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Abstract: This paper fails to derive quantum mechanics from a few simple postulates. However,
it gets very close, and does so without much exertion. More precisely, I obtain a representation
of finite-dimensional probabilistic systems in terms of Euclidean Jordan algebras, in a strikingly
easy way, from simple assumptions. This provides a framework within which real, complex and
quaternionic QM can play happily together and allows some (but not too much) room for more
exotic alternatives. (This is a leisurely summary, based on recent lectures, of material from the papers
arXiv:1206:2897 and arXiv:1507.06278, the latter joint work with Howard Barnum and Matthew
Graydon. Some further ideas are also explored, developing the connection between conjugate
systems and the possibility of forming stable measurement records and making connections between
this approach and the categorical approach to quantum theory.)
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1. Introduction and Overview

Whatever else it may be, Quantum mechanics (QM) is a machine for making probabilistic
predictions about the results of measurements. To this extent, QM is, at least in part, about information.
Over the last decade or so, it has become clear that the formal apparatus of quantum theory, at least
in finite dimensions, can be recovered from constraints on how physical systems store and process
information. To this extent, finite-dimensional QM is just about information.

The broad idea of regarding QM in this way, and of attempting to derive its mathematical structure
from simple operational or probabilistic axioms, is not new. Efforts in this direction go back at least to
the work of von Neumann [1], and include also attempts by Schwinger [2], Mackey [3], Ludwig [4],
Piron [5], and many others. However, the consensus is that these were not entirely successful: partly
because the results they achieved (e.g., Piron’s well-known representation theorem) did not rule out
certain rather exotic alternatives to QM, but mostly because the axioms deployed seem, in retrospect,
to lack sufficient physical or operational motivation.

More recently, with inspiration from quantum information theory, attention has focused on
finite-dimensional systems, where the going is a bit easier. Just as importantly, quantum information
theory prompts us to treat properties of composite systems as fundamental, where earlier work focused
largely on systems in isolation (a recent exception to this trend is the paper [6] of Barnum, Müller and
Ududec). These shifts of emphasis are illustrated by the work of Hardy [7], who presented five simple,
broadly information-theoretic postulates governing the states and measurements associated with a
physical system, determining a very restricted set of possible theories, parametrized by a positive
integer r, with finite-dimensional quantum and classical probability theory corresponding to r = 1
and r = 2. Following this lead, several papers, notably [8–10], have derived finite-dimensional QM
from various packages of axioms governing the information-carrying and information-processing
capacity of finite-dimensional systems.
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Problems with existing approaches. These recent reconstructive efforts suffer from two related
problems. First, they make use of assumptions that seem too strong. Secondly, in trying to derive
exactly complex, finite-dimensional quantum theory, they derive too much.

• All of the cited papers assume local tomography. This is the doctrine that the state of a bipartite
composite system is entirely determined by the joint probabilities it assigns to outcomes of
measurements on the two subsystems. This rules out both real and quaternionic QM, both of
which are legitimate quantum theories [11].

• These papers also all make some version of a uniformity assumption: that all systems having the
same information-carrying capacity are isomorphic, or that all systems are composed, in a uniform
way, from “bits” of a uniform type. Here, “information carrying capacity” means essentially
the maximum number of states that can be distinguished from one another with probability
one by a single measurement. A bit is a system for which this number is two. This rules out
systems involving superselection rules, i.e., those that admit both real and classical degrees of
freedom (for example, the quantum system corresponding to M2(C)⊕M2(C), corresponding to a
classical choice between one of two qubits, has the same information-carrying capacity as a single,
four-level quantum system). More seriously, it rules out any theory that includes, e.g., real and
complex, or real and quaternionic systems, as the state spaces of the bits of these theories have
different dimensions. As I will discuss below, one can indeed construct mathematically-reasonable
theories that embrace finite-dimensional quantum systems of all three types.

• Another shortcoming, not related to the exclusion of real and quaternionic QM, is the technical
assumption (explicit in [10] for bits) that all positive affine functionals on the state space
taking values between zero and one correspond to physically-accessible “effects”, i.e., possible
measurement results. From an operational point of view, this principle (called the “no-restriction
hypothesis” in [12]) seems to call for further motivation.

Another approach. In these notes, I am going to describe an alternative approach that avoids these
difficulties. This begins by associating with every physical system a convex set of states and a
distinguished set of basic measurements (or experiments) that can be made on the system. We then
isolate two striking features shared by classical and quantum probabilistic systems. The first is the
possibility of finding a joint state that perfectly correlates a system A with an isomorphic system A
(call it a conjugate system) in the sense that every basic measurement on A is perfectly correlated
with the corresponding measurement on A. In finite-dimensional QM, where A is represented by
a finite-dimensional Hilbert space H, A, corresponds to the conjugate Hilbert space H, and the
perfectly-correlating state is the maximally-entangled “EPR” state on H⊗H.

The second feature is the existence of what I call filters associated with each basic measurement.
These are processes that independently attenuate the “response” of each outcome of the measurement
by some specified factor. Such a process will generally not preserve the normalization of states, but up
to a constant factor, in both classical and quantum theory, one can prepare any desired state by applying
a suitable filter to the maximally-mixed state. Moreover, when the target state is not singular (that is,
when it does not assign probability zero to any nonzero measurement outcome), one can reverse the
filtering process, in the sense that it can be undone by another process with positive probability.

The upshot is that all probabilistic systems having conjugates and a sufficiently lavish supply
of (probabilistically) reversible filters can be represented by formally real Jordan algebras, a class
of structures that includes real, complex and quaternionic quantum systems, and just two further
well-studied additional possibilities, which I will review below.

In addition to leaving room for real and quaternionic quantum mechanics (which I take to be
a virtue), this approach has another advantage: it is much easier! The assumptions involved are
few and easily stated, and the proof of the main technical result (Lemma 1 in Section 4) is short
and straightforward. By contrast, the mathematical developments in the papers listed above are
significantly more difficult and ultimately lean on the (even more difficult) classification of compact
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groups acting on spheres. My approach, too, leans on a received result, but one that is relatively
accessible. This is the Koecher–Vinberg theorem, which characterizes formally real, or Euclidean,
Jordan algebras in terms of ordered real vector spaces with homogeneous, self-dual cones. A short and
non-taxing proof of this classical result can be found in [13].

These ideas were developed in [14–16] and especially [17], of which this paper is, to an extent,
a summary. However, the presentation here is slightly different, and some additional ideas are
also explored. In particular, I have spelled out in more detail the connection between conjugate
systems and measurement records, only alluded to in the earlier paper. I also link this approach to the
categorical approach to quantum theory due to Abramsky, Coecke and others [18], along the way
briefly discussing recent work with Howard Barnum and Matthew Graydon [19] on the construction
of probabilistic theories in which real, complex and quaternionic quantum systems coexist. Finally,
Appendix B presents a uniqueness result for spectral decompositions of states, which may find
further application.

A bit of background. At this point, I had better pause to explain some terms. A Jordan algebra is a real
commutative algebra (a real vector space E with a commutative bilinear multiplication a, b 7→ a·b)
having a multiplicative unit u and satisfying the Jordan identity: a2·(a·b) = a·(a2·b), for all
a, b, c ∈ E, where a2 = a·a. A Jordan algebra is formally real if sums of squares of nonzero elements are
always nonzero. The basic, and motivating, example is the space Lsa(H) of self-adjoint operators on a
complex Hilbert space, with the Jordan product given by a·b = 1

2 (ab + ba). Note that here, a·a = aa,
so the notation a2 is unambiguous. To see that Lsa(H) is formally real, just note that a2 is always a
positive operator.

If H is finite dimensional, Lsa(H) carries a natural inner product, namely 〈a, b〉 = Tr(ab).
This plays well with the Jordan product: 〈a·b, c〉 = 〈b, a·c〉 for all a, b, c ∈ Lsa(H). More generally,
a finite-dimensional Jordan algebra equipped with an inner product having this property is said to
be Euclidean. For finite-dimensional Jordan algebras, being formally real and being Euclidean are
equivalent [13]. In what follows, I will abbreviate “Euclidean Jordan algebra” to EJA.

Jordan algebras were originally proposed, with what now looks like slightly thin motivation,
by P. Jordan [20]: if a and b are quantum-mechanical observables, represented by a, b ∈ Lsa(H),
then while a + b is again self-adjoint, ab and ba are not, unless a and b commute; however, their
average, a·b, is self-adjoint and, thus, represents another observable. Almost immediately, Jordan,
von Neumann and Wigner showed [21] that all formally real Jordan algebras are direct sums of simple
such algebras, with the latter falling into just five classes, parametrized by positive integers n: the
self-adjoint parts, Mn(F)sa, of matrix algebras Mn(F), where F = R,C or H (the quaternions) or, for
n = 3, over O (the octonions); and also what are called spin factors Vn (closely related to Clifford
algebras). There is some overlap: V2 ' M2(R), V3 ' M2(C) and V5 ' M2(H). In all but one case, one
can show that a simple Jordan algebra is a Jordan subalgebra of Mn(C) for suitable n. The exceptional
Jordan algebra, M3(O)sa, admits no such representation.

Besides this classification theorem, there is only one other important fact about Euclidean Jordan
algebras that is needed for what follows. This is the Koecher–Vinberg (KV) theorem alluded to above.
Recall that an ordered vector space is a real vector space, call it E, spanned by a distinguished convex
cone E+ having its vertex at the origin. Such a cone induces a translation-invariant partial order on
E, namely a ≤ b iff b− a ∈ E+. As an example, the space Lsa(H) is ordered by the cone of positive
operators. More generally, any EJA is an ordered vector space, with positive cone E+ := {a2|a ∈ A}.
This cone has two special features: first, it is homogeneous, i.e., for any points a, b in the interior of E+,
there exists an automorphism of the cone (a linear isomorphism E → E, taking E+ onto itself) that
maps a to b. In other words, the group of automorphisms of the cone acts transitively on the cone’s
interior. The other special property is that E+ is self-dual. This means that E carries an inner product
(in fact, the given one making E Euclidean) such that a ∈ E+ iff 〈a, b〉 ≥ 0 for all b ∈ E+.
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An order unit in an ordered vector space E is an element u ∈ E+ such that, for all a ∈ E, there exists
some n ∈ N with a ≤ nu. In finite dimensions, this is equivalent to u’s belonging to the interior of
the cone E+ [22]. In the following, by a Euclidean order unit space, I mean an ordered vector space E
equipped with an inner product 〈, 〉 with 〈a, b〉 ≥ 0 for all a, b ∈ E+, and a distinguished order-unit
u. I will say that such a space E is HSD iff E+ is homogeneous, and also self-dual with respect to the
given inner product.

Theorem 1 (Koecher 1958; Vinberg 1961). Let E be a finite-dimensional euclidean order-unit space. If E is
HSD, then there exists a unique product · with respect to which E (with its given inner product) is a euclidean
Jordan algebra, u is the Jordan unit, and E+ is the cone of squares.

It seems, then, that if we can motivate a representation of physical systems in terms of
HSD order-unit spaces, we will have “reconstructed” what with a little license we might call
finite-dimensional Jordan-quantum mechanics. In view of the classification theorem glossed above,
this gets us into the neighborhood of orthodox QM, but still leaves open the possibility of taking real
and quaternionic quantum systems seriously. (It also leaves the door open to two possibly unwanted
guests, namely spin factors and the exceptional Jordan algebra. I will discuss below some constraints
that at least bar the latter.)

