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Abstract: Recently, Multi-Graph Learning was proposed as the extension of Multi-Instance Learning
and has achieved some successes. However, to the best of our knowledge, currently, there is no study
working on Multi-Graph Multi-Label Learning, where each object is represented as a bag containing
a number of graphs and each bag is marked with multiple class labels. It is an interesting problem
existing in many applications, such as image classification, medicinal analysis and so on. In this paper,
we propose an innovate algorithm to address the problem. Firstly, it uses more precise structures,
multiple Graphs, instead of Instances to represent an image so that the classification accuracy could
be improved. Then, it uses multiple labels as the output to eliminate the semantic ambiguity of
the image. Furthermore, it calculates the entropy to mine the informative subgraphs instead of
just mining the frequent subgraphs, which enables selecting the more accurate features for the
classification. Lastly, since the current algorithms cannot directly deal with graph-structures, we
degenerate the Multi-Graph Multi-Label Learning into the Multi-Instance Multi-Label Learning in order
to solve it by MIML-ELM (Improving Multi-Instance Multi-Label Learning by Extreme Learning Machine).
The performance study shows that our algorithm outperforms the competitors in terms of both
effectiveness and efficiency.

Keywords: multi-graph multi-label; entropy; informative subgraphs; extreme learning machine

1. Introduction

Due to the advance of smart phones, nowadays people upload a great number of photos to the
Internet. Updating photos has become easier, but searching them becomes more difficult. Though the
technology of searching images by images has appeared, most people rely on the traditional way to
searching an image, which is searching images by typing keywords. For that, we need to add labels
for each image, but it cannot be accomplished by human beings due to the great number of unlabeled
images. Thus, it is important to use Machine Learning to automatically classify images [1,2] and add
correct labels for them.

Multi-Instance Learning is extensively studied in image classification [3]. It uses a kind of data
structure called Feature Vector to represent a real image [4], but it is a little bit imprecise, since vectors
can only show the pixels of images without the adjacency relations between pixels. Thus, it is natural
to consider that Graph may be a better data structure to represent an image [5] because a Graph consists
of edges and nodes. Nodes can indicate the texture or color of pixels in an image and the edges
can indicate the adjacency relations of nodes. Like the following image in Figure 1a, a Feature Vector
can only tell you there are white, blue and green pixels in this image, whereas, after segmenting the
image into three Graphs [6] in Figure 1b, Graphs can show the adjacency relations between each pixel.
(In the real application, the image will be segmented into more graphs with more nodes.) The latter
one represents more real details of an image, which will be more beneficial for the accuracy in the
learning part.
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(a) Original image
(b) Represented in Graph

Figure 1. An example figure with structure Graph. (a) Original image; (b) Represented in Graph.

Recently, a graph-structure algorithm, namely gMGFL [7–10], was proposed by Jia Wu et al.
Briefly, it works in the following steps. Firstly, there are many different images in the training dataset.
gMGFL segments each image into multiple graphs, all which are packed into a graph bag. Secondly,
the label is only visible for the graph bag and each graph bag will only be marked with one label. For
a specific subject, if an image contains it, the label of the graph bag for this image will be positive;
on the contrary, it will be negative. Thirdly, to build an appropriate classifier, it needs to mine some
informative subgraphs, which can stand for the traits of the subject in the images (or the traits of the
subject not in the images), and use these subgraphs as the features for classifying. It is brilliant, but it
still has some drawbacks. Two major problems of gMGFL are listed as below.

Firstly, in the algorithm gMGFL, each image will only be marked with one label, so it can only
deal with one subject. Nevertheless, in the real life, it is impossible that an image just contains one
subject. It often includes multiple semantic information [11]. For example, in Figure 2, the image
contains three different subjects: sea, boat and sky, so it should be marked with three kinds of positive
labels (and maybe also marked with some negative labels, like lion or apple). It cannot mark the image
with only one label, like sea. Otherwise, it will cause some problems: if the user types a searching
keyword boat or sky, this image will not be shown in the result. Unfortunately, gMGFL can only deal
with a one-label problem.

(a) Original image (b) Segmented and labeled

Figure 2. An example figure with Multi-Label. (a) Original image; (b) Segmented and labeled.

