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Abstract: The stabilizing effect of quantum fluctuations on the escape process and the relaxation
dynamics from a quantum metastable state are investigated. Specifically, the quantum dynamics of
a multilevel bistable system coupled to a bosonic Ohmic thermal bath in strong dissipation regime is
analyzed. The study is performed by a non-perturbative method based on the real-time path integral
approach of the Feynman-Vernon influence functional. We consider a strongly asymmetric double
well potential with and without a monochromatic external driving, and with an out-of-equilibrium
initial condition. In the absence of driving we observe a nonmonotonic behavior of the escape
time from the metastable region, as a function both of the system-bath coupling coefficient and
the temperature. This indicates a stabilizing effect of the quantum fluctuations. In the presence of
driving our findings indicate that, as the coupling coefficient γ increases, the escape time, initially
controlled by the external driving, shows resonant peaks and dips, becoming frequency-independent
for higher γ values. Moreover, the escape time from the metastable state displays a nonmonotonic
behavior as a function of the temperature, the frequency of the driving, and the thermal-bath
coupling, which indicates the presence of a quantum noise enhanced stability phenomenon. Finally,
we investigate the role of different spectral densities, both in sub-Ohmic and super-Ohmic dissipation
regime and for different cutoff frequencies, on the relaxation dynamics from the quantum metastable
state. The results obtained indicate that, in the crossover dynamical regime characterized by damped
intrawell oscillations and incoherent tunneling, the spectral properties of the thermal bath influence
non-trivially the short time behavior and the time scales of the relaxation dynamics from the
metastable state.

Keywords: Caldeira-Leggett model; metastable potential; discrete variable representation; noise
enhanced stability; resonant activation; tunneling; quantum Zeno dynamics; quantum systems with
finite Hilbert space; functional analytical methods; open systems; quantum statistical methods

1. Introduction

The interaction between environmental random fluctuations and the nonlinearity of real systems
can give rise to new unexpected phenomena. A noisy environment indeed can facilitate the permanence
of a particle in a metastable region, contribute to its escape from a metastable state, or synchronize
the passage between two wells in a periodically driven bistable potential. These effects are of general
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interest in many field of physics, chemistry and biology, where random fluctuations can accelerate
or slow down physical dynamics, chemical reactions and biological processes. To describe the
noise-induced synchronization (stochastic resonance) between two states [1–9], noise enhanced stability
in metastable systems [10–16], stochastic resonant activation phenomenon [17–22], nonlinear relaxation
with multiplicative noise [23], suppression of noise in a driven bistable system [24] and Josephson
junctions [25], optimal fast single-pulse readout of qubits [26,27] and non-Gaussian anomalous
diffusion [28] it is commonly used an archetypal model consisting of a particle subject to a cubic
or asymmetric bistable potential and linearly coupled to a thermal bath. In quantum mechanics
this model is extended in a natural way by considering a particle subject to a cubic or asymmetric
bistable potential and linearly coupled to a heat bath of harmonic oscillators [29–32]. Here the time
the particle takes to escape from a well characterized by a higher energy level (metastable state)
towards a lower energy state depends not only on the temperature of the heat bath but also on the
damping i.e., the coupling strength between the particle and the heat bath itself. Several physical
and chemical processes, such as magnetization in solid state systems [33,34], proton transfer in
chemical reactions [35] and superconducting devices [36–38], can be explained by this conceptual and
mathematical description.

The decay rate has been calculated for a quantum particle moving along a cubic potential by
using functional integral techniques [39–41]. Moreover a particle, initially placed at the bottom of
a metastable well, leaves this state with a decay rate whose values decrease monotonically with the
increasing damping. Conversely, an enhancement of the decay rate is found as the bath temperature
increases. In addition, for a particle whose initial state is given by a Gaussian wave packet in the
metastable well of a biased (asymmetric) quartic potential [42], master equation techniques allowed to
predict a monotonic increase of the escape rate as a function of the temperature.

On the other side, stabilization phenomena were observed in the absence of environmental
perturbations, such as the life time enhancement of a quantum metastable state driven by a suitable
external periodical driving [43]. In addition, for a particle moving along a nonlinear potential driven
by an external periodical signal, it has been shown that the activated escape from a metastable state
can be suppressed as the temperature increases [44,45].

Environmental fluctuations are mostly considered responsible for the escape from a quantum
metastable state. A fundamental question is whether the noisy environment can favour the permanence
of a quantum particle in a metastable state.

This issue can be faced by taking into account a quantum particle, initially prepared in
a nonequilibrium state within a strongly asymmetric bistable potential, and studying the dynamics
of the spatially localized states of this system. This approach allows to observe that, as the
damping increases, the relaxation process towards the stable (lower) well undergoes a modification:
the population transfer, characterized by a metastable well temporarily populated, becomes a direct
transfer to the stable state, due to the fact that higher damping values tend to suppress the tunnel
effect in the dissipation dynamics [29,41]. The damping can therefore stabilize a quantum metastable
state. In particular, the escape time from the metastable well shows a nonmonotonic behavior,
with a maximum, as the damping strength increases. This indicates that for a suitable value of
the damping strength the escape time takes on a maximum value, which corresponds to a stabilization
of the quantum system, a phenomenon which can be named quantum noise enhanced stability (qNES),
according to the analogous effect observed in classical physics [10–16,25,46–63]. This indicates that,
contrary to the result predicted by Kramers [64,65], the average lifetime of a particle, initially placed in
a metastable or unstable state, can be enhanced respect to the deterministic one [13,52].

In this work we shortly review some results obtained in the context of the noise induced
phenomena for the system above introduced i.e., a quantum particle moving along an asymmetric
bistable potential, strongly interacting within a thermal bath, with different spectral function.
The transient dynamics is analyzed with and without a monochromatic external driving, and with
an out-of-equilibrium initial condition.
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In the absence of driving, we study the dissipative dynamics in a system consisting of a quantum
particle moving along an asymmetric bistable potential, while discussing some results previously
obtained within the context of the noise enhanced stability. The system dynamics is described by the
well known Caldeira-Leggett model [66], in which a quantum particle, the open system, is linearly
coupled to a reservoir of N independent quantum harmonic oscillators. The coupling between the
system and each oscillator is weak (see parameter cj in Equation (1)). Anyway the overall damping,
that is the γ parameter, due to the great number N of bath bosonic oscillators, can be strong, especially
in macroscopic systems such as superconducting quantum interference devices [29,32]. The analysis
is carried out in the thermodynamical limit (N → ∞). This allows to write the spectral density
function J(ω) in the form ωs with a high-frequency cut-off. For s = 1 the so-called Ohmic dissipation
is obtained, and the quantum Langevin equation, which describes the dynamics of the particle’s
position operator, is characterized by a memoryless damping kernel, which corresponds to a frequency
independent damping. Under this conditions, for h̄ → 0 (classical limit) the thermal bath becomes
a white noise source [32].

In the presence of driving, within the framework of the dissipative quantum dynamics of the
asymmetric bistable system, we study the escape dynamics from the metastable state in strong Ohmic
dissipation regime. By using a monochromatic signal with a suitable amplitude, we analyze the escape
time as a function of the driving frequency. The study shows the presence of resonant peaks and dips
for lower values of the coupling coefficient γ. Conversely, as γ increases, the escape time displays
a maximum and then a rapid decrease. In particular, a value of the coupling parameter γc exists
such that for γ > γc the escape time becomes frequency-independent, resembling the static case and
suggesting to interpret γc as a critical value, in correspondence of which a qualitatively different escape
dynamics can be observed.