Some notational conventions. My notation is mostly consistent with the following conventions
(more standard in the mathematics than the physics literature, but in places slightly excentric relative
to either). Capital Roman letters A, B, C serve as labels for systems. Mn(F) stands for the set of n× n
matrices over F = R or H; Mn(F)sa is the set of self-adjoint such matrices. Vectors in a Hilbert space H
are denoted by little Roman letters x, y, z from the end of the alphabet. Operators on H will usually be
denoted by little Roman letters a, b, c, ... from the beginning of the alphabet. Roman letters t, s typically
stand for real numbers. The space of all linear operators on H is denoted L(H); as already indicated
above, Lsa(H) is the (real) vector space of self-adjoint operators on H.

As above, the conjugate Hilbert space is denoted H. I will write x for the vectors in H
corresponding to x ∈ H. From a certain point of view, this is the same vector; the bar serves to
remind us that cx = c x for scalars c ∈ C. Alternatively, one can regard H as the space of “bra” vectors
〈x| corresponding to the “kets” |x〉 in H, i.e., as the dual space of H.

The inner product of x, y ∈ H is written as 〈x, y〉 and is linear in the first argument (if you
like: 〈x, y〉 = 〈y|x〉 in Dirac notation). The inner product on H is then 〈x, y〉 = 〈y, x〉. The rank-one
projection operator associated with a unit vector x ∈ H is px. Thus, px(y) = 〈y, x〉x. I denote
functionals on Lsa(H) by little Greek letters, e.g., α, β..., and operators on Lsa(H) by capital Greek
letters, e.g., Φ. Two exceptions to this scheme: a generic density operator on H is denoted by the
capital Roman letter W, and a certain special unit vector in H⊗H is denoted by the capital Greek
letter Ψ. With luck, context will help keep things straight.

2. Homogeneity and Self-Duality in Quantum Theory

Why should a probabilistic physical system be represented by a Euclidean order-unit space that
is either homogeneous or self-dual? One place to start hunting for an answer might be to look at
standard quantum probability theory, to see if we can isolate, in operational or probabilistic terms,
what makes this self-dual and homogeneous.

Correlation and self-duality. Let H be a finite-dimensional complex Hilbert space, representing
some finite-dimensional quantum system. The system’s states are represented by density operators,
i.e., positive trace-one operators W ∈ Lsa(H); possible measurement-outcomes are represented by
effects, i.e., positive operators a ∈ Lsa(H) with a ≤ 1. The Born rule specifies the probability of
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observing effect a in state W as Tr(Wa). If W is a pure state, i.e., W = pv where v is a unit vector in H,
then Tr(Wa) = 〈av, v〉; by the same token, if a = px, then Tr(Wa) = 〈Wx, x〉.

For a, b ∈ Lsa(H), let 〈a, b〉 := Tr(ab). This is an inner product. By the spectral theorem,
Tr(ab) ≥ 0 for all b ∈ Lh(H)+ iff Tr(apx) ≥ 0 for all unit vectors x. However, Tr(apx) = 〈ax, x〉.
So Tr(ab) ≥ 0 for all b ∈ Lh(H)+ iff a ∈ Lh(H)+, i.e., the trace inner product is self-dualizing.
However, this now leaves us with the following:

Question: What does the trace inner product represent, oprationally or probabilistically?

Let H be the conjugate Hilbert space to H. Suppose H has dimension n. Any unit vector Ψ in
H⊗H gives rise to a joint probability assignment to effects a on H and b on H, namely 〈(a⊗ b)Ψ, Ψ〉.
Consider the EPR state for H⊗H defined by the unit vector:

Ψ = 1√
n ∑

x∈E
x⊗ x ∈H⊗H,

where E is any orthonormal basis for H. A straightforward computation shows that the joint probability
of observing a and b in the state Ψ is:

〈(a⊗ b)Ψ, Ψ〉 = 1
n Tr(ab).

In other words, the normalized trace inner product just is the joint probability function determined
by the pure state vector Ψ!

As a consequence, the state represented by Ψ has a very strong correlational property: if x, y are
two orthogonal unit vectors with corresponding rank-one projections px and py, we have px py = 0,
so 〈(px ⊗ py)Ψ, Ψ〉 = 0. On the other hand, 〈(px ⊗ px)Ψ, Ψ〉 = 1

n Tr(px) = 1
n . Hence, Ψ perfectly,

and uniformly, correlates every basic measurement (orthonormal basis) of H with its counterpart in H.

Filters and homogeneity. Next, let us see why the cone Lh(H)+ is homogeneous. Recall that this
means that any state in the interior of the cone (here, any non-singular density operator) can be
obtained from any other by an automorphism of the cone. However, in fact, something better is true:
this order-automorphism can be chosen to represent a probabilistically-reversible physical process,
i.e., an invertible CP mapping with a CP inverse.

To see how this works, suppose W is a positive operator on H. Consider the pure CP mapping
ΦW : Lsa(H)→ Lsa(H) given by:

ΦW(a) = W1/2aW1/2.

Then, ΦW(1) = W. If W is nonsingular, so is W1/2, so ΦW is invertible, with inverse Φ−1
W = ΦW−1 ,

again a pure CP mapping. Now, given another nonsingular density operator M, we can get from W to
M by applying ΦM ◦ΦW−1 .

All well and good, but we are still left with the following:

Question: What does the mapping ΦW represent, physically?

To answer this, suppose W is a density operator, with spectral expansion W = ∑x∈E tx px. Here, E
is an orthonormal basis for H diagonalizing W, and tx is the eigenvalue of W corresponding to x ∈ E.
Then, for each vector x ∈ E,

ΦW(px) = tx px

where px is the projection operator associated with x. We can understand this to mean that ΦW acts as
a filter on the test E: the response of each outcome x ∈ E is attenuated by a factor 0 ≤ tx ≤ 1 (my usage
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here is slightly non-standard, in that I allow filters that “pass” the system with a probability strictly
between zero and one). Thus, if M is another density operator on H, representing some state of the
corresponding system, then the probability of obtaining outcome x after preparing the system in state
M and applying the process Φ is tx times the probability of x in state M. In detail: suppose px is the
rank-one projection operator associated with x, and note that W1/2 px = pxW1/2 = t1/2

x px. Thus,

Tr(ΦW(M)px) = Tr(W1/2MW1/2 px) = Tr(W1/2Mt1/2
x px) = Tr(t1/2

x pxW1/2M)

= Tr(tx px M) = txTr(Mpx).

If we think of the basis E as representing a set of alternative channels plus detectors, as in the
figure below, we can add a classical filter attenuating the response of one of the detectors (say, x) by a
fraction tx. What the computation above tells us is that we can achieve the same result by applying a
suitable CP map to the system’s state. Moreover, this can be done independently for each outcome
of E. In Figure 1, this is illustrated for a three-level quantum system: E = {x, y, z} is an orthonormal
basis, representing three possible outcomes of a Stern–Gerlach-like experiment; the filter Φ acts on the
system’s state in such a way that the probability of outcome x is attenuated by a factor of tx = 1/2,
while outcomes y and z are unaffected. Returning to the general situation, if we apply a filter ΦW to the
maximally-mixed state 1

n 1, we obtain 1
n W. Thus, we can prepare W, up to normalization, by applying

the filter ΦW to the maximally mixed state.

α
5
4

x prob = 1
2 α(x)

y prob = α(y)

z prob = α(z)Φ

Figure 1. Φ attenuates x’s sensitivity by 1/2.

Filters are symmetric. Here is a final observation, linking these last two: the filter ΦW is symmetric
with respect to the uniformly-correlating “EPR” state Ψ, in the sense that:

〈(ΦW(a)⊗ b)Ψ, Ψ〉 = 〈(a⊗ΦW(b))Ψ, Ψ〉

for all effects a, b ∈ Lsa(H)+. Remarkably, this is all that is needed to recover the Jordan structure of
finite-dimensional quantum theory: the existence of a conjugate system, with a uniformly-correlating
joint state, plus the possibility of preparing non-singular states by means of filters that are symmetric
with respect to this state, and doing so reversibly when the state is nonsingular.

In a very rough outline, the argument is that states preparable (up to normalization) by
symmetric filters have spectral decompositions, and the existence of spectral decompositions makes
the uniformly-correlating joint state a self-dualizing inner product. However, to spell this out in a
precise way, I need a general mathematical framework for discussing states, effects and processes in
abstraction from quantum theory. The next section reviews the necessary apparatus.

3. General Probabilistic Theories

A characteristic feature of quantum mechanics is the existence of incompatible,
or non-comeasurable, observables. This suggests the following simple, but very fruitful, notion:

Definition 1. A test space is a collection M of non-empty sets E, F, ...., each representing the outcome-set of
some measurement, experiment, or test. At the outset, one makes no special assumptions about the combinatorial
structure of M. In particular, distinct tests are permitted to overlap. Let X :=

⋃M denote the set of all
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outcomes of all tests in M: a probability weight on M is a function α : X → [0, 1] such that ∑x∈E α(x) = 1
for every E ∈M.

Test spaces were introduced and studied by D. J. Foulis and C. H. Randall in a long series of papers
beginning around 1970. The original term for a test was an operation, which has the advantage of
signaling that the concept has wider applicability than simply reading a number off a meter: anything
an agent can do that leads to a well-defined, exhaustive set of mutually-exclusive outcomes defines an
operation. Accordingly, test spaces were originally called “manuals of operations”.

It can happen that a test space admits no probability weights at all. However, to serve as a model
of a real family of experiments associated with an actual physical system, a test space should obviously
carry a lavish supply of such weights. One might want to single out some of these as describing
physically (or otherwise) possible states of the system. This suggests the following:

Definition 2. A probabilistic model is a pair A = (M, Ω), where M is a test space and Ω is some designated
convex set of probability weights, called the states of the model.

The definition is deliberately spare. Nothing prohibits us from adding further structure (a group
of symmetries, say, or a topology on the space of outcomes). However, no such additional structure
is needed for the results I will discuss below. I will write M(A), X(A) and Ω(A) for the test space,
associated outcome space and state space of a model A. The convexity assumption on Ω(A) is
intended to capture the possibility of forming mixtures of states. To allow the modest idealization of
taking outcome-wise limits of states to be states, I will also assume that Ω(A) is closed as a subset of
[0, 1]X(A) (in its product topology). This makes Ω(A) compact and, so, guarantees the existence of
pure states, that is, extreme points of Ω(A). If Ω(A) is the set of all probability weights on M(A), I
will say that A has a full state space.

Two bits. Here is a simple, but instructive illustration of these notions. Consider a test space M =

{{x, x′}, {y, y′}}. Here, we have two tests, each with two outcomes. We are permitted to perform either
test, but not both at once. A probability weight is determined by the values it assigns to x and to y, and
since the sets {x, x′} and {y, y′} are disjoint, these values are independent. Thus, geometrically, the
space of all probability weights is the unit square in R2 (Figure 2a, below). To construct a probabilistic
model, we can choose any closed, convex subset of the square for Ω. For instance, we might let Ω be
the convex hull of the four probability weights δx, δx′ , δy and δy′ corresponding to the midpoints of the
four sides of the square, as in Figure 2b, that is,

δx(x) = 1, δx(x′) = 0, δx(y) = δx(y′) = 1/2,

δx′(x) = 0, δx′(x′) = 1, δx′(y) = δx′(y
′) = 1/2,

and similarly for δy and δy′ .
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The model of Figure 2a, in which we take Ω to be the entire set of probability weights on
M = {{x, x′}, {y, y′}}, is sometimes called the square bit. I will call the model of Figure 2b the
diamond bit.