Secondly, in the part of mining informative subgraphs, gMGFL considers that if a subgraph is
informative, it should be frequent in the dataset. Therefore, gMGFL mines the frequent subgraphs [12]
and uses them as the features for classifying, but this is not always accurate. In Figure 3, there are eight
graphs and two different classes. The above four are marked with positive labels and belong to the
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positive class; the four below are marked with negative labels and belong to the negative class. If we
only consider the frequent-subgraph mining, the subgraph A− B has the frequency of eight because
it appears eight times in all graphs. Nevertheless, if we regard it as an informative subgraph (a.k.a.
classifying feature), it cannot distinguish the positive class from the negative class, since it is a common
feature between two classes. Not only do all positive graphs contain the subgraph A− B, but also all
negative ones contain it as well. Thus, the subgraph A− B is not appropriate to be an informative
feature, but, due to its high frequency, gMGFL considers that it is, which will cause imprecise results.

Figure 3. A graph dataset with class label.

To solve these problems, in this paper, we proposed an advanced graph-structure algorithm named
Multi-Graph Multi-Label Learning. This algorithm may also be utilized in calculating the similarity of
biological sequences, predicting the function of chemical compounds, analyzing structured texts such
as HTML (Hypertext Markup Language) and XML (Extensible Markup Language), etc. The following
are our major contributions:

1. Our algorithm is based on a multi-graph and it can also solve multi-label (i.e., multiple subjects)
problems, which means it can deal with multiple semantic information. To the best of our knowledge,
we are the first one to propose such an algorithm.

2. We introduce a novel subgraph-mining technique called Entropy-Based Subgraph Mining.
It calculates the information entropy for each graph [13] and uses this criterion to mine the
informative subgraphs, which is more suitable than the one based on frequent-subgraph.

3. In the part of building the classifier, we utilize the algorithm MIML-ELM (we will discuss it briefly
in Section 2.3). It uses the Extreme Learning Machine rather than Support Vector Machine to build an
image classifier, which is more efficient.

The rest part of this paper is organized as the following. Related works are introduced in Section 2.
The algorithm description of Multi-Graph Multi-Label Learning is presented in Section 3. The results of
our experiments are provided in Section 4. Our conclusions are in Section 5.

2. Related Work

The research in this paper is related to some previous works of graph-structure classification,
Multi-Instance Multi-Label Learning and MIML-ELM. We will briefly review them respectively in
Sections 2.1–2.3.
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2.1. Graph-Structure Classification

There are two kinds of algorithms about graph-structure classification: one of them is based
on global distance and the other one is based on subgraph feature, and it has been proved that the
subgraph-feature approach is better [14]. It converts a set of subgraphs into feature vectors so that
most of the current algorithms can be utilized in the graph classification problem. Almost all these
kinds of algorithms (such as AGM [15], Gaston [16], gSpan [17,18], gHSIC [19,20]) extract subgraph
features by using frequent substructure pattern mining, and the most widespread mining algorithm
among them is gSpan.

2.2. Multi-Instance Multi-Label Learning

Multi-Instance Multi-Label Learning is a supervised learning algorithm, which represents real-world
objects with bags of instances and labels. The most widespread algorithm is MIML-SVM [21].
It degenerates Multi-Instance Multi-Label to Single-Instance Multi-Label by clustering multiple labels to
binary classification tasks with Support Vector Machine. Zhou et al. proposed MIML-SVM in [22] and
recently Li et al. improved it in [23].

2.3. MIML-ELM

The full name of MIML-ELM is Improving Multi-Instance Multi-Label Learning by Extreme Learning
Machine [24]. Extreme Learning Machine (ELM) is one of the models in Neural Networks and is
extensively utilized in Single Hidden-layer Feed-forward Network. Recently, Li et al. proposed an efficient
and effective algorithm named MIML-ELM, which utilized the ELM in solving the Multi-Instance
Multi-Label problem. Firstly, this algorithm is more effective in the process of degeneration from
Multi-Instance Multi-Label to Single-Instance Multi-Label, since it provides a theoretical guarantee to
automatically determine the number of clusters. Secondly, this algorithm is more efficient, since it uses
ELM instead of Support Vector Machine to improve the two-phase framework.

3. The MGML Algorithm

This section is about the algorithm description of Multi-Graph Multi-Label Learning (MGML). Firstly,
we will introduce some relative concepts in Section 3.1. Then, we discuss our proposed approach in
Sections 3.2–3.4. Lastly, an illustrative example of MGML is given in Section 3.5.