Finally, the role of different spectral densities, both in sub-Ohmic and super-Ohmic dissipation
regime and for different cutoff frequencies, on the relaxation dynamics from the quantum metastable
state is investigated. The results obtained indicate that, in the crossover dynamical regime characterized
by damped intrawell oscillations and incoherent tunneling, the spectral properties of the thermal bath
influence non-trivially the short time behavior and the time scales of the relaxation dynamics from
a metastable state.

2. Model

For a quantum particle, which moves in a double well potential (see Figure 1), the total Hamiltonian is

Ĥ =
p̂2

2M
+ V(q̂) +

N

∑
j=1

1
2

 p̂2
j

mj
+ mjω

2
j

(
x̂j −

cj

mjω
2
j

q̂

)2
 = Ĥ0 + ĤB+SB , (1)

where Ĥ0 = p̂2/2M +V(q̂) is the system’s bare Hamiltonian, ĤB+SB is the bath Hamiltonian including
the interaction with the system, and

V(q̂) =
M2ω4

0
64∆U

q̂4 −
Mω2

0
4

q̂2 − q̂ε , (2)

Is the asymmetric bistable potential. In Equation (1), the constant cj measures the coupling of
the particle with the j-th oscillator. The renormalization term quadratic in q̂ is introduced to give
a purely dissipative bath, that is a spatially homogeneous dissipation [32]. In Equation (2), M is the
effective mass, ω0 the natural oscillation frequency around the minima (which is of the same order
of magnitude of the frequency spacing between the ground state’s energy level and the first excited
energy level), ∆U the barrier height, and ε the asymmetry parameter. Here ε is large enough that the
potential of Equation (2) can be treated as a cubic potential, which allows to treat in an effective way the
metastable state dynamics and escape problems. The interaction with the environment occurs through
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the coupling with a thermal bath of N independent harmonic oscillators with position coordinates
x̂j. Each oscillator is coupled with the particle through a linear interaction given by ∑N

j=1 cj x̂j q̂. In the
continuum limit N → ∞, we consider for the dissipative environment the Ohmic spectral density
function J with a high-frequency cutoff [32]

J(ω) = Mγωe−ω/ωc . (3)

The cut-off frequency ωc is chosen in such a way to be much larger than all the other frequencies
involved in the dynamics, that is ω0 and the frequencies corresponding to jumps between different
energy levels of the static potential (see Figure 1). The damping coefficient γ accounts for the overall
particle-bath coupling strength according to the classical damping in the quantum Langevin equation,
which can be written for this problem. Moreover, the damping coefficient is frequency independent in
the case of Ohmic bath [32]. If the damping parameter γ is sufficiently below the frequency spacing
between ground state and the first excited energy level (' ω0) a description of the state of the system
in terms of unperturbed energy levels is viable.

E2

E1

E3
E4

E5

E6

q1 q2 q3 q4 q5 q6

| <x | q3> |
2

b
c

a

Figure 1. (Color online) Potential V(q) (Equation (2)) for ∆U = 1.4 h̄ω0 and ε = 0.27
√

Mh̄ω3
0 .

Horizontal lines: the first 6 energy levels. Vertical lines: the position eigenvalues in the DVR.
The blue solid curve is the initial probability density |Ψ(x, 0)|2. For the tunneling splitting we have
∆E4,3 = E4 − E3 = 0.2 h̄ω0 while E2 − E1 = 0.985 h̄ω0. The initial condition q3 is the blue point.

Due to the initial state of the particle and the value fixed for the bath temperature (which fulfills
the condition kBT/h̄ � ω0), the dynamics is de facto limited to the first 6 levels of the potential
shown in Figure 1. This reduced Hilbert space allows to pass, by suitably transforming, to the discrete
variable representation (DVR) [67]. The particle’s time evolution is obtained, by tracing off the freedom
degrees of the bath, in terms of reduced dynamics in the localized basis of the position eigenstates
{|q1〉, . . . , |q6〉}, with q̂|qi〉 = qi|qi〉. From here onwards, the parameters γ and T are given in units of
ω0 and h̄ω0/kB, respectively.

3. The Influence Functional and the Discrete Variable Representation

We assume that the particle-bath total density matrix η(t) is initially in the factorized form

η(t0) = ρ(t0)⊗
eβHB

ZB
= ρ(t0)⊗

eβHB

TrBeβHB
, (4)

where HB = ∑N
j=1(1/2)[ p̂2

j /mj + mjω
2
j x̂2

j ] is the free bath Hamiltonian, ρ(t0) is the initial particle
density matrix of the system and the bath is in thermal equilibrium at temperature T = 1/(βkB).

The time evolution of the particle’s reduced density matrix, obtained by performing the partial
trace over the bath’s degrees of freedom on η(t), evolves according to [32]
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ρ(q f , q′f , t) =
∫

dq0

∫
dq′0G(q f , q′f , t; q0, q′0, t0)ρ(q0, q′0, t0), (5)

The propagator G(q f , q′f , t; q0, q′0, t0) can be put in the form of a double path integral in which the
contribution of the bath and that of the external potential to the evolution are factorized [68]

G(q f , q′f , t; q0, q′0, t0) =
∫ q(t)=q f

q(t0)=q0

Dq(t)
∫ q′(t)=q′f

q′(t0)=q′0
D∗q′(t)A[q]A∗[q′].FFV [q(t), q′(t)], (6)

where the integration symbol in Equation (6) is defined as [32,69]

∫
Dq = lim

N→∞

√
M

i2πh̄∆t

N−1

∏
n=1

dqn,

with ∆t = (t− t0)/N the size of each time interval in which the total time interval of the propagator
t− t0 is divided in N � 1 intervals. In Equation (6) A[q(t)] = e

i
h̄ S0

S [q(t)] is the amplitude associated
with the path q(t) of the bare system, where S0

S is the action relative to the particle subject solely to
the external force. The effect of the bath is taken into account by the Feynman-Vernon (FV) influence
functional FFV [q(t), q′(t)] = e−

1
h̄ ΦFV [q(t),q′(t)] [68]. The exponent ΦFV [q(t), q′(t)], named influence

phase functional, contains information on the bath properties through the function Q(t), related to
the bath correlation function L(t) by L(t) = }2d2Q(t)/dt2. The expressions of the bath correlation
function L(t) and function Q(t) are respectively given by [32,69]

L(t) = L′(t) + iL”(t) =
h̄
π

∫ ∞

0
dω J(ω)

(
coth

h̄ωβ

2
cos ωt− i sin ωt

)
, (7)

Q(t) = S(t) + iR(t) =
1

π}

∫ ∞

0
dω

J(ω)

ω2

{
coth

h̄ωβ

2
(1− cos ωt) + i sin ωt

}
, (8)

where the spectral density J(ω) is given by Equation (3). In the scaling limit set by kBT/}ωc � 1,
we have [69]

Q(t) =
Mγ

πh̄
ln
(√

1 + ω2
c t2 sinh(κt)

κt

)
+ i

Mγ

πh̄
arctan(ωct), (9)

where κ = πkBT/h̄. The long time or moderately high temperature limit (kBT/}ωc)t � 1 of
Equation (9) has a linear dependence on time [32,69]

Q(t) ' Mγ

πh̄

[
π

h̄β
t− ln

(
2π

βh̄ωc

)]
+ i

Mγ

2h̄
. (10)

Once specified the parameters we make a restriction on the dimensionality of the relevant
particle’s Hilbert space by confining ourselves to the first 6 energy levels {E1, . . . , E6}. The underlying
assumption is that the system is not going to be excited to energies higher than E6. Performing on this
restricted basis the unitary transformation T, which diagonalizes the position operator q̂ of matrix
elements < Ei|q̂|Ej >, we pass to the discrete variable representation (DVR) [67,70,71]. The 6 position
eigenfunctions with eigenvalues {q0, . . . , qL−1}, obtained by performing a suitable transformation on
the basis set {|Ei〉}, provide the Discrete Variable Representation (DVR).