Classical, quantum and Jordan models. If E is a finite set, the corresponding classical model is A(E) =
({E}, ∆(E)) where ∆(E) is the simplex of probability weights on E. If H is a finite-dimensional
complex Hilbert space, let M(H) denote the set of orthonormal bases of H: then X =

⋃M(H)

is the unit sphere of H, and any density operator W on H defines a probability weight αW , given
by αW(x) = 〈Wx, x〉 for all x ∈ X. Letting Ω(H) denote the set of states of this form, we obtain the
quantum model, A(H) = (M(H), Ω(H)), associated with H (Gleason’s theorem tells us that A(H)

has a full state space for dim(H) > 2, but we will not need this fact).
More generally, every Euclidean Jordan algebra E gives rise to a probabilistic model as follows.

A minimal or primitive idempotent of E is an element p ∈ E with p2 = p and, for q = q2 < p, q = 0.
A Jordan frame is a maximal pairwise orthogonal set of primitive idempotents. Let X(E) be the set of
primitive idempotents; let M(E) be the set of Jordan frames; and let Ω(E) be the set of probability
weights of the form α(p) = 〈a, p〉 where a ∈ E+ with 〈a, u〉 = 1. These data define the Jordan model
A(E) associated with E. In the case where E = Lh(H) for a finite-dimensional Hilbert space H,
this almost gives us back the quantum model A(H): the difference is that we replace unit vectors by
their associated projection operators, thus conflating outcomes that differ only by a phase.

Sharp models. Jordan models enjoy many special features that the generic probabilistic model lacks.
I want to take a moment to discuss one such feature, which will be important below.

Definition 3. A model A is unital iff, for every outcome x ∈ X(A), there exists a state α ∈ Ω(A) with
α(x) = 1, and sharp if this state is unique (from which it follows easily that it must be pure). If A is sharp, I
will write δx for the unique state making x ∈ X(A) certain.

If A is sharp, then there is a sense in which each test E ∈M(A) is maximally informative: if we
are certain which outcome x ∈ E will occur, then we know the system’s state exactly, as there is only
one state in which x has probability 1.

Classical and quantum models are obviously sharp. More generally, every Jordan model is sharp.
To see this, note first that every state α on a Euclidean Jordan algebra E has the form α(x) = 〈a, x〉
where a ∈ E+ with 〈a, u〉 = 1 and where 〈 , 〉 is the given inner product on E, normalized so that
‖x‖ = 1 for all primitive idempotents (equivalently, so that ‖u‖ = n, the rank of E). The spectral
theorem for EJAs [13] shows that a = ∑p∈E tp p where E is a Jordan frame and the coefficients tp are
non-negative and sum to one (since 〈a, u〉 = 1). If 〈a, x〉 = 1, then ∑p∈E tp〈p, x〉 = 1 implies that,
for every p ∈ E with tp > 0, 〈p, x〉 = 1. However, ‖p‖ = ‖x‖ = 1, so this implies that 〈p, x〉 = ‖p‖‖x‖,
which in turn implies that p = x.

In general, a probabilistic model need not even be unital, much less sharp. On the other hand,
given a unital model A, it is often possible to construct a sharp model by suitably restricting the state
space. This is illustrated in Figure 2b above: the full state space of the square bit is unital, but far
from sharp; however, by restricting the state space to the convex hull of the barycenters of the faces,
we obtain a sharp model. This is possible whenever A is unital and carries a group of symmetries
acting transitively on the outcome-set X(A). For details, see Appendix A. The point here is that
sharpness is not, by itself, a very stringent condition: since we should expect to find highly symmetric,
unital models represented abundantly “in nature”, we can also expect to encounter an abundance of
systems represented by sharp models.
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The spaces V(A), V∗(A). Any probabilistic model gives rise to a pair of ordered vector spaces in a
canonical way. These will be essential in the development below, so I am going to go into a bit of
detail here.

Definition 4. Let A be any probabilistic model. Let V(A) be the span of the state space Ω(A) in RX(A),
ordered by the cone V(A)+ consisting of non-negative multiples of states, i.e.,

V(A)+ = {tα|α ∈ Ω(A), t ≥ 0}.

Call the model A finite-dimensional iff V(A) is finite-dimensional. From now on, I assume that
all models are finite-dimensional.

Let V∗(A) denote the dual space of V(A), ordered by the dual cone of positive linear functionals,
i.e., functionals f with f (α) ≥ 0 for all α ∈ V(A)+. Any measurement-outcome x ∈ X(A) yields an
evaluation functional x̂ ∈ V∗(A), given by x̂(α) = α(x) for all α ∈ V(A). More generally, an effect is a
positive linear functional f ∈ V∗(A) with 0 ≤ f (α) ≤ 1 for every state α ∈ Ω(A). The functionals x̂ are
effects. One can understand an arbitrary effect a to represent a mathematically possible measurement
outcome, having probability a(α) in state α. I stress the adjective mathematically because, a priori,
there is no guarantee that every effect will correspond to a physically-realizable measurement outcome.
In fact, at this stage, I make no assumption at all about what, apart from the tests E ∈M(A), is or
is not physically realizable. (Later, it will follow from further assumptions that every element of
V∗(A) represents a random variable associated with some E ∈M(A) and is, therefore, operationally
meaningful. However, this will be a theorem, not an assumption.)

The unit effect is the functional uA := ∑x∈E x̂, where E is any element of M(A). This takes the
constant value of one on Ω(A), and, thus, represents a trivial measurement outcome that occurs with
probability one in every state. This is an order unit for V∗(A) (to see this, let a ∈ V(A)∗, and let N be
the maximum value of |a(α)| for α ∈ Ω(A), remembering that the latter is compact: then a ≤ Nu).

For both classical and quantum models, the ordered vector spaces V∗(A) and V(A) are naturally
isomorphic. If A(E) is the classical model associated with a finite set E, both are isomorphic to the
space RE of all real-valued functions on E, ordered pointwise. If A = A(H) is the quantum model
associated with a finite-dimensional Hilbert space H, V(A) and V∗(A) are both naturally isomorphic
to the space Lh(H) of Hermitian operators on H, ordered by its usual cone of positive semi-definite
operators. More generally, if E is a Euclidean Jordan algebra and A = A(E) is the corresponding
Jordan model, then V(A) ' E ' V∗(A), with E ordered as usual, i.e., by its cone of squares. The first
of these isomorphisms is due to the definition of the model A(E) and the second to E’s self-duality.

The space E(A). It is going to be technically useful to introduce a third ordered vector space, which I
will denote by E(A). This is the span of the evaluation-effects x̂, associated with measurement
outcomes x ∈ X(A), in V∗(A), ordered by the cone:

E(A)+ :=

{
∑

i
ti x̂i

∣∣∣∣∣ ti ≥ 0

}
.

That is, E(A)+ is the set of linear combinations of effects x̂ having non-negative coefficients. It is
important to note that this is, in general, a proper sub-cone of V(A)∗+. To see this, we can revisit the
example of the “diamond bit” of Figure 2b. Letting x and y be the outcomes corresponding to the
right face and the top face of the larger (full) state space pictured below in Figure 3a, consider the
functional f := x̂ + ŷ− 1

2 u. This takes positive values on the smaller state space of the diamond bit,
but is negative on, for example, the state γ corresponding to the lower-left corner of the full state space
(see Figure 3b). Thus, f ∈ V(A)+, but f 6∈ E(A)+.
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Since we are working in finite dimensions, the outcome-effects x̂ span V∗(A). Thus, as vector
spaces, E(A) and V∗(A) are the same. However, as the diamond bit illustrates, they can have quite
different positive cones, and thus, need not be isomorphc as ordered vector spaces.

Processes and subnormalized states A subnormalized state of a model A is an element α of V(A)+ with
u(α) < 1. These can be understood as states that allow a nonzero probability 1− u(α) of some generic
“failure” event, (e.g., the destruction of the system), represented by the 0 functional in V∗(A).

More generally, we may wish to regard two systems, represented by models A and B, as the input
to and output from some process, whether dynamical or purely information-theoretic, that has some
probability to destroy the system or otherwise “fail”. Since such a process should preserve probabilistic
mixtures, it should be represented mathematically by an affine mapping T : Ω(A)→ V(B)+, taking
each normalized state α of A to a possibly sub-normalized state T(α) of B. One can show that such a
mapping extends uniquely to a positive linear mapping

T : V(A)→ V(B),

so from now on, this is how I represent processes.
Even if a process T has a nonzero probability of failure, it may be possible to reverse its effect

with nonzero probability.

Definition 5. A process T : A→ B is probabilistically reversible iff there exists a process S such that, for all
α ∈ Ω(A), (S ◦ T)(α) = pα, where p ∈ (0, 1].

This means that there is a probability 1− p of the composite process S ◦ T failing, but a probability
p that it will leave the system in its initial state. (Note that, since S ◦ T is linear, p must be
constant.) Where T preserves normalization, so that T(Ω(A)) ⊆ Ω(B), S can also be taken to be
normalization-preserving, and will undo the result of T with probability 1. This is the more usual
meaning of “reversible” in the literature.

Given a process T : V(A)→ V(B), there is a dual mapping T∗ : V∗(B)→ V∗(A), also positive,
given by T∗(b)(α) = b(T(α)) for all b ∈ V∗(B) and α ∈ V(A). The assumption that T takes normalized
states to subnormalized states is equivalent to the requirement that T∗(uB) ≤ uA, that is, that T∗ maps
effects to effects.

Remark 1. Since we are attaching no special physical interpretation to the cone E+(A), we do not require a
physical process T : V(A)→ V(B) to have a dual process T∗ that maps E+(B) to E+(A). That is, we do not
require T∗ to be positive as a mapping E(B)→ E(A).

Joint probabilities and joint states If M1 and M2 are two test spaces, with outcome-spaces X1 and
X2, we can construct a space of product tests

M1 ×M2 = { E× F | E ∈M1, F ∈M2 }

Figure 3. (a) Two outcome-effects for the square bit; (b) An effect for the diamond bit not positive on
the square bit.

Since we are working in finite dimensions, the outcome-effects x̂ span V∗(A). Thus, as vector
spaces, E(A) and V∗(A) are the same. However, as the diamond bit illustrates, they can have quite
different positive cones and, thus, need not be isomorphic as ordered vector spaces.

Processes and subnormalized states. A subnormalized state of a model A is an element α of V(A)+ with
u(α) < 1. These can be understood as states that allow a nonzero probability 1− u(α) of some generic
“failure” event, (e.g., the destruction of the system), represented by the zero functional in V∗(A).

More generally, we may wish to regard two systems, represented by models A and B, as the input
to and output from some process, whether dynamical or purely information-theoretic, that has some
probability to destroy the system or otherwise “fail”. Since such a process should preserve probabilistic
mixtures, it should be represented mathematically by an affine mapping T : Ω(A)→ V(B)+, taking
each normalized state α of A to a possibly sub-normalized state T(α) of B. One can show that such a
mapping extends uniquely to a positive linear mapping:

T : V(A)→ V(B),

so from now on, this is how I represent processes.
Even if a process T has a nonzero probability of failure, it may be possible to reverse its effect

with nonzero probability.

