

0
α2

t σ2(Yt)P1−qS2
t dt + E[

∫ T

0
|αt||µ(Yt)|Stdt]2 < +∞ (10)

Then, the discounted value process Vt(ϕ) of the portfolio can be written as follows

Vt(ϕ) = αtS∗t + βt (11)

where the discounted process S∗t = St
Bt

.
Thus, the cumulative cost process Ct(ϕ) can be given as follows

Ct(ϕ) = Vt(ϕ)−
∫ t

0
αvdS∗v , 0 ≤ t ≤ T. (12)

The Ct(ϕ) is the total cost generated by the portfolio strategy ϕ over the interval [0, t], which is
from trading because of the fluctuations of the asset price process St and not due to the transaction
cost (see [16]). Since the payment of the European call option H = (S(T)− K)+ is FT-measurable and
the strategy βt is adapted, the hedging portfolio policy ϕ = (αT , βT) with VT(ϕ) = H = (S(T)− K)∗

P− a.s. exists. Thus, when the cost process Ct(ϕ) is square-integrable, the risk of the hedging portfolio
strategy ϕ can be defined as follows

Rt(ϕ) = E[(CT(ϕ)− Ct(ϕ))2 | Ft], 0 ≤ t ≤ T. (13)
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Then, the problem of the optimal hedging portfolio strategy becomes an optimization problem

min
ϕ

Rt(ϕ) = min
ϕ

E[(CT(ϕ)− Ct(ϕ))2 | Ft], 0 ≤ t ≤ T. (14)

From the literature [17], we know that, in a complete market, we need to construct a new
probability measure P∗ and the new probability measure is equivalent to the original probability
measure P. Under the new probability measure P∗, we can employ a martingale to represent the
original asset price process. Then, we can replicate the contingent claim by a self-financing policy.
That is, the risk Rt(ϕ) of the contingent claim H can be reduced to zero by a suitable self-financing
portfolio policy ϕ. However, in an incomplete market, this is no longer possible. In this paper,
the market is incomplete owing to the embedded semi-Markov process Yt. Thus, we cannot find
a self-financing portfolio strategy ϕ to reduce the risk Rt(ϕ) to zero. However, we know that the
existence of the optimal risk-minimizing hedging portfolio policy is equivalent to the existence of the
Föllmer–Schweizer decomposition of the contingent claim H = (S(T)− K)+ (see [18]). Furthermore,
the Föllmer–Schweizer decomposition of the contingent claim H = (S(T) − K)+ can be written
as follows

H = H0 +
∫ T

0
αH

v dSv + LH
T , (P− a.s.) (15)

where H0 ∈ L2(F0, P), αH ∈ L2(S), and LH
T ∈ M2

0(P) is a square-integrable martingale orthogonal
to S. Then, the optimal risk-minimizing hedging portfolio policy ϕ∗ = (αH , H0 + LH). Thus, we can
derive the optimal risk-minimizing hedging portfolio policy by means of the Föllmer–Schweizer
decomposition approach. To obtain the Föllmer–Schweizer decomposition, we will employ the
minimal martingale measure method introduced in the literature [17]. Let

pT = exp(−
∫ T

0

µ(Y(v))

σ(Y(v))P 1−q
2 (v)

dW(t)− 1
2

∫ T

0

µ2(Y(v))

σ2(Y(v))P 1−q
2 (v)

dv) (16)

Then, we can define the minimal martingale probability measure P∗ equivalent to the original
probability measure P as follows

dP∗

dP
= pT (17)

Below, it is our work to find the Föllmer–Schweizer decomposition under the equivalent minimal
martingale probability measure P∗ as follows

E∗(H|Ft) = E∗H +
∫ t

0
α∗H

v dSv + L∗H
t (18)

Let the jump probability measure of the semi-Markov process Yt notate as follows

λ([0, t]× A) =
+∞

∑
k=0

I(Yn ∈ A, τn ≤ t) (19)

Then, we can obtain the dual predictable projection measure (see [19]) for the probability measure
λ as follows

λ̃(dy, dt) =
+∞

∑
k=0

I(τn < t ≤ τn+1)
P(Yn, dy)vYn(t)

1−VYn(t)
dt (20)

and the Föllmer–Schweizer decomposition of the contingent claim H = (S(T)− K)+ as follows

E∗(H|Ft) = E∗H +
∫ t

0
α∗H

v dSv +
∫ t

0

∫
Υ

M(v, y)(λ− λ̃)dvdy (21)
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Hence, the optimal risk-minimizing hedging portfolio strategy is

ϕ∗(t) = (E∗H
t , E∗(H|Ft)− α∗H

t St) (22)

To obtain the exact representation of the optimal risk-minimizing hedging portfolio strategy ϕ∗(t),
we need consider that the following differential equation exists a solution.