In this representation a path consists of a sequence of transitions in the spatial grid defined by the
set {q1, . . . , q6} so that the double path integral (6) turns into a sum over all the possible discrete paths
{µj, νj}with transitions at times {t1, t2 . . . , tm}, integrated over the times {tj} and summed over all the
possible numbers m of transitions. The time evolutions of the diagonal elements ρ(qµ, qµ, t) ≡ ρµµ(t)
are thus given by
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ρµµ(t) =
6

∑
µ0,ν0=1

ρµ0,ν0(t0)
∞

∑
m=1

{ ∫ t

t0

dtm

∫ tm

t0

dtm−1· · ·
∫ t2

t0

dt1

∑
{paths}

e
i
h̄ S[qµj ]−

i
h̄ S[qνj ]FFV [ξ(tj), χ(tj)]

}
(j = 1, . . . , m),

(11)

where the relative coordinate ξ(tj) = qµj − qνj = q(tj) − q′(tj) and the center of mass coordinate
χ(tj) = qµj + qνj = q(tj) + q′(tj) are used.

In terms of ξ and χ the influence phase functional for a set of paths, each consisting of m transitions
(µ, ν)→ (µ′, ν′) at times {t1, t2 . . . , tm}, has the following explicit form

ΦFV [ξ(tj), χ(tj)] = −
m

∑
i=1

i−1

∑
l=0

ξiS(ti − tl)ξl − i
m

∑
i=1

i−1

∑
l=0

ξiR(ti − tl)χl , (12)

where ξi = ξ(ti)− ξ(ti−1) and χi = χ(ti)− χ(ti−1) (ξ0 ≡ ξ(t0) and χ0 ≡ χ(t0)) are termed charges.
S(ti − tl) and R(ti − tl) are defined in (8).

As a further approximation, in addition to the DVR, we restrict the sum over paths in the
propagator G to the leading contributions. These are given by the class of paths consisting in sojourns
in diagonal states interrupted by single off-diagonal excursions called blips. In the dissipation
regimes from intermediate to high temperature, on the scale fixed by h̄ω0, considered here, the time
nonlocal interactions among different blips in Equation (12) (inter-blip interactions) can be neglected.
This corresponds to a multilevel version [71–74] of the non-interacting blip approximation (NIBA) [30,32].
However, the relevant part of the interactions, the intra-blip interactions are retained to all orders in
the coupling strength. Since the total sum of the charges in a path connecting two diagonal elements is
zero, all the interactions between different paths connecting two diagonal elements (ρµµ(t1)↔ ρνν(t2))
are neglected. This is the content of the generalized non-interacting cluster approximation (gNICA) [72],
where a cluster is defined as the time interval during which the path visits non-diagonal elements.
The gNICA is the generalization to a multilevel system of the NIBA applicable for a spin-boson
system [72].

4. Master Equation

Within the gNICA the time integrations in Equation (11) take the form of convolutions.
As a consequence, the path integral expression for a population (diagonal elements of the reduced
density matrix) in Laplace space takes the form of a series in the number of transitions. The series is
resummed and by performing the inverse Laplace transform we get in the time domain a generalized
master equation (GME). If ρ(0) is diagonal in the position representation, the GME reads

ρ̇µµ(t) =
6

∑
ν=1

∫ t

0
dt′K(2)

µν (t− t′)ρνν(t′) + Iµ(t− t0). (13)

In Equation (13) the overdot denotes the derivative with respect to time t. Moreover, the second
order transition probability (involving only one intermediate step) for the process ρνν(t′) → ρµµ(t)
through the single non-diagonal state ρµν (ρνµ), in the general case of the presence of an external
periodical driving, is given by

K(2)
µν (t− t′) = [〈qµ |Ĥ0|qν〉]

2

2 exp
[
−(qµ − qν)2S(t− t′)

]
(µ 6= ν)

× cos
[∫ t

t′ dt′′
(
〈qν|ĤS(t′′)|qν〉 − 〈qµ|ĤS(t′′)|qµ〉

)
− (qµ − qν)2R(t− t′)

] (14)
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where Ĥ0 = p̂2

2M + V̂(q̂) and ĤS(t) = Ĥ0 − q̂A sin Ωt. In the absence of driving we have A = 0 and the
matrix elements inside the integral are time independent. The kernel for the process ρνν(t′)→ ρνν(t)
is given by the conservation of probability

K(2)
νν (t− t′) = −

6

∑
λ 6=ν

K(2)
λν (t− t′). (15)

The inhomogeneity term Iµ(t− t0) in (13) arises because of the contributions of the non-diagonal
initial states, which contain the coherences at initial time t0. This term of inhomogeneity vanishes when
the non-diagonal elements of the particle’s density matrix at t = t0 are zero. Here we choose as initial
condition (see Equation (11)) ρ(t0) = |qi〉〈qi|, so that initially non-diagonal elements of the particle’s
density matrix vanish and therefore the term Iµ(t− t0) is equal to zero. Moreover, this term Iµ(t− t0)

is exponentially damped on a time scale determined by the damping constant γ and the temperature
T. By investigating the long-time dynamics, in the case of non-diagonal initial states different from
zero, Iµ(t− t0) can be neglected and only the populations remain involved in the GME [72]. Therefore,
we have in both cases

ρ̇µµ(t) =
6

∑
ν=1

∫ t

0
dt′Kµν(t− t′)ρνν(t′). (16)

The kernel elements Kµν are taken to the second order in the transition amplitudes per unit time
∆ij = 〈qi|Ĥ0|qj〉/h̄ (see Equation (14)) and at all orders in the system-bath coupling. They go to zero
exponentially due to the presence of a cut-off. At strong damping, as in our case, in the short time
interval in which Kµν are substantially different from zero, ρνν(t) are practically constant. Under the
assumption (Markovian approximation) that ρνν(t′) in (16) are practically constant on the time scales
at which the kernels Kµν are significantly different from zero, we can put them outside the integral
and bring the upper limit to ∞. Setting t0 = 0, the time-independent rates are thus given by

Γµν =
∫ ∞

0
dτKµν(τ), (17)

where the kernels Kµν(τ) are given by Equation (14) with A = 0 (absence of driving). Under these
assumptions we get

ρ̇µµ(t) =
6

∑
ν=1

Γµνρνν(t), (18)

which is the Markov approximated version of Equation (16).
Furthermore, if the driving frequency is high enough, (h̄Ω much larger than the energy differences

between doublets associated to the tunneling, Ω & ω0) we can average the resulting (time dependent)
transition coefficients over a driving period so that the final master equation in the presence of driving
takes the form [72]

ρ̇µµ(t) =
6

∑
ν=1

Γav
µνρνν(t) (19)

where, setting t0 = 0, the time independent averaged rate coefficients are

Γav
µν =

∫ 2π
Ω

0
dt
∫ ∞

0
dτK(2)

µν (t, τ)

=

[
〈qµ|Ĥ0|qν〉

]2
2

∫ ∞

0
dτ exp

[
−(qµ − qν)

2S(τ)
]

J0

[
2s
Ω
(qµ − qν) sin

(
Ω
2

τ

)]
× cos

[
〈qν|Ĥ0|qν〉 − 〈qµ|Ĥ0|qµ〉)τ − (qµ − qν)

2R(τ)
]

µ 6= ν

Γav
νν = −

6

∑
λ 6=ν

Γav
λν.