Definition 5. A process T : A→ B is probabilistically reversible iff there exists a process S such that, for all
α ∈ Ω(A), (S ◦ T)(α) = pα, where p ∈ (0, 1].

This means that there is a probability 1 − p of the composite process S ◦ T failing, but a
probability p that it will leave the system in its initial state (note that, since S ◦ T is linear, p must
be constant); where T preserves normalization, so that T(Ω(A)) ⊆ Ω(B), S can also be taken to be
normalization-preserving and will undo the result of T with probability one. This is the more usual
meaning of “reversible” in the literature.

Given a process T : V(A)→ V(B), there is a dual mapping T∗ : V∗(B)→ V∗(A), also positive,
given by T∗(b)(α) = b(T(α)) for all b ∈ V∗(B) and α ∈ V(A). The assumption that T takes normalized
states to subnormalized states is equivalent to the requirement that T∗(uB) ≤ uA, that is that T∗ maps
effects to effects.

Remark 1. Since we are attaching no special physical interpretation to the cone E+(A), we do not require a
physical process T : V(A)→ V(B) to have a dual process T∗ that maps E+(B) to E+(A). That is, we do not
require T∗ to be positive as a mapping E(B)→ E(A).
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Joint probabilities and joint states. If M1 and M2 are two test spaces, with outcome-spaces X1 and
X2, we can construct a space of product tests (note here the savage abuse of notation: M1 ×M2 is
not the Cartesian product of M1 and M2):

M1 ×M2 = { E× F | E ∈M1, F ∈M2 }

This models a situation in which tests from M1 and from M2 can be performed separately,
and the results collated. Note that the outcome-space for M1 ×M2 is X1 × X2. A joint probability
weight on M1 and M2 is just a probability weight on M1 ×M2, that is a function ω : X1 × X2 →
[0, 1] such that ∑(x,y)∈E×F ω(x, y) = 1 for all tests E ∈ M1 and F ∈ M2. One says that ω is
non-signaling iff the marginal (or reduced) probability weights ω1 and ω2, given by:

ω1(x) = ∑
y∈F

ω(x, y) and ω2(y) = ∑
x∈E

ω(x, y)

are well-defined, i.e., independent of the choice of the tests E and F, respectively. One can understand
this to mean that the choice of which test to measure on M1 has no observable, i.e., no statistical,
influence on the outcome of tests made of M2, and vice versa. In this case, one also has well-defined
conditional probability weights:

ω2|x(y) := ω(x, y)/ω1(x) and ω1|y := ω(x, y)/ω2(y)

(with, say, ω2|x = 0 if ω1(x) = 0, and similarly for ω1|y). This gives us the following bipartite version
of the law of total probability [23]: for any choice: of E ∈M1 or F ∈M2,

ω2 = ∑
x∈E

ω1(x)ω2|x and ω1 = ∑
y∈F

ω2(y)ω1|y. (1)

Definition 6. A joint state on a pair of probabilistic models A and B is a non-signaling joint probability weight
ω on M(A)×M(B) such that, for every x ∈ X(A) and every y ∈ X(B), the conditional probability weights
ω2|x and ω1|y belong to Ω(A) and Ω(B), respectively. It follows from (1) that the marginal weights ω1 and ω2

are also states of A and B, respectively.

This naturally suggests that one should define, for models A and B, a composite model AB,
the states of which would be precisely the joint states on A and B. If one takes M(AB) = M(A)×
M(B), this is essentially the “maximal tensor product” of A and B [24]. However, this does not
coincide with the usual composite of quantum-mechanical systems. In Section 6, I will discuss
composite systems in more detail. Meanwhile, for the main results of this paper, the idea of a joint
state is sufficient.

For a simple example of a joint state that is neither classical, nor quantum, let B denote the “square
bit” model discussed above. That is, B = (B, Ω) where e B = {{x, x′}, {y, y′}} is a test space with two
non-overlapping, two-outcome tests, and Ω is the set of all probability weights thereon, amounting to
the unit square in R2. The joint state on B ×B given by Table 1 (a variant of the “non-signaling box” of
Popescu and Rohrlich [25]) is clearly non-signaling. Notice that it also establishes a perfect, uniform
correlation between the outcomes of any test on the first system and its counterpart on the second.

Table 1. A joint state for two square bits.

x x’ y y’

x 1/2 0 1/2 0
x’ 0 1/2 0 1/2
y 0 1/2 1/2 0
y’ 1/2 0 0 1/2
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Conditioning maps. If ω is a joint state on A and B, define the associated conditioning maps ω̂ :
X(A)→ V(B) and ω̂∗ : X(B)→ V(A) by:

ω̂(x)(y) = ω(x, y) = ω̂∗(y)(x)

for all x ∈ X(A) and y ∈ X(B). Note that ω̂(x) = ω1(x)ω2|x for every x ∈ X(A), i.e., ω̂(x) can be
understood as the un-normalized conditional state of B given the outcome x on A. Similarly, ω̂∗(y) is
the unnormalized conditional state of A given outcome y on B.

The conditioning map ω̂ extends uniquely to a positive linear mapping E(A) → V(B), which
I also denote by ω̂, such that ω̂(x̂) = ω̂(x) for all outcomes x ∈ X(A). To see this, consider the
linear mapping T : V∗(A)→ RX(B) defined, for f ∈ V∗(A), by T( f )(y) = f (ω̂∗(y)) for all y ∈ X(B).
If f = x̂, we have T(x̂) = ω1(x)ω2|x ∈ V(B)+, whence, for all y ∈ X(B), T(x̂)(y) = ω(x, y) = ω̂(x)(y).
Since the evaluation functionals x̂ span E(A), the range of T lies in V(B), and moreover, T is positive on
the cone E(A)+. Hence, as advertised, T defines a positive linear mapping E(B)→ V(A), extending
ω̂. In the same way, ω̂∗ defines a positive linear mapping ω̂∗ : E(B)→ V(A).

An immediate and important corollary is that any joint state ω on A and B defines a bilinear
form, which by abuse of notation I also call ω, on E(A)× E(B), given by ω(a, b) := ω̂(a)(b) for all
a, b ∈ E(A). Note that ω(x̂, ŷ) = ω(x, y) for all x ∈ X(A), y ∈ X(B) and also that the bilinear form ω

is positive, in the sense that ω(a, b) ≥ 0 for all a ∈ E(A)+ and all b ∈ E(B)+.

4. Conjugates and Filters

We are now in a position to abstract the two features of QM discussed earlier. Call a test space
(X,M) uniform iff all tests E ∈M have the same size, which we then call the rank of the test space.
The test spaces associated with quantum models are uniform, and it is quite easy to generate many
other examples (see Appendix A).

A uniform test space of rank n always admits at least one probability weight, namely the
maximally-mixed probability weight ρ(x) = 1/n for all x ∈ X. I will say that a probabilistic model A
is uniform if the test space M(A) is uniform and the maximally-mixed state ρ belongs to Ω(A).

By an isomorphism γ : A → B from a probabilistic model A to a probabilistic model B, I mean
the obvious thing: a bijection γ : X(A)→ X(B) taking M(A) onto M(A), and such that β 7→ β ◦ γ

maps Ω(A) onto Ω(A).

Definition 7. Let A be uniform probabilistic model with tests of size n. A conjugate for A is a model A, plus a
chosen isomorphism γA : A ' A and a joint state ηA on A and A such that for all x, y ∈ X(A),

(a) ηA(x, x) = 1/n
(b) ηA(x, y) = η(y, x)

where x := γA(x).

This corresponds to what is called a “weak conjugate” in [17]. Note that if E ∈M(A), we have
∑x,y∈E×E ηA(x, y) = 1 and |E| = n. Hence, ηA(x, y) = 0 for x, y ∈ E with x 6= y. Thus, ηA establishes
a perfect, uniform correlation between any test E ∈ M(A) and its counterpart, E := {x|x ∈ E},
in M(A).

The symmetry condition (b) is pretty harmless. If η is a joint state on A and A satisfying (a), then
so is ηt(x, y) := η(y, x); thus, 1

2 (η + ηt) satisfies both (a) and (b). In fact, if A is sharp, (b) is automatic:
if η satisfies (a), then the conditional state (ηA)1|x assigns probability one to the outcome x. If A is
sharp, this implies that η1|x = δx is uniquely defined, whence η(x, y) = nδy(x) is also uniquely defined.
In other words, for a sharp model A and a given isomorphism γ : A ' A, there exists at most one joint
state η satisfying (a); whence, in particular, η = ηt.
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If A = A(H) is the quantum-mechanical model associated with an n-dimensional Hilbert space
H, then we can take A = A(H) and define ηA(x, y) = |〈Ψ, x ⊗ y〉|2, where Ψ is the EPR state on
H⊗H, as discussed in Section 3.

So much for conjugates. We generalize the filters associated with pure CP mappings as follows:

Definition 8. A filter associated with a test E ∈M(A) is a positive linear mapping Φ : V(A) → V(A)

such that for every outcome x ∈ E, there is some coefficient tx ∈ [0, 1] with Φ(α)(x) = txα(x) for every state
α ∈ Ω(A).

Equivalently, Φ is a filter iff the dual process Φ∗ : V∗(A)→ V∗(A) satisfies Φ∗(x̂) = tx x̂ for each
x ∈ E. Just as in the quantum-mechanical case, a filter independently attenuates the “sensitivity” of
the outcomes x ∈ E. (The extreme case is one in which the coefficient tx corresponding to a particular
outcome is one, and the other coefficients are all zero. In that case, all outcomes other than x are, so to
say, blocked by the filter. Conversely, given such an “all or nothing” filter Φx for each x ∈ E, we can
construct an arbitrary filter with coefficients tx by setting Φ = ∑x∈E txΦx.)

Call a filter Φ reversible iff Φ is an order-automorphism of V(A); that is, iff it is probabilistically
reversible as a process. Evidently, this requires that all the coefficients tx be nonzero. We will eventually
see that the existence of a conjugate, plus the preparability of arbitrary nonsingular states by symmetric
reversible filters, will be enough to force A to be a Jordan model. Most of the work is done by the easy
Lemma 1, below. First, some terminology.

Definition 9. Suppose ∆ = {δx|x ∈ X(A)} is a family of states indexed by outcomes x ∈ X(A) and such
that δx(x) = 1. Say that a state α is spectral with respect to ∆ iff there exists a test E ∈M(A) such that
α = ∑x∈E α(x)δx. Say that the model A itself is spectral with respect to ∆ if every state of A is spectral with
respect to ∆.

If A has a conjugate A, then the bijection γA : X(A)→ X(A) extends to an order-isomorphism
E(A) ' E(A). It follows that every non-signaling joint probability weight ω on A and A defines a
bilinear form a, b 7→ ω(a, b) on E(A).

The following is essentially proven in [17], but the presentation here is somewhat different.

Lemma 1. Let A have a conjugate (A, ηA). Suppose A is spectral with respect to the states δx := η1|x,
x ∈ X(A). Then:

〈a, b〉 := nηA(a, b),

where n is the rank of A, defines a self-dualizing inner product on E(A), with respect to which V(A)+ ' E(A)+.
Moreover, A is sharp, and E(A)+ = V∗(A)+.