3.1. Problem Definition

The following are some basic definitions about our algorithm.

Definition 1. (Graph Bag): G is a graph denoted as G = (N, E, L, l). N is a set of nodes; E is a set of edges
and E ⊆ N × N; L is a set of labels for nodes and edges; l is the function mapping labels to nodes and edges and
l : N ∪ E→ L. A graph bag Bag = {G1, . . . , Gj, . . . , Gn} contains n graphs, where Gj denotes the j-th graph
in the bag.

Definition 2. (Subgraph): Given G = (N, E, L, l) and SubGk = (N′, E′, L′, l′), we say that SubGk is a
subgraph of G, if and only if there exists a function ψ : N′ → N s.t. (1) ∀n ∈ N′, l′(n) = l(ψ(n)); (2)
∀(n1, n2) ∈ E′, (ψ(n1), ψ(n2)) ∈ E, and l′(n1, n2) = l(ψ(n1), ψ(n2)). In addition, we can say that G is a
super-graph of SubGk.

Definition 3. (Subgraph Feature Representation for Graph): Let SetSubG = {SubG1, . . . , SubGs} be a
set of subgraphs mined from a graph set SetG = {G1, . . . , Gt}. For each graph Gi(i ∈ [1, t]) in SetG, we use a
feature vector XG

i = [(XSubG1
i )G, . . . , (XSubGk

i )G, . . . , (XSubGs
i )G]T to represent it. (XSubGk

i )G = 1 if and only
if SubGk is a subgraph of Gi. Otherwise, (XSubGk

i )G = 0.
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3.2. Overall Framework of MGML

The framework of MGML includes two major steps: (1) Mining Informative Subgraphs. Our novel
subgraph-mining technique Entropy-based Subgraph Mining will be utilized in this part and it includes
the following steps. Firstly, gSpan will be utilized to generate all subgraphs in the dataset. Secondly,
entropies of all subgraphs will be calculated and ranked according to our informative-subgraph
criterion based on information entropy. We will discuss all details in Section 3.3; (2) Building Classifier.
Top-ranked subgraphs will be used as classifying features. Graphs can be represented as instances
based on what kinds of classifying features (a.k.a. informative subgraphs) that they contain, so graphs
can be represented as multiple instances. Thus, Multi-Graph Multi-Label degenerates to Multi-Instance
Multi-Label. After that, we will utilize MIML-ELM, an efficient and effective MIML algorithm to build a
classifier. We will discuss all details in Section 3.4.

3.3. Mining Informative Subgraphs

In this section, we will discuss the evaluation of informative subgraphs and the algorithm how to
mine them.

3.3.1. Evaluation of Informative Subgraphs

Let us reconsider the example in Figure 3. Although another subgraph B− C has the frequency of
only three, it appears three times in four positive graphs and does not appear in the negative ones at
all, so it can stand for the trait of the positive class and is suitable to be regarded as a classifying feature.
Generally, if a subgraph appears frequently in one of the classes but hardly appears in the other class,
according to the definition of information entropy, this subgraph has low entropy. Thus, the subgraphs
that have low entropy are the informative subgraphs that we need. We will give the formal definition
of the informative subgraph in the following. Firstly, we will define it in the single-label problem for
the ease of understanding and then expand it to a multi-label problem.

Firstly, we give the definition of information entropy for subgraph in the single-label problem.
Assume that there is a set of graphs SetG = {G1, . . . , Gm}. Each graph Gi(i ∈ [1, m]) is only marked
with a single label and the label is either positive or negative. SetSubG is the complete set of subgraphs
mined from SetG, which is denoted as SetSubG = {SubG1, . . . , SubGn}. For each subgraph SubGj(j ∈
[1, n]), the set of super-graphs for it is Setj

G = {Gj
1, . . . , Gj

u}. #pos is the number of positive graphs

in Setj
G and #neg is the number of negative graphs in Setj

G (#pos + #neg = u). Since each graph

Gj
k(k ∈ [1, u]) in Setj

G is the super-graph of SubGj, the possibility of SubGj appearing in a positive (or

negative) class equals the percentage of positive (or negative) graphs in Setj
G (based on Definition 2).