(20)
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Solution

The solution of (19) is

ρµµ(t) =
6

∑
λ,ν=1

Sµλ(S−1)λνeΛλtρνν(0) (21)

where S is the transformation matrix giving the eigenvalues Λλ of the rate matrix Γav by means of

Λλδλν =
6

∑
α,β=1

(S−1)λαΓav
αβSβν (22)

The condition Γav
νν = −∑6

λ 6=ν Γav
λν implies that Λ0 = 0, so that the corresponding coefficient

∑6
λ=1,ν=0 Sµλ(S−1)λνρνν(0) is the asymptotic value ρ∞

µµ of the population ρµµ. The smallest, in absolute
value, of the remaining Λλ determines the largest time-scale of the dynamics of ρµµ(t), that is the
quantum relaxation time τrelax defined as Λ−1

min.
Indeed, this theoretical technique is non-perturbative in the system-bath coupling, and is thus

suited to deal with strong coupling regime. However, the FV influence functional makes the path
integral intractable as it introduces time nonlocal interactions between the paths q(t) and q′(t) through
the bath correlation function Q(t). The nonlocal part of the interactions cancels out in the limit in
which the bath correlation function Q(t) is linear in t (see Equation (10)), i.e., in the long time limit
t � h̄/kBT. For sufficiently high temperature, Q(t) can be taken in the linearized form at all times,
and this amounts to perform the so called generalized non-interacting cluster approximation gNICA [72],
the multi-level version of the NIBA used for the spin-boson model [29,32]. If we compare the transition
probabilities per unit time among the |qi〉’s with kBT/h̄, we obtain the inequality T & 0.1 h̄ω0/kB to
have a rough estimate for the validity of the gNICA for our system.

5. Transient Dynamics in the Absence of Driving

Now we consider the transient dynamics of the quantum particle, as given by Equation (21), with
the nonequilibrium initial condition

ρ(0) = |q3〉〈q3|, (23)

That is with the particle’s probability density initially peaked on the right of the potential barrier,
in the interval (qb, qc), where qc is the exit point (see Figure 1 and Reference [32]). This may be
experimentally attained by preparing the particle in the ground state of an appropriate harmonic
well centered at the desired position, and then releasing the harmonic potential by rapidly modifying
its profile [75].

We note that the transient dynamics here considered is qualitatively different from that usually
investigated, for example, in References [39–45]. There, the calculated decay rate gives information on
the time the particle takes to leave the metastable well. Specifically in Reference [41] and references
therein, the particle is initially in the ground state of a metastable cubic potential. The thermodynamical
method used there [41] is not suited to treat out of equilibrium dynamics, as we do in this work.
For this purpose we introduce an approach based on the escape time which is suitable to describe
out-of-equilibrium dynamics in asymmetric bistable quantum systems, closely resembling the escape
problems typical of the classical statistical physics [10,13,15].

Processes starting from nonequilibrium initial conditions are commonly encountered in nature, at
the classical and quantum scale (see, for example, References [76,77] and references therein). A typical
example of nonequilibrium dynamics is that emerging from a sudden quenching [77–83].

We introduce the escape time τ from the metastable region, defined as the region to the left of the
exit point (point c in Figure 1), according to Reference [42]. There, the decay rate from the metastable
region is calculated by using the probability of penetration of the Gaussian wave packet from left to
right through the potential barrier of Figure 1. Here, we use a discretized version of this theoretical
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technique. Therefore, we calculate the population of the lower (right side) well, that is the cumulative
population of the three DVR states from |q4〉 to |q6〉

Pright(t) =
6

∑
µ=4

ρµµ(t). (24)

During the transient dynamics the populations of the metastable states (|q1〉 and |q2〉) reach
a maximum Afterwards, by tunneling through the potential barrier, the population of the metastable
well decays, finally settling down to a stationary value dependent on the temperature. We note
that actually we calculate the escape time from the metastable region (see Figure 1 and page 190 of
Reference [32]), therefore comprising the metastable well.

We consider a large asymmetry of the potential, low temperatures with respect to the barrier
height, and damping regimes ranging from moderate to strong (γ & ω0). Given the above
conditions, the relaxation occurs in the incoherent regime, with no oscillations in the populations [72].
As a consequence, we may consider the particle irreversibly out from the metastable region once
Pright(t) has reached a certain threshold value that we set at Pright(τ) = 0.95. By choosing this threshold
we mean that we consider the particle escaped from the metastable region when the probability to
detect it in the lower (right) well is equal or greater than 95%. Due to the incoherent relaxation
described by Equation (21), once the threshold is crossed no oscillatory behavior of the populations
occurs, that is no re-crossing of the threshold in the opposite direction is possible. Therefore, if the
particle crosses the threshold at time τ, this means that after the time τ the particle can be considered
“escaped” and the overall population of the metastable region at later times will not be larger than 0.05.

5.1. Results

In Figure 2 it is shown the nonmonotonic behavior of the escape time τ as a function of the
coupling parameter, or damping, γ and the temperature T.
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Figure 2. (Color online) Escape time τ, in units of ω−1
0 , for the initial condition ρ(0) = |q3〉〈q3|

(see Equation (23)). (a) τ as a function of both damping γ and temperature T, with threshold 0.95;
(b) τ and τrelax as functions of γ for different temperatures, namely T = 0.3, 0.352. Inset: Escape
time vs. temperature at fixed values of damping, namely γ = 0.1, 0.3, 0.6. The parameters γ and T are
given in units of ω0 and h̄ω0/kB, respectively. The potential parameters are the same as in Figure 1,

namely ∆U = 1.4 h̄ω0 and ε = 0.27
√

Mh̄ω3
0 .

Specifically the behavior of τ versus γ shows a maximum, whose height and position depend on
the temperature. A comparison between τ and τrelax versus γ indicates that the two quantities exhibit
roughly the same behavior until the peak in τ is reached (see Figure 2b). At higher γ, while τrelax
continues to increase monotonically, τ has a sudden fall off at a critical value γc, dependent on the
temperature (for example γc ' 0.98 at T = 0.352) (see the end of Section 2 for the units of these quantities).
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This critical value corresponds to a dynamical regime in which the population transfer from the
initial state to the states of the metastable well is inhibited, with a direct transfer occurring to the states
of the lower right well. In this regime the probability of finding the particle in the metastable region
is negligibly small throughout the entire dynamics. Indeed, while τrelax is the time needed for the
system to reach the equilibrium in the double well potential, the escape time is a relevant quantity
for the transient dynamics, involving the crossing of the potential barrier and the emptying of the
metastable well. Therefore, our analysis applies to the general problem of the escape from a metastable
well, starting from a nonequilibrium condition. We note that applying the same technique used in
classical systems to calculate the nonlinear relaxation time (NLRT) [11,25,84], at fixed temperature,
we get the monotonic behavior shown in Figure 2b, which resembles that of τrelax versus γ (not shown
here). In other words the NLRT corresponds to τrelax.