Proof. That 〈 , 〉 is symmetric and bilinear follows from ηA’s being symmetric and non-signaling.
Note that 〈x̂, x̂〉 = 1 for every x ∈ X(A) and 〈x̂, ŷ〉 = 0 for any distinct x, y ∈ X(A) lying in a common
test. We need to show that 〈 , 〉 is positive-definite. Since Â ' A and the latter is spectral, so is the
former. It follows that η̂ takes E(A)+ onto V(A)+ and, hence, is an order-isomorphism. From this,
it follows that every a ∈ E(A)+ has a “spectral” decomposition of the form ∑x∈E txx for some
coefficients tx ≥ 0 and some test E ∈M(A). In fact, any a ∈ E(A), positive or otherwise, has such a
decomposition (albeit with possibly negative coefficients). If a ∈ E(A) is arbitrary, with a = a1 − a2 for
some a1, a2 ∈ E(A)+, we can find N ≥ 0 with a2 ≤ Nu. Thus, b := a + Nu = a1 + (Nu− a2) ≥ 0, and
so, b := ∑x∈E txx for some E ∈ A, and hence, a = b− Nu = ∑x∈E txx− N(∑x∈E x) = ∑x∈E(tx − N)x.

Now, let a ∈ E(A). Decomposing a = ∑x∈E txx for some test E and some coefficients tx, we have:

〈a, a〉 = ∑
x,y∈E×E

txty〈x̂, ŷ〉 = ∑
x∈E

tx
2 ≥ 0.
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This is zero only where all coefficients tx are zero, i.e., only for a = 0. Therefore, 〈 , 〉 is an inner
product, as claimed.

We need to show that 〈 , 〉 is self-dualizing. Clearly 〈a, b〉 = nηA(a, b) ≥ 0 for all a, b ∈ E(A)+.
Suppose a ∈ E(A) is such that 〈a, b〉 ≥ 0 for all b ∈ E(A)+. Then, 〈a, ŷ〉 ≥ 0 for all y ∈ X. Now,
a = ∑x∈E tx x̂ for some test E; thus, for all y ∈ E, we have 〈a, ŷ〉 = ty ≥ 0, whence, a ∈ E(A)+.

Next, we want to show that E(A)+ = V(A)∗+. Since η̂ : E(A)→ V(A) is an order-isomorphism,
for every α ∈ V(A), there exists a unique a ∈ E(A) with η̂(a) = 1

n α. In particular,

〈a, x〉 = nηA(a, x) = α(x) = α(x).

It follows that if b ∈ E(A) = V∗(A),

b(α) = b(α) = bnη̂A(a) = nη(a, b) = 〈a, b〉.

Since every a ∈ E(A)+ has the form a = η̂−1( 1
n α) for some α ∈ V(A)+, if b ∈ V∗(A)+, we have

〈a, b〉 ≥ 0 for all a ∈ E(A)+, whence, by the self-duality of the latter cone, b ∈ E(A)+. Thus,
V∗(A) = E(A)+.

Finally, let us see that A is sharp. If α ∈ Ω(A), let a be the unique element of E(A)+ with
〈a, x〉 = α(x). In particular, 〈a, u〉 = 1. If a has spectral decomposition a = ∑x∈E tx x̂, where E ∈M(A),
then for all x ∈ E, 〈a, x〉 = tx; hence, ∑x∈E tx = ∑x∈E〈a, x〉 = 〈a, u〉 = 1. Thus, ‖a‖2 = ∑x∈E t2

x ≤ 1,
whence, ‖a‖ ≤ 1. Now, suppose α(x) = 1 for some x ∈ X(A): then, 1 = 〈a, x〉 ≤ ‖a‖‖x‖; as ‖x‖ = 1,
we have ‖a‖ = 1. However, now 〈a, x̂〉 = ‖a‖‖x̂‖, whence, a = x̂. Hence, there is only one weight α

with α(x) = 1, namely, α = 〈x, · 〉, so A is sharp.

If A is sharp, then we say that A is spectral iff it is spectral with respect to the pure states δx defined
by δx(x) = 1. If A is sharp and has a conjugate A, then, as noted earlier, the state η1|x is exactly δx,
so the spectrality assumption in Lemma 1 is fulfilled if we simply say that A is spectral. Hence, a sharp,
spectral model with a conjugate is self-dual.

For the simplest systems, this is already enough to secure the desired representation in terms of a
Euclidean Jordan algebra.

Definition 10. Call A a bit iff it has rank two (that is, all tests have two outcomes) and if every state α ∈ Ω(A)

can be expressed as a mixture of two sharply distinguishable states; that is, α = tδx + (1− t)δy for some
t ∈ [0, 1] and states δx and δy with δx(x) = 1 and δy(y) = 1 for some test {x, y}.

Corollary 1. If A is a sharp bit, then Ω(A) is a ball of some finite dimension d.

The proof is given in Appendix C. If d is 2, 3 or 5, we have a real, complex or quaternionic bit.
For d = 4 or d ≥ 6, we have a non-quantum spin factor.

For systems of higher rank (higher “information capacity”), we need to assume a bit more.
Suppose A satisfies the hypotheses of Lemma 1. Appealing to the Koecher–Vinberg theorem, we see
that if V(A) and, hence, V∗(A) are also homogeneous, then V∗(A) carries a canonical Jordan structure.
In fact, we can say something a little stronger.

Theorem 2. Let A be spectral with respect to a conjugate system A. If V(A) is homogeneous, then there exists
a canonical Jordan product on E(A) with respect to which uA is the Jordan unit. Moreover, with respect to this
product, X(A) is exactly the set of primitive idempotents, and M(A) is exactly the set of Jordan frames.

The first part is almost immediate from the Koecher–Vinberg theorem, together with Lemma 1.
The KV theorem gives us an isomorphism between the ordered vector spaces V(A) and E(A), so if one
is homogeneous, so is the other. Since E(A) is also self-dual by Lemma 1, the KV theorem yields the
requisite unique Euclidean Jordan structure having u as the Jordan unit. One can then show without
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much trouble that every outcome x ∈ X(A) is a primitive idempotent of E(A) with respect to this
Jordan structure and that every test is a Jordan frame. The remaining claims (that every minimal
idempotent belongs to X(A) and every Jordan frame, to M(A)) take a little bit more work. I will
not reproduce the proof here; the details (which are not especially difficult, but depend on some facts
concerning Euclidean Jordan algebras) can be found in [17].

The homogeneity of V(A) can be understood as a preparability assumption: it is equivalent
to saying that every state in the interior of Ω(A) can be obtained, up to normalization, from the
maximally-mixed state by a reversible process. That is, if α ∈ Ω(A), there is some such process φ such
that φ(ρ) = pα where 0 < p ≤ 1. One can think of the coefficient p as the probability that the process
φ will yield a nonzero result (more dramatically: will not destroy the system). Thus, if we prepare an
ensemble of identical copies of the system in the maximally-mixed state ρ and subject them all to the
process φ, the fraction that survives will be about p, and these will all be in state α.

In fact, if the hypotheses of Lemma 1 hold, the homogeneity of E(A) follows directly from the
mere existence of reversible filters with arbitrary non-zero coefficients. To see this, suppose a ∈ E(A)+
has a spectral decomposition ∑x∈E tx x̂ for some E ∈ M(A), with tx > 0 for all x when a belongs
to the interior of E(A)+. Now, if we can find a reversible filter for E with Φ(x) = tx x̂ for all x ∈ E,
then applying this to the order-unit u = ∑x∈E x̂ yields a. Thus, V∗(A) is homogeneous.

Two paths to spectrality. Some axiomatic treatments of quantum theory have taken one or another
form of spectrality as an axiom [6,26]. If one is content to do this, then Lemma 1 above provides a
very direct route to the Jordan structure of quantum theory. However, spectrality can actually be
derived from assumptions that, on their face, seem a good deal weaker, or anyway more transparent (a
different path to spectrality is charted in a recent paper [27] by G. Chiribella and C. M. Scandolo).

I will call a joint state on models A and B correlating iff it sets up a perfect correlation between
some pair of tests E ∈M(A) and F ∈M(B). More exactly:

Definition 11. A joint state ω on probabilistic models A and B correlates a test E ∈ M(A) with a test
F ∈M(B) iff there exist subsets E0 ⊆ E and F0 ⊆ F, and a bijection f : E0 → F0 such that ω(x, y) = 0 for
(x, y) ∈ E× F unless y = f (x). In this case, say that ω correlates E with F along f . A joint state on A and B
is correlating iff it correlates some pair of tests E ∈M(A), F ∈M(B).

Note that ω correlates E with F along f iff ω(x, f (x)) = ω1(x) = ω2( f (x)), which, in turn,
is equivalent to saying that ω2|x( f (x)) = 1 for ω1(x) 6= 0.

Lemma 2. Suppose A is sharp and that every state α of A arises as the marginal of a correlating joint state
between A and some model B. Then, A is spectral.

Proof. Suppose α = ω1, where ω is a joint state correlating a test E ∈M(A) with a test F ∈M(B),
say along a bijection f : E0 → F0, where Eo ⊆ E and F0 ⊆ F. Then, for any x ∈ E with α(x) 6= 0,
ω1| f (x)(x) = 1, whence, as A is sharp, ω1| f (x) = δx, the unique state making x certain. It follows from
the law of total probability that α = ∑x∈E α(x)δx.

In principle, the model B can vary with the state α. Lemma 2 suggests the following language:

Definition 12. A model A satisfies the correlation condition iff every state α ∈ Ω(A) is the marginal of some
correlating joint state of A and some model B.

This has something of the same flavor as the purification postulate of [8], which requires that all
states of a given system arise as marginals of a pure state on a larger, composite system, unique up to
symmetries on the purifying system. However, note that we do not require the correlating joint state
to be either pure (which, in classical probability theory, it will not be) or unique.
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If A is sharp and satisfies the correlation condition, then every state of A is spectral. If, in addition,
A has a conjugate, then for every x ∈ X(A), we have η1|x = δx. In this case, A is spectral with respect
to the family of states η1|x, and the hypotheses of Lemma 1 are satisfied.

Here is another, superficially quite different, way of arriving at spectrality. Suppose A has a
conjugate, A. Call a transformation Φ symmetric with respect to ηA iff, for all x, y ∈ X(A),

ηA(Φ∗x, y) = ηA(x, Φ∗y).

Say that a state α is preparable by a filter Φ iff α = Φ(ρ), where ρ is the maximally-mixed state.

Lemma 3. Let A have a conjugate, A, and suppose every state of A is preparable by a symmetric filter. Then, A
is spectral.

Proof. Let α = Φ(ρ) where Φ is a filter on a test E ∈M(A), say Φ(x) = txx for all x ∈ E. Then:

α = Φ(η̂∗(u)) = η(Φ∗(·), u) = η( · , Φ∗(u)) = ∑
x∈E

η( · , txx) = ∑
x∈E

tx
1
n δx.

Thus, the hypotheses of either Corollary 2 or Lemma 3 will supply the needed spectral assumption
that makes Lemma 1 work (in fact, it is not hard to see that these hypotheses are actually equivalent,
an exercise I leave for the reader).