Lemma 1. Let the function g(x) satisfy | g(x) | ≤ c × (1+ | x |)n, 0 ≤ n. Then, the following
differential equation

∂h(t,x,y)
∂t + 1

2 σ2(x)× x2P1−q ∂h(t,x,y)
∂x2 +

vy(t)
1−Vy(t)

∫
Υ

P(y, dz)[h(t, x, z)− h(t, x, y)] = 0

h(T, x, y) = g(x)
(23)

has a solution as follows
h(t, x, y) = Eg(Ŝx,y

T−t) (24)

where

Ŝ(t) = Ŝ(0) exp{−1
2

∫ t

0
σ2(YS)P1−qds +

∫ t

0
σ(YS)P

1−q
2 dW(s)} (25)

Proof of Lemma 1. Firstly, we can easily verify that the solution of the following Equation (26)

dŜ(t) = σ(Yt)P
1−q

2 Ŝ(t)dW(t) (26)

is

Ŝ(t) = Ŝ(0) exp{−1
2

∫ t

0
σ2(YS)P1−qds +

∫ t

0
σ(YS)P

1−q
2 dW(s)} (27)

This is because, using the Itō formula, we can get

d ln Ŝ(t) = −1
2

σ2(Yt)P1−qdt + σ(Yt)P
1−q

2 dW(t) (28)

Integrating both sides of Equation (28), we can obtain

ln Ŝ(t)− ln Ŝ(0) = −1
2

∫ t

0
σ2(YS)P1−qds +

∫ t

0
σ(YS)P

1−q
2 dW(s) (29)

Calculating exponential function both sides of Equation (29), we obtain Equation (27). Substituting
Equation (27) into Equation (24), we obtain

h(T − t, x, y) = Eg(Ŝx,y
t ) (30)

=
∫

g(z)z−1u(z; t, x, y)dz (31)

where

u(z; t, x, y) =
∫

ϕ(η, ln
z
x
+

1
2

η)Fy
d (dη) (32)

= Eϕ(xy
t , ln

z
x
+

1
2

xy
t ) (33)

and ϕ(t, x) = 1√
2πt

e−
x2
2t , Fy

t is the distribution function of Zy
t =

∫ t
0 σ2(Yy

S )P1−qds. Considering the
following equation
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φz(t, ξ, y) = σ2(y)P1−qφz(t, ξ, y) + vy(t)

1−Vy(t)

∫
Υ

P(y, dz)[φ(t, ξ, z)− φ(t, ξ, y)] + φt(t, ξ, y)

φ(0, ξ, y) = ϕ(ξ − ln( x
y ),

ln( x
y )+ξ

2 )
(34)

and using the Itō formula, we can obtain

φ(t, ξ, y) = E[ϕ(ξ + ZY
t − ln(

x
y
),

ln( x
y ) + ξ + ZY

t

2
)] (35)

Thus, we have
u(z; t, x, y) = φ(ln

z
x

, t, y) (36)

Substituting Equations (35) and (36) into Equation (34), we obtain
ut(z; t, x, y) = σ2(y)P1−qE[ϕt(Zy

t , ln( z
x ) +

Zy
x

2 ) + 1
2 ϕx(Zy

t , ln( z
x ) +

Zy
x

2 )]

+
vy(t)

1−Vy(t)

∫
Υ

P(y, dz)[u(t, x, z)− u(t, x, y)] + 2ut(z; t, x, y)

φ(0, ξ, y) = ϕ(ξ − ln( x
y ),

ln( x
y )+ξ

2 )

(37)

From Equation (33), we have

∂u(z; t, x, y)
∂x2 = x−2E[

∂ϕ

∂x2 +
∂ϕ

∂x
] (38)

Because of the function ϕ(t, x) = 1√
2πt

e−
x2
2t , we have

∂ϕ

∂t
=

1
2

∂ϕ

∂x2 (39)

Substituting Equations (38) and (39) into Equation (37), we obtain

ut(z; t, x, y) +
1
2

σ2(y)P1−qx2uxx(z; t, x, y) +
vy(t)

1−Vy(t)

∫
Υ

P(y, dz)[u(t, x, z)− u(t, x, y)] = 0 (40)

Hence, Equation (24) is the solution to Equation (23).