The nonmonotonic behavior of τ vs. γ can be interpreted as the quantum counterpart of the
NES phenomenon observed in classical systems, and may be called quantum noise enhanced stability
(qNES) [85].

Another interesting feature is the presence of a slow monotonic increase of τ for γ > γc,
which leads to the quantum Zeno effect [86–92]. It is worthwhile to note that this effect is not
restricted to the measurement process but it is possible to freeze a system in a state, or an interesting
subspace of the state space of the system. This type of control can be achieved through three kinds of
interaction: (i) frequent measurements; (ii) quantum dynamical decoupling; (iii) strong continuous
coupling. The coupling with a noisy environment (thermal bath) can be seen as a particular case of the
third case [90].

The behavior of τ vs. the temperature is characterized by a minimum as kBT approaches the
tunneling splitting ∆E4,3 = E4 − E3 = 0.2 h̄ω0 (see Figure 1). This is the signature of the thermally
activated tunneling, an experimentally well established phenomenon [93]. This is better shown in the
inset of Figure 2b.

We wish to point out that our results are robust against the variation of the potential asymmetry,
threshold value, initial conditions, chosen within the interval (qb, qc) (see Figures 3 and 4), and the
dimension of the reduced Hilbert space of the system [85]. The path integral approach within the
discrete variable representation is not spatially continuous: the spatial continuity is recovered in the
limit of an infinite number of energy levels. Nevertheless, by increasing gradually the number M of
energy states taken into account in our approximation of M-state system, the DVR states change their
“localization” and become more dense, especially in the regions where the potential energy is lower
(inside the two wells). This means that enlarging the Hilbert space considered, new DVR states with
different eigenvalues in the interval (qb, qc) can be used as initial conditions.

In what follows, we show that the escape time τ as a function of the threshold values, the number
M of energy states considered, and the initial localization of the particle, follows a behaviour
qualitatively similar to that exhibited as a function of γ and T (see Figure 2). The results obtained
by considering the same potential profile as in Figure 1, with potential parameters ∆U = 1.4 h̄ω0

and ε = 0.27
√

Mh̄ω3
0, are shown in Figures 3 and 4. We note that, by fixing the potential profile

and changing the number of energy levels, it has the effect of modifying the spatial configurations
of the DVR states. This, in turn, allows us to consider new initial conditions with localized wave
packets within the interval of interest, leaving the potential unchanged. Therefore, we change the
number of energy levels and, as a consequence, the spatial configurations of the DVR states, the initial
conditions and the threshold values. Specifically we consider M = 8, 10 and, in each of these cases,
the escape time is defined with the three thresholds 0.8, 0.85 and 0.9. A nonmonotonic behavior of the
escape time with respect to the damping parameter, similar to that described above, is observed in all
considered cases (see Figures 3 and 4). The minima in the T-dependence are also present for M = 8,
10 at T ∼ 0.21 h̄ω0/kB, corresponding to the tunneling splitting E4 − E3 = 0.2 h̄ω0. Finally, we note
that the qNES effect is due to both tunneling effect and transitions from low level states inside the
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metastable state to higher level states over the potential barrier. This means that it should be observed
also for larger number of levels inside the metastable potential well.

Figure 3. (Color online) (a) Potential V(q) (∆U = 1.4 h̄ω0 and ε = 0.27
√

Mh̄ω3
0 , the same as in Figure 1)

with the first M = 8 energies levels Ei (horizontal lines) and corresponding position eigenvalues qi

in the DVR (vertical lines); (b) Escape time τ at various thresholds (0.8, 0.85, 0.9) and relaxation time
τrelax, both in units of ω−1

0 , vs. the damping strength γ at T = 0.1. Inset: τ vs. T at γ = 1. The particle
is initially in the state |q4〉, i.e., localized around q4 (blue point in (a)). The parameters γ and T are given
in units of ω0 and h̄ω0/kB, respectively.

Figure 4. (Color online) (a) Potential V(q) (∆U = 1.4 h̄ω0 and ε = 0.27
√

Mh̄ω3
0 , the same as in Figure 1)

with the first M = 10 energies levels Ei (horizontal lines) and corresponding position eigenvalues qi in
the DVR (vertical lines); (b) Escape time τ at various thresholds (0.8, 0.85, 0.9) and relaxation time τrelax,
both in units of ω−1

0 , vs. the damping strength γ at T = 0.1. Inset: τ vs. T at γ = 1.5. The particle is
initially localized around q5 (blue point in (a)). The parameters γ and T are given in units of ω0 and
h̄ω0/kB, respectively.

6. Driven Quantum Dissipative Dynamics

As a model of driven dissipative quantum dynamics confined between two metastable wells,
we modify the bistable system used in Section 2, by considering an external periodical driving.
Therefore, the open system S is now given by a quantum particle of effective mass M subject to a static
double well potential and driven by a monochromatic field of amplitude A and angular frequency Ω.
The resulting time-dependent Hamiltonian for S reads

ĤS(t) =
p̂2

2M
+ V(x̂)− x̂A sin(Ωt) = Ĥ0 − x̂A sin(Ωt) , (25)

where

V(x̂) =
M2ω4

0
64∆U

x̂4 −
Mω2

0
4

x̂2 − εx̂ , (26)
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is the static potential parametrized by the quartic function of the particle’s coordinate x̂.
The full time-dependent Hamiltonian is (see Equation (1))

Ĥ(t) = ĤS(t) + ĤB+SB , (27)

where ĤB+SB is the bath Hamiltonian including the interaction with the system. In Equation (26), ω0 is
the oscillation frequency around the potential minima, ε is a static bias and ∆U the barrier height at
zero bias. Throughout the present work we scale all the physical quantities with ω0, which is of the
same order of magnitude of the frequency spacing between ground state and the first excited energy
level. We choose ε sufficiently large to get a configuration that, in the transient dynamics, is suitable
for modeling the decay in a metastable potential, starting from a nonequilibrium condition. In the

upper part of Figure 5, V(x) is shown for ∆U = 1.4 h̄ω0 and ε = 0.27
√

Mh̄ω3
0.

q1 q2 q3 q4 q5 q6

  E1

  E2  

E3       E4

  E5

  E6

V(x)

|qi(x)|2

a
b

c

x

Figure 5. (Color online) Potential V(x) (Equation (26), with ∆U = 1.4 h̄ω0 and ε = 0.27
√

Mh̄ω3
0) and

the first 6 energy levels (horizontal lines). In the lower part the probability densities |qi(x)|2 = |〈x|qi〉|2

associated to the DVR eigenfunctions are shown, the initial state |q3〉 being highlighted by a solid line.
Vertical lines indicate the position eigenvalues in the DVR. The metastable region of the potential is to
the left of the so-called exit point c.