To obtain a Jordan model, we still need homogeneity. This is obviously implied by the preparability
condition in Lemma 3, provided the preparing filters Φ can be taken to be reversible whenever the
state to be prepared is non-singular. On the other hand, as noted above, in the presence of spectrality, it
is enough to have arbitrary reversible filters, as these allow one to prepare the spectral decompositions
of arbitrary non-singular states. Thus, conditions (a) and (b) below both imply that A is a Jordan
model. Conversely, one can show that any Jordan model satisfies both (a) and (b), closing the loop [17]:

Theorem 3. The following are equivalent:

(a) A has a conjugate, and every non-singular state can be prepared by a reversible symmetric filter;
(b) A is sharp, has a conjugate, satisfies the correlation condition and has arbitrary reversible filters;
(c) A is a Jordan model.

5. Measurement, Memory and Correlation

Of the spectrality-underwriting conditions given in Lemmas 2 and 3, the one that seems less
transparent (to me, anyway) is the correlation condition, i.e., that every state arises as the marginal
of a correlating bipartite state. While surely less ad hoc than spectrality, this still calls for further
explanation. Suppose we hope to implement a measurement of a test E ∈M(A) dynamically. This
would involve bringing up an ancilla system B (also uniform, suppose; and which we can suppose,
by suitable coarse-graining, if necessary, to have tests of the same cardinality as A’s) in some “ready”
state βo. We would then subject the combined system AB to some physical process, at the end of
which, AB is in some final joint state ω, and B is (somehow!) in one of a set of record states, βx,
each corresponding to an outcome x ∈ X(A). (This way of putting things takes us close to the usual
formulation of the quantum-mechanical “measurement problem”, which I certainly do not propose
to discuss here. The point is only that, if any dynamical process, describable within the theory, can
account for measurement results, it should be consistent with this description.)

We would like to insist that:

(a) The states βx are distinguishable, or readable, by some test F ∈M(B). This means that for each
x ∈ E, there is a unique y ∈ F such that βx(y) = 1. Note that this sets up an injection f : E→ F.
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(b) The record states must be accurate, in the sense that if we were to measure E on A, and secure
x ∈ E, the record state βx should coincide with the conditional state ω2|x (if this is not the case,
then a measurement of A cannot correctly calibrate the system B as a measuring device for E).

It follows from (a) and (b) that, for x ∈ E and y 6= f (x) ∈ F,

ω(x, y) = ω1(x)ω2|x(y) = ω1(x)βx(y) = 0.

In other words, ω must correlate E with F, along the bijection f : E→ Fo ⊆ F. If the measurement
process leaves α undisturbed, in the sense that ω1 = α, then α dilates to a correlating state. This suggests
the following non-disturbance principle: every state can be measured, by some test E ∈ M(A),
without disturbance. Lemma 2 then tells us that if A is sharp and satisfies the non-disturbance
principle, every state of A is spectral.

Here is a slightly different, but possibly more compelling, version of this story. Suppose we can
perform a test E on A directly (setting aside, that is, any issue of whether or not this can be achieved
through some dynamical process): this will result in an outcome x occurring. To do anything with
this, we need to record its having occurred. This means we need a storage medium, B and a family
of states βx, one for each x ∈ E, such that if, on performing the test E, we obtain x, then B will be
in state βx. Moreover, these record states need to be readable at a later time, i.e., distinguishable by
a later measurement on B. To arrange this, we need A and B to be in a joint state, associated with
a joint probability weight ω, such that ω1 = α (because we want to have prepared A in the state α)
and βx = ω2|x for every x ∈ E. We then measure E on A; upon our obtaining outcome x ∈ E, B is in
the state βx. Since the ensemble of states βx is readable by some F ∈M(B) with |F| ≥ |E|, we have
correlation, and α must also be spectral.

Of course, these desiderata cannot always be satisfied. What is true, in QM, is that for every
choice of state α, there will exist some test that is recordable in that state, in the foregoing sense. If we
promote this to the general principle, we again see that every state is the marginal of a correlating state,
and hence spectral, if A is sharp.

6. Composites and Categories

Thus far, we have been referring to the correlator ηA as a joint state, but dodging the question:
state of what? Mathematically, nothing much hangs on this question: it is sufficient to regard ηA as a
bipartite probability assignment on A and A. However, it would surely be more satisfactory to be able
to treat it as an actual physical state of some composite system AA. How should this be chosen? As
mentioned above, one possibility is to take AA to be the maximal tensor product of the models A and
A [24]. By definition, this has for its states all non-signaling probability assignments with conditional
states belonging to A and A. However, we might want composite systems, in particular AA, to satisfy
the same conditions we are imposing on A and A, i.e., to be a Jordan model. If so, we need to work
somewhat harder: the maximal tensor product will be self-dual only if A is classical.

In order to be more precise about all this, the first step is to decide what ought to count as a
composite of two probabilistic models. If we mean to capture the idea of two physical systems that can
be acted upon separately, but which cannot influence one another in any observable way (e.g., two
spacelike-separated systems), the following seems to capture the minimal requirements:

Definition 13. A non-signaling composite of models A and B is a model AB, together with a mapping
π : X(A)× X(B)→ V∗(AB)+ such that:

∑
x∈E,y∈F

π(x, y) = uAB

and, for ω ∈ Ω(AB), ω ◦ π is a joint state on A and B, as defined in Section 2.
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The idea here, expressed in Alice-and-Bob language (Alice controlling system A, Bob controlling
system B), is that π(x, y) is an effect of the composite system AB, corresponding to x being observed
by Alice and y, by Bob. In many cases, π(x, y) will actually be an outcome in X(AB). Indeed,
we usually have π : X(A)× X(B) → X(AB) injective, and for E ∈M(A), F ∈M(B), π(E× F) =
{π(x, y)|x ∈ E, y ∈ F} a test in M(AB). The rank of AB will then be the product of the ranks of A
and B. Accordingly, let us call a non-signaling composite with these these properties multiplicative.
Composites in real and complex quantum mechanics are multiplicative; in quaternionic quantum
mechanics, with the most plausible definition of tensor product, they are not [28].

Therefore, the question becomes: can one construct, for Jordan models A and B, a non-signaling
composite AB that is also a Jordan model? At present, and in this generality, this question seems to be
open, but some progress is made in [28]: if neither A, nor B contain the exceptional Jordan algebra as a
summand, such a composite can indeed be constructed, and in multiple ways. Moreover, under a
considerably more restrictive definition of “Jordan composite”, no Jordan composite AB can exist if
either factor has an exceptional summand.

Categories of Self-Dual Probabilistic Models. It is natural to interpret a physical theory as a category,
in which objects represent physical systems and morphisms represent physical processes having these
systems (or their states) as inputs and outputs. In order to discuss composite systems, this should
be a symmetric monoidal category. That is, for every pair of objects A, B, there should be an object
A⊗ B, and for every pair of morphisms f : A → A′ and g : B → B′, there should be a morphism
f ⊗ g : A⊗ B→ A′ ⊗ B′, representing the two processes f and g occurring “in parallel”. One requires
that ⊗ be associative and commutative, and have a unit object I, in the sense that there exist canonical
isomorphisms αA,B;C : A ⊗ (B ⊗ C) ' (A ⊗ B) ⊗ C, σA,B : A ⊗ B ' B ⊗ A, λA : I ⊗ A ' A and
ρA : A⊗ I → A/ These must satisfy various “naturality conditions”, guaranteeing that they interact
correctly; see [29] for details. One also requires that⊗ be bifunctorial, meaning that idA⊗ idB = idA⊗B,
and if f : A→ A′, f ′ : A′ → A′′, g : B→ B′ and g′ : B′ → B′′, then:

( f ′ ⊗ g′) ◦ ( f ⊗ g) = ( f ′ ◦ f )⊗ (g′ ◦ g).

By a probabilistic theory, I mean a category of probabilistic models and processes; that is, objects
of C are models, and a morphism A → B, where A, B ∈ C, is a process V(A) → V(B). A monoidal
probabilistic theory is such a category, C, carrying a symmetric monoidal structure A, B 7→ AB, where
AB is a non-signaling composite in the sense of the definition above. I also assume that the monoidal
unit, I, is the trivial Model 1 with V(1) = R, and that, for all A ∈ C,

(a) α ∈ Ω(A) iff the mapping α : R→ V(A) given by α(1) = α belongs to C(I, A);
(b) The evaluation functional x̂ belongs to C(A, I) for all outcomes x ∈ X(A).

Call C locally tomographic iff AB is a locally tomographic composite for all A, B ∈ C. Much of the
qualitative content of (finite-dimensional) quantum information theory can be formulated in purely
categorical terms [11,18,30]. In particular, in the work of Abramsky and Coecke [18], it is shown that a
range of quantum phenomena, notably gate teleportation, is available in any dagger-compact category.
For a review of this notion, as well as a proof of the following result, see Appendix D:

Theorem 4. Let C be a locally-tomographic monoidal probabilistic theory, in which every object A ∈ C is sharp,
spectral and has a conjugate A ∈ C, with ηA ∈ Ω(AA). Assume also that, for all A, B ∈ C,

(i) A = A, with ηA(a, b) = ηA(a, b);
(ii) If φ ∈ C(A, B), then φ ∈ C(A, B).

Then, C has a canonical dagger-compact structure, in which A is the dual of A with ηA : R → V(AA) as
the co-unit.
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Jordan composites. The local tomography assumption in Theorem 4 is a strong constraint. As is
well known, the standard composite of two real quantum systems is not locally tomographic,
yet the category of finite-dimensional real mixed-state quantum systems is certainly dagger-compact
and satisfies the other assumptions of Theorem 4, so local tomography is definitely not a necessary
condition for dagger-compactness.

This raises some questions. One is whether local tomography can simply be dropped in the
statement of Theorem 4. At any rate, at present, I do not know of any non-dagger-compact monoidal
probabilistic theory satisfying the other assumptions.

Another question is whether there exist examples other than real QM of non-locally-tomographic,
but still dagger-compact, monoidal probabilistic theories satisfying the assumptions of Theorem 2.
The answer to this is yes. Without going into detail, the main result of [28] is that one can construct
a dagger-compact category in which the objects are Hermitian parts of finite-dimensional real,
complex and quaternionic matrix algebras, that is the Euclidean Jordan algebras corresponding
to finite-dimensional real, complex or quaternionic quantum-mechanical systems, and morphisms
are certain completely positive mappings between enveloping complex ∗-algebras for these Jordan
algebras. The monoidal structure gives almost the expected results: the composite of two real quantum
systems is the real system corresponding to the usual (real) quantum-mechanical composite of the
two components (and, in particular, is not locally tomographic). The composite of two quaternionic
systems is a real system (see [11] for an account of why this is just what one wants). The composite of
a real and a complex, or a quaternionic and a complex, system is again complex. The one surprise is
that the composite of two standard complex quantum systems, in this category, is not the usual thing,
but rather, comes with an extra superselection rule. This functions to make time-reversal a legitimate
physical operation on complex systems, as it is for real and quaternionic systems. This is part of the
price one pays for the dagger-compactness of this category.

7. Conclusions

As promised, we have here an easy derivation of something close to orthodox, finite-dimensional
QM, from operationally or probabilistically transparent assumptions. As discussed earlier,
this approach offers, in addition to its relative simplicity, greater latitude than the locally-tomographic
axiomatic reconstructions of [7–10], putting us in the slightly less constrained realm of formally real
Jordan algebras. This allows for real and quaternionic quantum systems, superselection rules and even
theories, such as the ones discussed in Section 6, in which real, complex and quaternionic quantum
systems coexist and interact.