Thus, the information entropy of subgraph SubGj is Ej = −pposlog2(ppos)− pneglog2(pneg). ppos is

the possibility of SubGj appearing in a positive class and ppos =
#pos

u ; pneg is the possibility of SubGj

appearing in a negative class and pneg =
#neg

u . The information entropy for the set of subgraphs SetSubG
is SetE(SubG) = {E1, . . . , En}.

Furthermore, the following is the definition of information entropy for a subgraph in a multi-label
problem. Assume that there is a set of graphs SetG = {G1, . . . , Gm} and each graph Gi (i ∈ [1, m]) is
marked with a set of labels SetLi = {Li,1, . . . , Li,t}. SetSubG is the complete set of subgraphs mined
from SetG, which is denoted as SetSubG = {SubG1, . . . , SubGn}. For each subgraph SubGj (j ∈ [1, n]),
it has a set of information entropy SetEj = {Ej,1, . . . , Ej,t} (t different kinds of information entropy
for t different labels). We define that, for each subgraph, the information entropy in a multi-label
problem is the average entropy of all labels. Thus, for the subgraph SubGj, the information entropy in
a multi-label problem is Ej = avg{Ej,1, . . . , Ej,t}. In the case of multi-label, the information entropy for
the set of subgraphs SetSubG is denoted as SetE(SubG) = {E1, . . . , En}.

Lastly, SetE(SubG) will be ranked increasingly. The top-ranked subgraphs (i.e., the ones with lower
entropy) are the informative subgraphs.



Entropy 2018, 20, 245 6 of 14

3.3.2. Entropy-Based Subgraph Mining

Current algorithms about classifying graph-structure data can be categorized into two groups:
one is based on global distance, including graph kernel [25,26], graph embedding [27] and graph
transformation [28], which calculates the similarity rate of two graphs; the other one is based on
subgraph feature [29], including AGM, Gaston, gSpan and gHSIC, which converts a set of subgraphs to
feature vectors. It has been proved that the latter one is better. It converts subgraphs to vectors so that
most of the current algorithms can be utilized in the graph-structure classification problem.

To mine informative subgraphs as classifying features, one of the straightforward approaches is
to mine the complete set of subgraphs for the graph set and rank these subgraphs with the evaluation
function in Section 3.3.1, but this approach will cause a problem: the number of subgraphs grows
exponentially when the size of graph set grows, so the enumeration will be tough work. Alternatively,
we use a Depth-First-Search (DFS) based on algorithm gSpan to generate all subgraphs, using our
evaluation during the process.

The key idea of gSpan is to build a lexicographic order among graphs that need to be mined, and
then give each graph a unique label named minimum DFS (Depth-First-Search) code. gSpan uses the
strategy of depth-first search to mine the frequent subgraph with the DFS code. Each time it needs
to generate a new subgraph, it just recurs the character string (i.e., DFS code), so a subgraph-mining
problem can be transformed into a substring-matching problem. Thus, the gSpan performs better than
previous similar algorithms.

Generally, gSpan is utilized for mining the frequent subgraphs, but we do not care about the
frequency of subgraph. We only use the gSpan to traverse all subgraphs and evaluate the information
entropy during the traversal. This is the general idea of Entropy-based Subgraph Mining (ESM).
The detailed algorithm of ESM is described in Algorithms 1 and 2.

Algorithm 1: GraphSet_Projection

Input : D: graph dataset with labels;
m: the number of subgraphs;
δ: the minimum entropy of the selected graph set;
Output : S: mining result;

1 S1 ←all one-edge graphs in D;
2 sort S1 by the order of DFS code;
3 S← S1;
4 foreach edge e ∈ S1 do
5 generate subgraph s from e;
6 set D by the graphs which contain e;
7 ESM (D, m, δ);
8 D ← D− e;
9 end

Note that Algorithm 1 invokes Algorithm 2 and Algorithm 2 is a recursion function. Firstly,
it generates all subgraphs by traversing the graph from one edge (lines 4–9 in Algorithm 1). The search
space is shrunk at the end of each turn (line 8 in Algorithm 1). Algorithm 2 traverses all graphs and
generates all their subgraphs. It will stop when the code of the subgraph is not a minimum code (line 1
in Algorithm 2). The information entropy of the subgraph is computed and the result set is built by
conducting Lines 4–11 in Algorithm 2. Lines 15–19 in Algorithm 2 grows the subgraph and does this
function recursively.
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3.4. Building Classifier