The bath spectral density function, which describes the frequency distribution of the reservoir’s
oscillators and their coupling with the particle, is defined by [32,71,73,94]

J(ω) =
π

2

N

∑
j=1

c2
j

mjωj
δ(ω−ωj), (28)

whose dimension is mass multiplied by frequency squared. In the general case of continuous
bath the spectral density function is modeled as a power of ω, characterized by the exponent s,
with an exponential cutoff at ωc

J(ω) = Mγs

(
ω/ωph

)s−1
ωe−ω/ωc . (29)

The bath is said Ohmic for s = 1. The so-called damping constant γ is a measure, in the continuous
limit, of the system-bath coupling. The “phononic” reference frequency ωph [32] is introduced in such
a way that γ has the dimension of a frequency also in the non-Ohmic case (s 6= 1). The exponential
cut-off at high-frequency is introduced to avoid non-physical results as, for example, the divergence of
the renormalization term in the Hamiltonian of Equation (1). The effect of the high frequency modes is
taken into account by a redefinition of the particle’s bare mass, which is dressed by the high-frequency
bath modes [32]. Here, we consider for the dissipative environment the Ohmic spectral density function
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J(ω) obtained from Equation (29) for s = 1, J(ω) = Mγωe−ω/ωc (see Equation (3)), while setting for
the cutoff frequency ωc = 10 ω0. The coefficient γ, which has dimension of a frequency, provides
a measure of the overall coupling between the system and the heat bath, whereas the couplings with
the individual bath oscillators are given by the coefficients cj in Equation (1).

6.1. High-Frequency Driving

In the presence of a time-dependent driving the kernels do not depend anymore only on the
difference τ = t− t′ and, consequently, after the integration over τ we have time dependent rates.
However, if the frequency Ω of the monochromatic driving is sufficiently higher than any other
frequencies (renormalized by the bath) of the system (Ω & ω0), it is possible to take the average over
one period T = 2π/Ω [31,72], which gives for the rates of Equation (19)

Γjk =
Ω
2π

∫ 2π
Ω

0
dt
∫ ∞

0
dτKjk(t, t− τ). (30)

For j 6= k, the kernels Kjk read

Kjk(t, t′) = 2∆2
jke−q2

jkQ′(t−t′) (31)

× cos
[
ζ jk(t, t′) + q2

jkQ′′(t− t′)
]

,

with the diagonal elements of the kernel matrix given by Kkk(t, t′) = −∑n 6=k Knk(t, t′), according to
the conservation of probability. In Equation (32), ∆jk ≡ 〈qj|Ĥ0|qk〉/h̄, qjk = qj − qk, and the functions
ζ jk(t, t′) are defined as the time integrals

ζ jk(t, t′) =
∫ t

t′
dt′′
[
(∆jj − ∆kk)− qjk(A/h̄) sin(Ωt′′)

]
. (32)

Finally, in Equation (32) Q′ and Q′′ are respectively the real and imaginary part of the function
Q(t), related to the bath correlation function L(t) (see Equations (7)–(9)). The master Equation (19),
with rates given by Equation (30), describes the average effect of the high frequency driving on the
time evolution of the populations ρjj of the DVR states. The analytical solution of Equation (19) reads

ρjj(t) =
M

∑
n,k=1

Sjn(S−1)nkeΛn(t−t0)ρkk(t0), (33)

where S is the transformation matrix diagonalizing the rate matrix Γ, which has eigenvalues Λn.
The smallest, in absolute value, of the nonzero eigenvalues determines the largest time-scale of the
dynamics, the quantum relaxation time τrelax [72].

6.2. Escape Time for the Driven System

The transient dynamics of the driven system is analyzed by Equation (33), with the same
nonequilibrium initial condition ρ(0) = |q3〉〈q3| used in the static case (23), that is with the particle
initially prepared in the central region of the potential, on the right side of the barrier, between the
maximum and the exit point, denoted by c in Figure 1. The escape time from the metastable region is
defined, as in the static case (see Section 5), according to Reference [42]. Therefore, we calculate the
population of the lower (right side) well, that is the cumulative population of the three DVR states
from |q4〉 to |q6〉, Pright(t) = ∑6

j=4 ρjj(t). During the transient dynamics the cumulative population of
the metastable well, coinciding with the overall population of |q1〉 and |q2〉, reaches a maximum and
then, by tunneling through the potential barrier, decays settling down to a stationary value dependent
on the temperature. We define the escape time τ from the metastable region of the potential, the region
to the left of the exit point c, as the time the right well population takes to cross a threshold value d.
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The nonmonotonic behavior of τ as a function of γ and T, coupling coefficient and bath’s temperature,
respectively, predicted in the static case (see Section 5), is robust against variations of the threshold
around the value 0.9.

Here we set the threshold at d = 0.95, which means that we consider the particle escaped from
the metastable region when the probability to detect it in the lower (right) well is equal or greater
than 95%. Note that, due to the incoherent relaxation described by Equation (33), once the threshold
is crossed no oscillatory behavior of the populations occurs (no re-crossing of the threshold in the
opposite direction). Therefore, if the particle crosses the threshold at time τ, the overall population of
the metastable region is not going to be larger than 0.05 at later times.

We note that, in the static case, the metastable well can be thermally populated at the steady state.
In this scenario no escape can occur if the threshold d is close to unity [85]. The same is true in the
driven case for certain values of the frequency Ω, especially at large amplitudes A, whenever the left
well population, namely the sum Pleft = ρ11 + ρ22, is kept substantially above zero at the steady state
by the presence of the driving.

6.3. Results and Discussion

In the absence of external driving, A = 0, as γ increases, both the escape time τ and the
relaxation time τrelax increase [85]. This holds until a critical value of γc, dependent on the temperature,
is reached: by increasing further γ the escape time steeply diminishes whereas the relaxation time

continues to increase monotonically. In this section, we introduce Ā = A/
√

Mh̄ω3
0 and T̄ = kBT/h̄ω0,

the dimensionless driving amplitude and temperature, respectively.
In Figure 6, the behavior of the escape time τ versus γ/ω0 for three values of frequency, namely

Ω/ω0 = 0, 0.2, 0.7, two different temperatures, that is T̄ = 0.1, 0.3, and dimensionless driving
amplitude Ā = 0.15, is shown. At the lower temperature T̄ = 0.1, all the curves show a nonmonotonic
behavior, with a maximum, of τ as a function of the scaled coupling parameter γ/ω0. At the higher
temperature T̄ = 0.3, the same behavior occurs for the lower values of the scaled driving frequency
Ω/ω0 = 0, 0.2, while a monotonic behavior is observed for the higher frequency value, i.e., Ω/ω0 = 0.7.
This monotonic behavior can be ascribed to the conjunct effect of thermal bath and driving force,
which accelerates the escape process from the metastable region by increasing the coupling parameter
γ. The maxima in the escape time imply that, at a given temperature, there is an optimal value of the
coupling γ for which the depletion of the metastable region is delayed. According to the well known
classical phenomenon [10,13,15,50,52,62], we address this feature as quantum noise enhanced stability
(qNES) [85].

Moreover, a critical value of the coupling strength γc, dependent on the temperature, exists also
in the presence of driving. The critical values of this coupling parameter in Figure 6 are found to be
γc/ω0 ' 0.75 at T̄ = 0.1 and γc/ω0 ' 0.9 at T̄ = 0.3. We also observe that at the higher temperature,
for Ω/ω0 = 0.7, there is no escape up to γ/ω0 ' 0.55. At stronger dissipation the interaction with the
heat bath forces the relaxation towards the lower well causing the depletion of the metastable well,
which would be otherwise populated due to the combined effect of driving and thermal excitation.
We note that γc is larger at the higher temperature, indicating that at strong coupling, and in the
presence of driving, the thermal excitations of the heat bath contrast the relaxation induced by the
bath itself.