There remains some mystery as to the proper interpretation of the conjugate system A.
Operationally, the situation is clear enough: if we understand A as controlled by Alice and A, by
Bob, then if Alice and Bob share the state ηA, then they will always obtain the same result, as long as
they perform the same test. However, what does it mean physically that this should be possible (in
a situation in which Alice and Bob are still able to choose their tests independently)? In fact, there
is little consensus (that I can find, anyway) among physicists as to the proper interpretation of the
conjugate of the Hilbert space representing a given quantum-mechanical system. One popular idea
is that the conjugate is a time-reversed version of the given system; but why, then, should we expect
to find a state that perfectly correlates the two? At any rate, finding a clear physical interpretation of
conjugate systems, even (or especially!) in orthodox quantum mechanics, seems to me an urgently
important problem.

I would like to close with another problem, this one of mainly mathematical interest. The
hypotheses of Theorem 2 yield a good deal more structure than just a homogeneous, self-dual cone.
In particular, we have a distinguished set M(A) of orthonormal observables in V∗(A), with respect
to which every effect has a spectral decomposition. Moreover, with a bit of work, one can show that
this decomposition is essentially unique. More exactly, if a = ∑i ti pi where the coefficients ti are all
distinct and the effects p1, ..., pk are associated with a coarse-graining of a test E ∈M(A), then both
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the coefficients and the effects are uniquely determined. The details are in Appendix B. Using this,
we have a functional calculus on V∗(A), i.e., for any real-valued function f of a real variable and any
effect a with spectral decomposition ∑i ti pi as above, we can define f (a) = ∑i f (ti)pi. This gives us a
unique candidate for the Jordan product of effects a and b, namely,

a·b = 1
2 ((a + b)2 − a2 − b2)).

We know from Theorem 2 (and thus, ultimately, from the KV theorem) that this is bilinear.
The challenge is to show this without appealing to the KV theorem (the fact that the state spaces of
“bits” are always balls, as shown in Appendix C, is perhaps relevant here).
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Appendix A. Models with Symmetry

Recall that a probabilistic model A is sharp iff, for every measurement outcome x ∈ X(A),
there exists a unique state δx ∈ Ω(A) with δx(x) = 1. While this is clearly a very strong condition,
it is not an unreasonable one. In fact, given the test space M(A), we can often choose the state space
Ω(A) in such a way as to guarantee that A is sharp. In particular, this is the case when M(A) enjoys
enough symmetry.

Definition A1. Let G be a group. A G-test space is a test space (X,M) where X is a G-space, that is, where X
comes equipped with a preferred G-action G× X → X, (g, x) 7→ gx, such that gE ∈M for all E ∈M. A
G-model is a probabilistic model A such that (i) M(A) is a G-test space and (ii) Ω(A) is invariant under the
action of G on probability weights given by α 7→ gα := α ◦ g−1 for g ∈ G.

Lemma A1. Let A be a finite-dimensional G-model, and suppose G acts transitively on the outcome space
X(A). Suppose also that A is unital, i.e., for every x ∈ X(A), there exists at least one state α with α(x) = 1.
Then, there exists a G-invariant convex subset ∆ ⊆ Ω(A) such that A′ = (M(A), ∆) is a sharp G-model.

Proof. For each x ∈ X(A), let Fx denote the face of Ω(A) consisting of states α with α(x) = 1. Let βx

be the barycenter of Fx. It is easy to check that Fgx = gFx for every g ∈ G. Thus, gβx = βgx, i.e., the set
of barycenters βx is an orbit. Let ∆ be the convex hull of these barycenters. Then, ∆ is invariant under
G. If α ∈ ∆ with α(x) = 1, then α ∈ Fx ∩ ∆ = {βx}, so (M(A), ∆) is sharp.

Appendix B. Uniqueness of Spectral Decompositions

Let A be a model satisfying the conditions of Lemma 1. In particular, every a ∈ E(A) = V∗(A)

has a spectral representation a = ∑x∈E tx x̂ for some test E ∈ M(A). In general, this expansion is
highly non-unique. For instance, the unit uA can be expanded as ∑x∈E x̂ for any test E ∈ M(A).
The aim in this Appendix is to obtain a form of spectral expansion for effects that is unique.

Call a subset of a test an event. That is, D ⊆ X(A) is an event iff there exists a test E ∈M(A)

with D ⊆ E. The probability of an effect D in a state α is α(D) = ∑x∈E α(x). Thus, any event gives rise
to an effect, D̂, given by D̂(α) = α(D). Evidently,

D̂ := ∑
x∈E

x̂.

A test is a maximal event, and for any test E ∈M(A), D̂ = u.
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Definition A2. An effect p ∈ V∗(A) is sharp iff it has the form p = D̂ for some event D. A set of sharp effects
p1, ..., pn ∈ V∗(A) is jointly orthogonal with respect to M(A) iff there exists a test E ∈M(A) and pairwise
disjoint events D1, ..., Dn ⊆ E with pi = D̂i for i = 1, ..., n.

Given an arbitrary element a ∈ V∗(A) with spectral decomposition a = ∑x∈E tx x̂, we can isolate
distinct values to > t1 > ... > tk of the coefficients tx. Letting Ei = {x ∈ E|tx = ti} and setting
pi = p(Ei) = ∑x∈Ei

x̂, we have a = ∑i ti pi, with p1, ..., pn jointly orthogonal. Suppose there is another
such decomposition, say a = ∑j sjqj, with qj = F̂j = ∑y∈Fj

ŷ, where F1, ..., Fl ⊆ F ∈M(A) are pairwise
disjoint, and again, with the coefficients in descending order, say s0 > s1 > · · · > sl .

Lemma A2. In the situation described above, t0 = s0 and p0 = q0.

Proof. Normalize the inner product on E(A) so that ‖x‖ = 1 for all outcomes x. Then, for any sharp
effect p = D̂, D an event, we have ‖D‖2 = |D|, the cardinality of D. Choosing any outcome x0 ∈ E0,
set α = |x0〉, i.e., α(x̂) = 〈x̂, x̂0〉 for all x ∈ X(A). Then, α ∈ Ω(A), α(p0) = 1 and α(pi) = 0 for
i > 0. Thus,

t0 = α(a) = ∑
j

sjα(qj).

Since the coefficients α(qj) are sub-convex, the right-hand side is no larger than the largest of the
values sj, namely, so. Thus, t0 ≤ s0. The same argument, with the roles of the two decompositions
reversed, shows that s0 ≤ t0. Thus, s0 = t0.

Now again, let x ∈ E0: then,

〈x̂, p0〉 = ∑
y∈E0

〈x̂, ŷ〉 = 〈x, x〉 = 1,

whence, 〈x̂, a〉 = to. However, we then have (using the fact that s0 = t0):

t0 = 〈x̂, a〉 =
〈

x̂ , t0q0 +
l

∑
j=1

sjqj

〉
= to〈x̂, q0〉+

l

∑
j=1

sj〈x̂, qj〉.

Since ∑l
j=0〈x̂, qj〉 ≤ 〈x̂, u〉 =≤ 1, the sum in the last expression above is a sub-convex combination

of the distinct values so > · · · > sl . This can equal t0 = s0, the maximum of these values, only if
〈x̂, q0〉 = 1 and 〈x̂, qj〉 = 0 for the remaining qj. It follows that 〈p0, q0〉 = ∑x∈E0

〈x̂, q0〉 = |E0| = ‖p0‖2.
The same argument, with p’s and q’s interchanged, shows that 〈p0, q0〉 = ‖q0‖2. Hence, ‖p0‖ = ‖q0‖,
and 〈p0, q0〉 = ‖p0‖2 = ‖p0‖‖q0‖, whence, p0 = q0

Proposition A1. Every a ∈ V∗(A) has a unique expansion of the form a = ∑k
i=0 ti pi where t0 > t1 > ... > tk

are non-zero coefficients and p1, ..., pn are jointly orthogonal sharp effects.

Proof. Suppose a = ∑k
i=1 ti pi, as above, and also a = ∑l

j=1 sjqj, with s0 > · · · > sl > 0 and qj pairwise
orthogonal sharp effects. We shall show that k = l, and that ti = si and pi = qi for each i = 1, ..., k.
Lemma A2 tells us that t0 = s0 and p0 = s0. Hence,

k

∑
i=1

ti pi = a− to po = a− s0q0 =
l

∑
j=1

sjqj.

Applying Lemma A2 recursively, we find that ti = si and pi = qi for i = 1, ..., min(k, l). If k 6= l,
say k < l; we then have:

tk pk = skqk +
l

∑
j=k+1

sjqj = tk pk +
l

∑
j=k+1

sjqj
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whence, ∑l
j=k+1 sjqj = 0, which is impossible since all qj are sharp and the coefficients sj are strictly

positive. Hence, l = k, and the proof is complete.

Appendix C. Bits Are Balls

In most other reconstructions of QM [8–10], the first step is to show that the state space of a bit,
that is, a system in which every state is the mixture of two sharply-distinguishable pure states, is a ball.
In our approach, this fact is an easy consequence of Lemma 1. In our framework, we will define a bit to
be a sharp, uniform model A with rank two, in which every state has the form tδx + (1− t)δx′ , where
{x, x′} ∈M(A). Note that this implies that A is spectral.

Lemma A3. Let A be a bit with conjugate A. Then, Ω(A) is a Euclidean ball, the extreme points of which are
the states δx, x ∈ X(A).

Proof. By Lemma 1, E(A) carries a self-dualizing inner product such that 〈x̂, ŷ〉 = 0 for {x, y} ∈
M(A), and which we can normalize so that ‖x̂‖ = 1 for each outcome x ∈ X(A), so that 〈u, x̂〉 =
〈x̂, x̂〉 = 1 and ‖u‖2 = 2. Every state α ∈ Ω(A) corresponds to a unique vector a ∈ E(A)+ with
〈a, u〉 = 1, where α(x) = 〈a, x̂〉 for all x ∈ X(A); conversely, every vector a ∈ E(A)+ with 〈a, u〉 = 1
corresponds in this way to a state. In particular, the state δx corresponds to the unit vectors x̂, and the
maximally-mixed state corresponds to the vector 1

n u. To simplify the notation, let us agree for the
moment to write ρ for this vector. Thus, 〈ρ, x̂〉 = 1

2 , ‖ρ‖2 = 1
4 〈u, u〉 = 1

2 , and hence,

‖ρ− x̂‖2 = ‖ρ‖2 − 2〈ρ, x̂〉+ ‖x̂‖2 = 1
2 .

Thus, X̂(A) := { x̂ | x ∈ X(A) } lies on the sphere of radius 1/
√

2 about the state ρ. I now claim
that any a ∈ E(A) with 〈a, u〉 = 1 (in effect, any state) such that ‖ρ − a‖ ≤ 1/

√
2 belongs to the

positive cone E(A)+. To see this, use spectrality to decompose a as sx̂ + tŷ where {x, y} ∈ M(A)

and s, t ∈ R. Consider now the two-dimensional subspace Ex,y spanned by x̂ and ŷ. With respect
to the inner product inherited from E, we can regard this as a two-dimensional Euclidean space, in
which a is represented by the Cartesian coordinate pair (s, t). Expanding ρ as ρ = 1

2 (x̂ + ŷ), we see
that ρ ∈ Ex,y with coordinates (1/2, 1/2). The point (t, s) lies, therefore, in the disk of radius 1/

√
2

centered at (1/2, 1/2) in Ex,y. Moreover, as 〈a, u〉 = 1, we see that s + t = 1, i.e., (s, t) lies on the line of
slope −1 through (1/2, 1/2). This puts (s, t) in the positive quadrant of this plane, i.e., s ≥ 0 and t ≥ 0.
However, then a ∈ E(A)+, as claimed.