Since current algorithms of classifiers cannot be utilized directly in the graph-structure, after
mining the informative subgraphs, we need to degenerate Multi-Graph Multi-Label (MGML) to
Multi-Instance Multi-Label (MIML) based on Definition 3. The general idea is that, assuming
there is a set of graphs SetG = {G1, . . . , Gm} and a set of informative subgraphs SetIn f oSubG =

{In f oSubG1, . . . , In f oSubGn} mined from SetG. For each graph Gi (i ∈ [1, m]), it equals a feature
vector Vi = (x1, . . . , xn) (a.k.a. instance) and the dimension of it is n (that equals to the number
of informative subgraphs). For each informative subgraph In f oSubGj (j ∈ [1, n]), if Gi is the
super-graph of In f oSubGj, xj in Vi has xj = 1; otherwise, xj = 0. The labeled MIML set is
D = {(Bi, Yi)|i = 1, . . . , N}, where N is the number of bags in dataset D and Bi = {Xi

1, . . . , Xi
j, . . . , Xi

ni
}

is an instance bag with ni instances, Yi ∈ {0, 1}M is the label vector of bag Bi. Now, the MGML problem
is degenerated to the MIML problem.

Algorithm 2: ESM

Input : D: graph dataset with labels;
m: the number of subgraphs;
δ: the minimum entropy of the selected graph set;
Output : Min S: mining result;
s: subgraph;

1 if s 6= min(s) then
2 return;
3 end
4 compute the entropy E(s) of the subgraph s;
5 if |S| < m or E(s) > δ then
6 S← S ∪ {s};
7 end
8 if |S| > m then
9 S← S/ arg minsi∈S E(si);

10 end
11 δ = minsi∈S E(si);
12 foreach graph in D do
13 enumerate s;
14 count its children;
15 c = s’ child;
16 foreach c do
17 s← c;
18 ESM(Ds, m, δ);
19 end
20 end

Traditionally, Support Vector Machine (SVM) is utilized to solve the MIML, but it has some
drawbacks. First, SVM requires the user to input a great number of parameters. Second, using
SVM to build a classifier may cause a high computing cost and the performance depends on the
specific parameters that the user defined. Thus, we choose to use the Extreme Learning Machine
(ELM) to solve the MIML problem. Firstly, ELM develops a theoretical guarantee to determine the
number of clusters by AIC [30]. Secondly, a k-medoids cluster process is performed to transform from
Multi-Instance Multi-Label into Single-Instance Multi-Label. Then, the Hausdorff distance [31] is used to
measure the similarity between two different multi-instance bags. Based on the Hausdorff distance,
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k-medoids cluster divides the dataset into k parts, the medoids of which are M1, . . . , Mk. At last, we
train the classifier for each label with k-dimensional numerical vectors.

3.5. Example of MGML

In this section, we will give an explanatory example of MGML. In Figure 4a, there are three images
and two labels. In image 1, label Lion is positive (+) and label Tree is positive (+). In image 2, label
Lion is positive (+) and label Tree is negative (−). In image 3, label Lion is negative (−) and label Tree is
negative (−). The following are the brief steps to build a classifier with MGML.

(a) Original images and labels (b) Segmented to multiple graphs (c) Informative subgraphs

Figure 4. An example of MGML (1). (a) Original images and labels; (b) Segmented to multiple graphs;
(c) Informative subgraphs.

(a) Multiple instances (b) Relation between informative subgraphs and labels

Figure 5. An example of MGML (2). (a) Multiple instances; (b) Relation between informative subgraphs
and labels.

Firstly, segment these images into multiple graphs like Figure 4b. Secondly, utilize Entropy-based
Subgraph Mining to mine informative subgraphs. The result is in Figure 4c. Thirdly, transform
Multi-Graph to Multi-Instance. The result is in Figure 5a. Lastly, utilize MIML-ELM to build a classifier.
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The formula (i.e., relation) between informative subgraphs and labels is in Figure 5b. For example,
subgraph A− D is the trait when label Tree is negative (−).