Theorem 1. The optimal risk-minimizing hedging portfolio strategy ϕ∗(t) = (α∗t , β∗t ) of the model in
Equation (14) is

α∗t = hx(t, St, Yt) (41)

β∗t = E(g(St) | Ft)− α∗t St (42)

where
g(St) = H = (S(t)− K)+ (43)

E(g(St) | Ft) = E∗g(St)+
∫ t

0
hx(v, Sv, Yv)dSv +

∫ t

0

∫
Υ

(h(v, Sv, y)− h(v, Sv, Yv−))(λ− λ̃)(dv, dy) (44)

(The Föllmer–Schweizer decomposition of the contingent claim g(St) = H = (S(t)− K)+.)
Under the optimal risk-minimizing hedging portfolio strategy ϕ∗(t), the residual risk process in

Equation (13) can be given by

Rt(ϕ∗) = E[
∫ T

t
[

vy(t)
1−Vy(t)

∫
Υ

P(y, dz)[h2(s, Ss, z)− h2(t, x, y)] + 2ut(z; t, x, y)]] (45)
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Proof of Theorem 1. By Lemma 1, we know

g(ST) = h(T, ST , YT) (46)

Using the Itō formula, we have

g(ST) = h(0, x, y) +
∫ T

0
hx(v, Sv, Yv)dSv +

∫ T

0
[ht(v, Sv, Yv)+

1
2

σ2(Yv)S2
vP1−qhxx(v, Sv, Yv)]dv + ∑

v≤T
[h(v, Sv, Yv)− h(v−, Sv−, Yv−)]

(47)

since the function h(t, St, Yt) is continuous over ([0, T]× Υ). It is right-continuous and left-limit too
(see [19,20]). Hence, we can write the last part of Equation (47) as follows

∑
v≤T

[h(v, Sv, Yv)− h(v−, Sv−, Yv−)] =

∫ T

0

∫
Υ

(h(v, Sv, y)− h(v−, Sv−, Yv−))λ(dv, dy)

=
∫ T

0

∫
Υ

(h(v, Sv, y)− h(v−, Sv−, Yv−))(λ− λ̃)(dv, dy)+

∫ T

0

∫
Υ

(h(v, Sv, y)− h(v−, Sv−, Yv−))λ̃(dv, dy)

=
∫ T

0

∫
Υ

(h(v, Sv, y)− h(v−, Sv−, Yv−))(λ− λ̃)(dv, dy)+

∫ T

0

∫
Υ

vYv−(v)
1−VYv−(v)

P(Yv−, dy)[h(v, Sv, y)− u(v−, Sv−, Yv−)]dv

(48)

Substituting Equation (48) into Equation (47), we can obtain

g(ST) = h(0, x, y) +
∫ T

0
hx(v, Sv, Yv)dSv +

∫ T

0
[ht(v, Sv, Yv)+

1
2

σ2(Yv)S2
vP1−qhxx(v, Sv, Yv)]dv+∫ T

0

∫
Υ

(h(v, Sv, y)− h(v−, Sv−, Yv−))(λ− λ̃)(dv, dy)+

∫ T

0

∫
Υ

vYv−(v)
1−VYv−(v)

P(Yv−, dy)[h(v, Sv, y)− u(v−, Sv−, Yv−)]dv

(49)

Combining the third and fifth formulas of Equation (49), we have

g(ST) = h(0, x, y) +
∫ T

0
hx(v, Sv, Yv)dSv+∫ T

0

∫
Υ

(h(v, Sv, y)− h(v−, Sv−, Yv−))(λ− λ̃)(dv, dy)+

∫ T

0
[ht(v, Sv, Yv) +

1
2

σ2(Yv)S2
vP1−qhxx(v, Sv, Yv)+∫

Υ

vYv−(v)
1−VYv−(v)

P(Yv−, dy)[h(v, Sv, y)− u(v−, Sv−, Yv−)]]dv

(50)
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Using Equation (23), we know that in Equation (50) the value of the last formula is zero. That is,
Equation (50) becomes

g(ST) = h(0, x, y) +
∫ T

0
hx(v, Sv, Yv)dSv +

∫ T

0

∫
Υ

(h(v, Sv, y)− h(v−, Sv−, Yv−))(λ− λ̃)(dv, dy) (51)

Furthermore, Equation (51) is the Föllmer–Schweizer decomposition of the European call option
payment g(St) = H = (S(t)−K)+. Hence, using Equations (21) and (22), we can obtain Equations (41)
and (42).

5. Summary

We propose an asset price model and consider a hedging problem for European call option.
In the model, to accurately depict the price changes of risky assets, we employ a stochastic process
derived from the non-extensive statistical theory to replace the classical geometric Brownian motion.
Moreover, we embed a semi-Markov process into the model so that it can be developed to portray
the macroeconomic impact. The regime-switching asset price model is an interesting topic. As future
work, we will do further empirical research and option pricing problems under the model.
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