It follows that, for rank-two models, we do not even need to invoke homogeneity: they all
correspond to spin factors. Letting d denote the dimension of the state space (that is, d = dim(E)− 1),
we see that if d = 1, we have the classical bit; d = 2 gives the real quantum-mechanical bit, d = 3
gives the familiar Bloch sphere, i.e., the usual qubit of complex QM; while d = 5 corresponds to the
quaternionic unit sphere, giving us the quaternionic bit. The generalized bits with d = 4 and d ≥ 6 are
more exotic “post-quantum” possibilities.

Appendix D. Locally-Tomographic and Dagger-Compactness

A dagger on a category C is a contravariant functor † : C → C that is the identity on objects

and satisfies † ◦ † = idC . That is, if A
f−→ B is a morphism in C, then A

f †

←− B, with f †† = f and
( f ◦ g)† = g† ◦ f † whenever f ◦ g is defined. An isomorphism f : A ' B in C is then said to be unitary
iff f † = f−1. One says that C is †-monoidal iff C is equipped with a symmetric monoidal structure ⊗
such that ( f ⊗ g)† = f † ⊗ g†, and such that the canonical isomorphisms αA,B,C, σA,B, λA and ρA are
all unitary.
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A dual for an object A in a symmetric monoidal category C is a structure (A′, η, ε) where A′ ∈ C
and η : I → A⊗ A′ and ε : A′ ⊗ A→ I, such that:

(idA ⊗ ε) ◦ (η ⊗ idA) = idA and (ε⊗ idA′) ◦ (idA′ ⊗ η) = idA′

up to the natural associator and unit isomorphisms. If C is †-monoidal and ε = σA,A′ ◦ η†
A, then (A′, η, ε)

is a dagger-dual. A category in which every object A has a specified dual (A′, ηA, εA) is compact closed,
and a dagger-monoidal category in which every object has a given dagger-dual is dagger-compact.
See [18,30] for details.

An important example of all this is the category FdHilbR of finite-dimensional real Hilbert
spaces and linear mappings. If H and K are two such spaces and φ : H → K, let φ† be the usual
adjoint of φ with respect to the given inner products. Letting H⊗K be the usual tensor product of
H and K (in particular, with 〈x ⊗ y, u⊗ v〉 = 〈x, u〉〈y, v〉 for x, u ∈ H and y, v ∈ K), FdHilbR is a
dagger-monoidal category with R as the monoidal unit.

Since any H ∈ FdHilbR is canonically isomorphic to its dual space, we have also a canonical
isomorphism H ⊗H ' H∗ ⊗H = L(H) and a canonical trace functional TrH : H ⊗H → R,
uniquely defined by TrH(x⊗ y) = 〈x, y〉 for all x, y ∈H. Taking H′ = H, let ηH ∈H⊗H be given
by ηH = ∑i xi ⊗ xi, where the sum is taken over any orthonormal basis {xi} for H; then, for any
a ∈H⊗H, 〈ηA, a〉 = Tr(a). It is routine to show that TrH = σH,H ◦ η†

H, so that ηH and TrH make H
its own dagger-dual.

In any compact closed symmetric monoidal category C, every morphism φ : A→ B yields a dual
morphism φ′ : B′ → A′ defined by:

φ′ = (idA′ ⊗ εB) ◦ (idA′ ⊗ f ⊗ idB′) ◦ (ηA ⊗ idB′).

(again, suppressing associators and left and right units). For φ : H→ K in FdHilbR, one has, for any
v ∈ A,

φ′(v) = ∑
x∈M
〈v, f (x)〉x = ∑

x∈M
〈 f †(v), x〉x = f †(v),

i.e., φ′ = φ†.
Now, let C be a monoidal probabilistic theory; that is, a category of probabilistic models and

processes, with a symmetric monoidal structure A, B 7→ AB, where AB is a (non-signaling) composite
in the sense discussed in Section 6. Let C is multiplicative, so that for A, B ∈ C, we have πAB :
X(A)× X(B)→ X(AB). Henceforward, I will write x⊗ y for π(x, y) where x ∈ X(A) and y ∈ X(B).
I will further assume that C’s tensor unit is I = R, and that:

(a) Every A ∈ C has a conjugate, A ∈ C, with A = A;
(b) For all A, B ∈ C and φ ∈ C(A, B), φ ∈ C(A, B);

(c) A = A, with ηA(a, b) := ηA(a, b).

Remark A1. (1) The chosen conjugate A for A ∈ C required by Condition (a) is equipped with a canonical
isomorphism γA : A ' A, with x = γ(x) for every x ∈ X(A). As discussed in Section 4, this extends to an
order-isomorphism E(A) ' E(A), which we again write as γA(a) = a for a ∈ E(A). Notice, however, that γA
is not assumed to be a morphism in C.

(2) In spite of this, Condition (b) requires that φ = γB ◦ φ ◦ γ−1
A does belong to C(A, B) for φ ∈ C(A, B).

Notice here that φ 7→ φ is functorial.
(3) The second part of Condition (c) is redundant if every model A in C is sharp (since in this case, there is

at most one correlator between A and A). Notice, too, that Condition (c) implies that:

〈x, y〉 = ηA(x, y) = ηA(x, y) = 〈x̂, ŷ〉

for all x, y ∈ E(A).
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We are now ready to prove Theorem 4. We continue to assume that C is a locally-tomographic,
multiplicative monoidal probabilistic theory, satisfying Conditions (a), (b) and (c) above. We wish to
show that if every A ∈ C is sharp and spectral, then C has a canonical dagger, with respect to which it
is dagger-compact.

Before proceeding, it will be convenient to dualize our representation of morphisms, so that
φ ∈ C(A, B) means that φ is a positive linear mapping E(B)→ E(A) (thus, our co-unit η ∈ C(I, A⊗ A′)
becomes a positive linear mapping ηA : E(A ⊗ A′) → R, and similarly, a unit εA ∈ C(A′ ⊗ A, I)
becomes a positive linear mapping R → E(A′ ⊗ A), i.e, an element of E(A ⊗ A′)). By Lemma 1,
for every A ∈ C, the space E(A) carries a canonical self-dualizing inner product 〈 , 〉A, with respect to
which E(A) ' V(A).

Lemma A4. For all models A, B ∈ C, the inner product on E(AB) factors, in the sense that if u, x ∈ E(A)

and v, y ∈ E(B), then 〈u⊗ v, x⊗ y〉 = 〈u, x〉〈v, y〉.

Proof. This follows from the sharpness of A, B and AB. For u ∈ X(A), v ∈ X(B), let δu, δv and δu⊗v

denote the unique states of A, B and AB such that δu(u) = δv(v) = δu⊗v(u⊗ v) = 1. Since (δu ⊗
δv)(u ⊗ v) is also one, we conclude that δu⊗v = δu ⊗ δv. However, we also have δu(x) = n〈û, x̂〉,
δv(y) = m〈v̂, ŷ〉 and δu⊗v(x⊗ y) = nm〈û⊗ v̂, x̂⊗ ŷ〉, where n, m and nm are the ranks, respectively, of
A, B and A⊗ B. This establishes the claim.

It follows that C is a monoidal subcategory of FdHilbR. In effect, we are going to show that
C inherits a dagger-compact structure from FdHilbR, with the minor twist that we will take A,
rather than A, as the dual for A ∈ C. We define the dagger of φ ∈ C(A, B) to be the Hermitian adjoint
of φ : E(A)→ E(B) with respect to the canonical inner products on E(A) and E(B). At this point, it is
not obvious that φ† belongs to C. In order to show that it does, we first need to show that C is compact
closed. To define the unit, let eA ∈ E(A)⊗ E(A) = E(AA) (note the use of local tomography here) to
be the vector with 〈eA, · 〉 = ηA, i.e., for all a, b ∈ E(A),

〈eA, a⊗ b) = ηA(a⊗ b) = 〈a, b〉.

Since E(AA) is self-dual, eA ∈ E(AA)+.

Lemma A5. With ηA and eA defined as above, A is a dual for A for every A ∈ C. In particular, C is
compact closed.

Proof. Choose an orthonormal basis M ⊆ E(A). Local tomography and Lemma A4 tell us that
M ⊗ M = {a⊗ a|a ∈ M} is then an orthonormal basis for E(AA) (note here that a, b ∈ M are not
necessarily even positive, let alone in X(A)). If we expand eA with respect to this basis, we have:

eA = ∑
a,b∈M

〈eA, a⊗ b〉a⊗ b

Since the basis is orthonormal, we have:

〈eA, a⊗ a〉 = 〈a, a〉 = ‖a‖2 = 1

and for a 6= b, both in M,
〈eA, a⊗ b〉 = 〈a, b〉 = 0
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Hence, eA = ∑a∈M a ⊗ a. Regarding eA as a morphism I → A ⊗ A, we now have, for any
v ∈ E(A),

(ηA ⊗ idA) ◦ (idA ⊗ eA)(v) = (ηA ⊗ idA)

(
∑

x∈M
v⊗ a⊗ a

)

= ∑
x∈M

ηA(v⊗ a)a

= ∑
x∈M
〈v, a〉a = v.

Similarly, for v ∈ A,

(idA ⊗ ηA) ◦ (eA ⊗ idA)(v) = (idA ⊗ ηA)

(
∑

a∈M
a⊗ a⊗ v

)

= ∑
x∈M

aηA(a, v) = ∑
a∈M
〈a, v〉a

= ∑
a∈M
〈v, a〉a = v.

Lemma A6. If φ : E(A)→ E(B) belongs to C, then so does φ† : E(B)→ E(A).

Proof. Using the compact structure on C defined above, if φ : A→ B, we construct the dual of φ,

φ
′ := (ηB ⊗ idA) ◦ (idB ⊗ φ⊗ idA) ◦ (idB ⊗ eA) : E(B)→ E(A).

Applying this mapping to b ∈ E(B), we have:

b 7→ (ηB ⊗ idA)

(
∑

a∈M
b⊗ φ(a)⊗ a

)
= ∑

a∈M
ηB(b, φ(a))a.

= ∑
a∈M
〈b, φ(a)〉a

= ∑
a∈M
〈φ†(b), a〉a = φ†(b).

Thus, φ† = φ
′, which is evidently a morphism in C.

Thus, C is a dagger-, as well as a monoidal, sub-category of FdHilbR. Hence, the associator, swap
and left- and right-unit morphisms associated with an object A ∈ C are all unitary (since they are
unitary in FdHilbR), whence C is dagger-monoidal. To complete the proof of Theorem 4, we need to
check that ηA = e†

A ◦ σA,A : E(AA)→ R. In view of our local tomography assumption, it is enough to
check this on pure tensors, where a routine computation gives us e†

A(σA,A(a⊗ b)) = 〈e†
A(b⊗ a), 1〉1 =

〈b⊗ a, eA〉AA = 〈a, b〉 = ηA(a⊗ b).

Remark A2. Given that C is compact closed, with A the dual of A, the functoriality of φ 7→ φ makes C strongly
compact closed, in the sense of [18]. This is equivalent to dagger-compactness.
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