Assume that there is a new image without labels in Figure 6a. Segment the image into multiple
graphs like Figure 6b. If we want to add labels for it with our MGML classifier, we just need to see
what kinds of classifying features (i.e., the informative subgraphs in the previous step) it contains. It
contains A− D and B− D, so it should have a negative (−) label Lion and a positive (+) label Tree.

(a) Unlabeled image (b) Segmented to multiple graphs

Figure 6. An example of MGML (3). (a) Unlabeled image; (b) Segmented to multiple graphs.

4. Experimental Section

The following experiments are performed on a PC running Linux with an Intel dual-core CPU
(2.60 GHz) (Shenyang, China) and 16 GB memory.

4.1. Datasets

Experiments are performed on three image datasets. These datasets have different sizes, including
a small size of dataset named MSRC v2 (Microsoft Research Cambridge) [32], a middle size of dataset
named Scenes [22,33] and a large size of dataset named Corel5K [34].

The summary of three datasets is given in Table 1.

Table 1. The summary of datasets.

Dataset # of Bags # of Labels Labels Per Bag

MSRC v2 591 23 2.5
Scenes 2000 5 1.2

Corel5K 5000 260 3.5

We use two ways to segment the original datasets: the first one is to segment each image into
six graph structures and each graph has eight nodes and 12 edges roughly (6× 8× 12); the second one
is to segment each image into six graph structures and each graph has nine nodes and 15 edges roughly
(6× 9× 15). In short, graphs in 6× 9× 15 set are more complex to mining than the 6× 8× 12 one.

In the following experiments, each dataset will be randomly divided to a training dataset and a
testing dataset and the ratio of them is about 2:1. The training dataset will be used to build the classifier
and the testing dataset will be used to evaluate its performance. All experiments repeatedly run thirty
times, and each time the training dataset and the testing dataset will be divided randomly.

4.2. Evaluation Criteria

Assume that there is a test dataset S = {(X1, Y1), (X2, Y2), . . . , (Xp, Yp)}. h(Xi) denotes a set
of correct labels of Xi; h(Xi, y) denotes the confidence for y to be a correct label of Xi; rankh(Xi, y)
denotes the rank of y derived from h(Xi, y). The following are four evaluation criteria to measure the
performance of our MGML algorithm.

1. RankingLoss = 1
p ∑

p
i=1

1
||Yi ||||Yi ||

|{(y1, y2)|h(Xi, y1) ≤ h(Xi, y2), (y1, y2) ∈ Yi × Yi}|, where Yi

denotes the complementary set of Yi in Y. It indicates the average fraction of labels that are



Entropy 2018, 20, 245 10 of 14

misordered for a specific object. The smaller the value of RankingLoss is, the better the performance
reaches. When it equals to 0, the performance reaches perfect.

2. OneError = 1
p ∑

p
i=1[arg maxy∈Y h(Xi, y) /∈ Yi]. It indicates the average time that the top labels

in the rank are not the correct ones for a specific object. The smaller the value of OneError is,
the better the performance reached. When it equals 0, the performance can reach perfection.

3. Coverage = 1
p maxy∈Y rankh(Xi, y)− 1. It indicates the average number of labels in the rank that

need to be included to cover all the correct labels for a specific object. The smaller the value of
Coverage is, the better the performance.

4. Average Precision avgprecS(h) = 1
p ∑

p
i=1

1
|Yi | ∑y∈Yi

|{y′ |rankh(Xi , y′) ≤ rankh(Xi , y′) ≤ rankh(Xi , y), y′∈Yi}|
rankh(Xi , y) .

It indicates the the average fraction of correct labels in all labels Yi. The larger the value of Average
Precision is, the better the performance. When it equals 1, the performance can reach perfection.

4.3. Effectiveness

In this section, we will use 1 , 2 and 3 to mark different algorithms for the differentiation,
and we will call our MGML algorithm 1 MGML-ELM, which means that “the MGML algorithm
using MIML-ELM”.

Currently, there are no other methods of MGML learning that can be compared to our algorithm.
Thus, we use the 3 MIML-SVM, one of the state-of-the-art algorithms for MIML learning, as the
competitor. In addition, we use the 2 MGML-SVM as the baseline algorithm for competitions. The 2
MGML-SVM algorithm is generally the same as the 1 MGML-ELM. It also needs to degenerate the
MGML problem into the MIML problem, but then it uses the SVM instead of ELM in the next step.