An interesting feature is the presence, at strong coupling and independently of the driving
frequency, of a slow monotonic increase of the escape time τ for γ/ω0 > γc/ω0, which is the signature
of the quantum Zeno effect [86–92] (see also Section 5.1).
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Figure 6. (Color online) Escape time vs. coupling strength for three driving settings, namely
Ω/ω0 = 0, 0.2, 0.7. Upper panel: Dimensionless temperature T̄ = 0.1. At Ω/ω0 = 0.7 no escape
occurs for γ/ω0 . 0.25. Lower panel: Dimensionless temperature T̄ = 0.3. For Ω/ω0 = 0.2 and
Ω/ω0 = 0.7, the escape occurs starting from γ/ω0 . 0.25 and 0.55, respectively. For both panels the
driving dimensionless amplitude is fixed at the value Ā = 0.15. Solid lines, in both panels, give the
behavior in the absence of driving Ω = 0. Here we introduced the dimensionless driving amplitude

and temperature, Ā = A/
√

Mh̄ω3
0 and T̄ = kBT/h̄ω0.

Our main focus in this section is the investigation of the escape time as a function of the driving
frequency and coupling strength. This is aimed at giving a systematic account of the delay and
the quench of the escape shown in Figure 6, and at investigating how these effects are influenced by
variations of the coupling with the environment. To this end, we fix the normalized damping coefficient
at the lowest value used in our calculations, that is γ/ω0 = 0.2, and plot the escape time as a function
of Ω for three different values of the dimensionless driving amplitudes Ā, namely Ā = 0.1, 0.15, 0.2
(see Figure 7). Then we show the escape time as a function of Ω and γ, setting the dimensionless
amplitude at the intermediate value, Ā = 0.15 (see Figure 8).
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Figure 7. (Color online) Escape time vs. driving frequency for three values of the dimensionless driving

amplitude Ā = A/
√

Mh̄ω3
0 , namely Ā = 0.1, 0.15, 0.2. Other parameters are γ/ω0 = 0.2 and T̄ = 0.1.

Here we introduced the dimensionless driving amplitude and temperature, Ā = A/
√

Mh̄ω3
0 and

T̄ = kBT/h̄ω0.
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Figure 8. (Color online) Escape time as a function of the coupling strength and the driving frequency
for dimensionless amplitudes Ā = 0.15. The dimensionless temperature is set to the value T̄ = 0.1.

Here we introduced the dimensionless driving amplitude and temperature, Ā = A/
√

Mh̄ω3
0 and

T̄ = kBT/h̄ω0.

The plot τ vs. Ω, shown in Figure 7, is characterized by resonant peaks and dips whose
magnitude is enhanced by increasing the driving amplitude, the escape being completely quenched

for frequencies around Ω/ω0 ' 0.75, when A ≥ 0.15
√

Mh̄ω3
0. The effect is easily interpreted because

the case Ω/ω0 = 0.75 displays at the steady state a left-well population larger than (1− d), implying
that Pright < d. The frequencies for which τ is maximized (or no escape occurs, depending on the
amplitude) roughly correspond to the energy separations E3 − E2 ≈ 0.6h̄ω0, E4 − E2 ≈ 0.8h̄ω0,
and E5 − E2 ≈ 1.25h̄ω0, showing that a resonance phenomenon between the external driving and
these frequencies occurs. For Ω ≈ ω0, a minimum of τ is visible, which is akin to the quantum resonant
activation phenomenon [95] and noise suppression effect [24,25]. However, these noise-induced effects
and the related relaxation dynamics have been observed by fixing the initial condition for the system
in the metastable well. Here, the out-of-equilibrium initial condition makes the transient dynamics
qualitatively different. Indeed, while τrelax is the time needed for the system to reach the equilibrium in
the double well potential, the escape time (as defined in Section 5) is a relevant quantity for the transient
dynamics, involving the crossing of the potential barrier and the emptying of the metastable well [85].

Peaks and dips in τ as a function of the driving frequency are smoothed out as γ increases, with τ

becoming Ω independent as the coupling γ approaches the critical value γc.
This behavior is displayed in Figure 8, where the escape time is plotted as a function of Ω/ω0 and

γ/ω0 for Ā = 0.15. For γ < γc the high frequency driving can delay or accelerate the escape, while for
coupling strengths above the critical value γc the escape time becomes frequency independent and
quantum Zeno effect occurs [86–92].

The critical value γc marks the transition to a dynamical regime, in which the tunneling
mechanism of population transfer towards the metastable region is suppressed. This is because the
tunneling dynamics becomes slow with respect to the depletion dynamics of the region where the
particle is initially prepared. As a result, the probability of detecting the particle in the metastable
well, starting from the initial condition (23), is always negligibly small as the population is directly
transferred from |q3〉 to the right well states. This effect is not captured by the relaxation time
(see Section 6.1), which is independent of the initial condition and grows monotonically as γ increases.

7. Dissipative Dynamics in Sub-Ohmic and Super-Ohmic Regime

In this section, we study the bistable dynamics of a quantum particle coupled to an environment
of which we vary the spectral density.
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We assume the same algebraic spectral density function with exponential cutoff of Equation (29)

J(ω) = Mγs

(
ω/ωph

)s−1
ωe−ω/ωc . (34)

The bath is sub-Ohmic for 0 < s < 1, Ohmic for s = 1 and super-Ohmic for s > 1. The parameter
γs, with dimension of frequency, is the system-bath coupling strength. Here we set the phonon
frequency equal to the oscillation frequency around the potential minima of the potential profile,
namely ωph = ω0. In Figure 9 we show the spectral density functions J(ω) in the sub-Ohmic, Ohmic,
and super-Ohmic regimes for two values of the cutoff frequency. There, the density of low frequency
modes is the highest in the sub-Ohmic regime. On the other hand, the density of high frequency
modes, especially at large cutoff frequency, is the largest in the super-Ohmic regime.

0
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Figure 9. Bath spectral density function (see Equation (34)) as a function of ω in log scale. Three values
of s are considered for each of the two values of the cutoff frequency ωc = 5 (left panel) and ωc = 10
(right panel). Frequencies are in units of ω0. The frequency spacings of the first and second energy
doublet are Ω1 = 0.123 ω0 and Ω2 = 0.149 ω0, respectively. These two frequencies characterize the
tunneling dynamics of the bistable system.

We assume that the environment has a physical cutoff at ωc, which may be the Debye frequency
of the medium in which the system is immersed. We consider two values of the cutoff frequency,
namely ωc = 5 ω0, 50 ω0. The bath modes with frequencies up to the frequency scale set by ω0 affect
the particle dynamics through the quantum friction modeled by the Caldeira-Leggett Hamiltonian
(Equation (1)) on the time scales of the intrawell motion or longer. The modes with higher frequencies
affect the system dynamics by renormalizing the mass [71].

Moreover, we consider the dynamics of the dissipative bistable system, beyond the TLS
approximation, in a temperature regime in which the presence of the second energy doublet cannot
be neglected. We therefore describe the system dynamics by taking into account the first four energy
levels (see Figure 10). We investigate the quantum dissipative dynamics by using a nonperturbative
generalized master equation with approximated kernels, derived within the Feynman-Vernon influence
functional approach [68,74,96]. We study the reduced dynamics by varying the exponent s in the
crossover from the sub-Ohmic (s < 1) to the super-Ohmic (s > 1) dissipation regime. We consider
also the effects of changing the cutoff frequency ωc, i.e., the contribution of the high-frequency modes
to the open dynamics. Recently, for a quantum dot modeled as a TLS interacting with bosonic and
electronic environments at zero temperature, a similar study on the effects of varying the spectral
density function from sub-Ohmic to super-Ohmic regime has been performed [97].
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Figure 10. Potential V0 with energy levels (horizontal lines) and DVR positions. The frequency ω0 is
the oscillation frequency around the potential minima. The average inter-doublet frequency spacing,
that is the characteristic frequency of the intrawell motion, is Ω = 0.814 ω0. The frequency spacings
of the first and second energy doublet are Ω1 = 0.123 ω0 and Ω2 = 0.149 ω0, respectively. These two
frequencies characterize the tunneling dynamics of the bistable system.