The parameter of 1 MGML-ELM is the number of hidden layer (hn), which is respectively set to
50, 100, 150, 200; the parameter of 2 MGML-SVM and 3 MIML-SVM is the penalty factor of Gaussian
kernel (Cost), which is respectively set to 1, 2, 3, 4, 5. The final results on average are in Tables 2–4.
The bold one means the best performance for every criterion. The ↓ indicates the smaller the better,
while the ↑ indicates the larger the better.

Table 2. MSRC v2 Dataset.

MSRC v2 Evaluation Criterion
RankingLoss↓ OneError↓ Coverage↓ Average Precision↑

1 MGML-ELM

hn = 50 0.070079 0.183039 3.92824 0.809013
hn = 100 0.071367 0.172589 3.928934 0.820388
hn = 150 0.075182 0.19797 3.989848 0.804771
hn = 200 0.07181 0.187817 3.86802 0.808192

2 MGML-SVM

Cost = 1 0.154664 0.19797 7.35533 0.754622
Cost = 2 0.171189 0.229066 7.122844 0.761665
Cost = 3 0.183357 0.233503 7.634518 0.735131
Cost = 4 0.140284 0.219557 7.628352 0.735253
Cost = 5 0.137361 0.187817 6.187817 0.762115

3 MIML-SVM

Cost = 1 0.105581 0.295073 5.267476 0.710714
Cost = 2 0.104209 0.292204 5.218223 0.715079
Cost = 3 0.100998 0.253995 5.044584 0.721987
Cost = 4 0.097587 0.247775 4.890471 0.73787
Cost = 5 0.0955 0.240682 4.880897 0.745322

For ease of reading, we use 1 , 2 and 3 in this paragraph to respectively indicate 1 MGML-ELM
2 MGML-SVM and 3 MIML-SVM. As seen from the results in Table 2, in the dataset MSRC v2,

our algorithm 1 performs best when the hn = 100 and the precision reaches 82%, RankingLoss reaches
0.07, OneError reaches 0.17 and Coverage reaches 3.93, while the precision of 2 reaches 76% at best
when Cost = 5, RankingLoss reaches 0.14, OneError reaches 0.19 and Coverage reaches 6.19, and 3
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reaches 75% at best when Cost = 5, RankingLoss reaches 0.10, OneError reaches 0.24 and Coverage
reaches 4.88.

Table 3. Scenes Dataset.

Scene Evaluation Criterion
RankingLoss↓ OneError↓ Coverage↓ Average Precision↑

1 MGML-ELM

hn = 50 0.16927 0.318 1.771 0.798919
hn = 100 0.172833 0.33 1.81 0.798367
hn = 150 0.165 0.304 1.78 0.811867
hn = 200 0.160667 0.312 1.762 0.8102

2 MGML-SVM

Cost = 1 0.299667 0.806 1.324 0.555683
Cost = 2 0.298835 0.434 1.324 0.694689
Cost = 3 0.2935 0.34 1.284 0.7401
Cost = 4 0.252933 0.36 1.312 0.630968
Cost = 5 0.237167 0.458 1.062 0.71515

3 MIML-SVM

Cost = 1 0.910205 0.950815 3.810687 0.242251
Cost = 2 0.91073 0.95178 3.844675 0.242479
Cost = 3 0.91348 0.956172 3.864988 0.245989
Cost = 4 0.914378 0.957471 3.86676 0.246726
Cost = 5 0.917939 0.958322 3.867907 0.249013

As seen from the results in Table 3, in the dataset Scenes, our 1 reaches 81% at best when the
hn = 150, RankingLoss reaches 0.17, OneError reaches 0.30 and Coverage reaches 1.78, while 2 reaches
74% at best when Cost = 3, RankingLoss reaches 0.29, OneError reaches 0.34 and Coverage reaches
1.28, and 3 reaches 25% at best when Cost = 5, RankingLoss reaches 0.92, OneError reaches 0.96 and
Coverage reaches 3.87.

Table 4. Corel5K Dataset.

Corel5K Evaluation Criterion
RankingLoss↓ OneError↓ Coverage↓ Average Precision↑

1 MGML-ELM

hn = 50 0.202493 0.750168 113.8968 0.224968
hn = 100 0.197103 0.743487 113.354709 0.224146
hn = 150 0.21584 0.755511 120.549098 0.219783
hn = 200 0.205424 0.751503 119.306613 0.225752

2 MGML-SVM

Cost = 1 0.30124 0.857229 139.0005 0.120073
Cost = 2 0.301264 0.86724 140.9756 0.121792
Cost = 3 0.301906 0.868129 141.8067 0.122804
Cost = 4 0.304838 0.870358 143.3142 0.123633
Cost = 5 0.307872 0.880693 144.8687 0.128766

3 MIML-SVM

Cost = 1 0.191867 0.768118 110.4207 0.217195
Cost = 2 0.191899 0.768204 110.4322 0.217209
Cost = 3 0.191922 0.768299 110.4657 0.217219
Cost = 4 0.191978 0.768416 110.4719 0.217285
Cost = 5 0.191997 0.768899 110.5187 0.217299

As seen from the results in Table 4,in the dataset Corel5K, our 1 reaches 23% at best when the
hn = 200, RankingLoss reaches 0.21, OneError reaches 0.75 and Coverage reaches 119.31, while 2 reaches
13% at best when Cost = 5, RankingLoss reaches 0.31, OneError reaches 0.88 and Coverage reaches
144.87, and 3 reaches 22% at best when Cost = 5, RankingLoss reaches 0.19, OneError reaches 0.77 and
Coverage reaches 110.52. Thus, we can say that our 1 MGML-ELM achieves the best performance in
all cases.
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4.4. Efficiency

In this section, we test the efficiency of our MGML algorithm. For either MGML or MIML, as long
as the input numbers of features for ELM and SVM are the same, the runtime for both of these two
algorithms will be equal. Therefore, the only way to test the efficiency is focusing on the part of mining
the classifying features. Our MGML uses an innovate technique Entropy-based Subgraph Mining (ESM)
to mine the informative subgraphs as the features, while the gMGFL of Jia Wu mines the frequent
subgraphs as the features, which is based on the boosting gSpan named gboost [35]. We respectively
compared the time of our ESM for mining subgraphs with gboost in three datasets: MSRC v2, Scenes
and Corel5K.

We implement ESM and gboost in two kinds of segmented datasets (6× 9× 15 and 6× 8× 12) and
the minimum frequency is set to 5%, 10%, 15%, and 20%. In ESM, if the frequency of a graph is lower
than the minimum frequency we set, we will not calculate the entropy for this graph; while, in gboost,
if the frequency of a graph is lower than the minimum frequency, we will not continue to mine the
subgraphs for this graph. In short, the lower the minimum frequency is, the more graphs the algorithm
needs to mine. The final results in average are in Figure 7a–c. The time results are logarithmic.
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Figure 7. Results of efficiency experiments. (a) MSRC v2 Dataset; (b) Scenes Dataset; (c) Corel5K Dataset.

As seen from the results in Figure 7a–c, gboost takes hours to mine the huge datasets, but ESM
takes only several minutes to generate results. For example, in the dataset MSRC v2 (6× 9× 15), when
the minimum frequency is set to 5%, ESM takes two minutes to mine the results while gboost takes 4 h
to do that; in the dataset Scenes (6× 9× 15), when the minimum frequency is set to 10%, ESM takes
4 s to mine the results while gboost takes 10 min to do that; in the dataset Corel5K (6× 9× 15), when
the minimum frequency is set to 15%, ESM takes 19 s to mine the results while gboost takes 16 min to
do that. These figures show that ESM achieves better performance by 100–1000 times in comparison
with gboost.

5. Conclusions

In this paper, we have shown how the Multi-Graph Multi-Label Learning (MGML) works.
The MGML uses the more precise structures, multiple graphs, instead of instances to represent an
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image, which can improve the accuracy of classification dramatically in the latter step. In addition, it
uses multiple labels as the output to eliminate the ambiguity of description. Furthermore, we use our
technique Entropy-based Subgraph Mining to mine the informative subgraphs, rather than simply regard
frequent subgraphs as informative subgraphs. Then, we show how to degenerate MGML to MIML.
At last, we use the MIML-ELM as the base classifier. Extensive experimental results prove that MGML
achieves a good performance in three image datasets with different sizes. What we are interested in
for the future steps is to improve the performance in the dataset that has sparse labels by using other
algorithms as the classifier.
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