Dynamics and Relaxation Times

In this section, we show the results for the dynamics obtained by numerical integration of the
GME (Equation (16)) with the NIBA kernels given by Equation (32) and initial time set to t0 = 0.

Calculations are performed by varying s, the exponent of ω in the spectral density function J(ω),
in the range 0.5 ≤ s ≤ 1.2, and for different cutoff frequencies ωc (see Equation (34)). We consider
two temperature values T = 0.2, 0.5 in unit of h̄ω0/kB and fix the coupling strength to the value
γs ≡ γ = 0.1 ω0. Throughout this section the system is assumed to be initially in the localized state
|q1〉 belonging to the left well (see Figure 10).

In Figure 11 the time evolution of the population ρ11 of the state |q1〉 is shown at two temperatures
and for two values of the cutoff frequency ωc. The time evolutions of ρ11 display damped intrawell
oscillations ending up in a metastable intrawell equilibrium state which relaxes further towards
a stationary configuration over a much larger time scale. The presence of these two different time
scales reflects the two different frequency scales of tunneling and intrawell motion in the bare system.
Moreover the tunneling dynamics is strongly damped due to the distance between states in different
wells. This is because the prefactor (qi − qj)

2 multiplying γs in the exponent of the NIBA kernels
(Equation (32)) yields a large effective coupling. We also observe that, in each panel of Figure 11,
the intrawell oscillations are slower for higher s. The effect is more evident at the higher value of the
cutoff frequency. This can be ascribed to a larger renormalized mass due to the stronger presence of
high frequency modes, especially for the higher cutoff frequency [71].

Further, for both cutoff frequencies, the higher is s the less the oscillations are damped. This is
because, on the time scale of the intrawell motion, the bath modes contributing to the quantum friction
are those with ω . Ω, which are denser at lower s. Note also that, by varying s, the long time dynamics
of ρ11 has different behaviors for the two cutoff frequencies. In particular, for ωc = 5 ω0 (upper panels
of Figure 11) the relaxation is faster at high s, while for ωc = 50 ω0 (lower panels) is faster at low s.
This is also shown in the insets of Figure 11 along with the asymptotic behavior.
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Figure 11. Time evolution of the population ρ11 of the state |q1〉 for different values of s, at two cutoff
frequencies ωc = 5 (panels (a) and (b)) and ωc = 50 (panels (c) and (d)) and for two temperatures
T = 0.2 (panels (a) and (c)) and T = 0.5 (panels (b) and (d)). Insets: Relaxation towards the stationary
values of ρ11. The coupling strength γs is fixed to the value 0.1 ω0. Temperatures and frequencies are
in unit of h̄ω0/kB and ω0, respectively.

The features of the relaxation towards the stationary configuration are displayed in Figure 12,
where the time evolution of the population difference PL− PR, where PL(R) = ρ11(33)+ ρ22(44), is shown
for two values of the temperature and cutoff frequency, along with the relaxation time Λ−1

min as a
function of s . The ωc-dependent minima in the relaxation time as a function of the exponent s,
shown in the insets of Figure 12, emerge as the result of two competing mechanisms. On the one hand,
by lowering the exponent s the density of low-frequency modes (ω ∼ Ω1,2) of the bath is increased
(see Figure 10). These modes act on the time scales of the tunneling Ω−1

1,2 contributing to the friction
exerted by the heat bath. As a consequence, by moving towards smaller values of s, the dissipation is
enhanced and the tunneling is hampered. On the other hand, the mass renormalization term increases
with s slowing down the relaxation due to the increased inertia of the system [71]. These two competing
behaviors yield the minima in the relaxation times. This physical picture is confirmed by the fact that
for large ωc, where the mass renormalization effect is stronger, the minimum moves towards lower
values of s.

By a suitable combination of DVR states it is possible to construct initial states of our four-level
system corresponding to the left and right state (|L〉, |R〉) involving only the lower energy doublet.
If the temperature is low enough, the time evolution of a system prepared in one of these sates does
not display intrawell oscillations, which involve transitions to higher energy states induced by the
heat bath, and a treatment based on the two-level system approximation is appropriate [73]. However,
at the temperatures considered in our work, especially at T = 0.5 ω0, where ω0 sets the order of
magnitude of the separation between the first and second energy doublet, intrawell oscillations are
expected to be activated regardless of the initial condition. These intrawell oscillations undergo the
damping effects described in our analysis. Of course, the transient dynamics for our initial condition
is expected to differ from that resulting from a preparation which entails the presence of coherences,
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with the inhomogeneity term in Equation (13) playing a role in the transient. Nevertheless, due to
the exponential suppression of this contribution, the relaxation times and the stationary values of
the populations are not affected by the initial condition. Therefore, apart from the details of the
transient dynamics, the results of our analysis are not modified by initial preparations which involve
the presence of the inhomogeneity term.
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Figure 12. Time evolution of the population difference PL − PR for different spectral densities
(0.5 ≤ s ≤ 1.2) at temperatures T = 0.2 (panels (a) and (c)) and T = 0.5 (panels (b) and (d)) and
at cutoff frequencies ωc = 5 (panels (a) and (b)) and ωc = 50 (panels (c) and (d)). Insets: Relaxation
times Λ−1

min as a function of s. The coupling strength is γs = 0.1 ω0. Temperatures and frequencies are
in units of h̄ω0/kB and ω0, respectively.

8. Conclusions

In this paper, we reviewed some results on the escape processes from quantum metastable
states strongly interacting with an Ohmic thermal bath. The theoretical analysis is performed by
a non-perturbative technique based on the real-time path integral approach of the Feynman-Vernon
influence functional. In particular, in the absence of driving, we found that the escape time exhibits
a nonmonotonic behavior, with a maximum, for increasing values of the damping. This indicates
the presence of a noise induced phenomenon, which we name quantum noise enhanced stability
(qNES). Moreover, the behaviour of the escape time shows a nonmonotonic behaviour, characterized
by a minimum at the resonance with the tunneling splitting, as a function of the temperature [85].

One novelty of this study is that we analyze the out-of-equilibrium dynamics of a quantum
particle, by fixing a threshold whose crossing indicates that the particle escaped from the metastable
region, and by studying an escape time, suitably defined, as a function of the coupling strength
(damping) and the temperature of the heat bath.

In the presence of a periodical external driving, within the same framework of the dissipative
quantum dynamics of the asymmetric bistable system, we analyzed the escape time from the
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metastable region as a function of the driving frequency and the parameters of the thermal bath.
We found a nonmonotonic behavior of the escape time from the metastable region as a function of the
temperature, frequency of the driving, and thermal-bath coupling, which indicates the presence of
a qNES phenomenon in the system investigated. Moreover, we observed the presence of resonant peaks
and dips for lower values of the coupling coefficient γ. For increasing values of γ, after the maximum,
a steep decrease of the escape time is observed and the escape time becomes frequency-independent.
More in detail, a value γc exists such that for γ > γc the behavior of the escape time highlights
the presence of a transition, occurring at this critical value γc, between two qualitatively different
dynamical regimes of the metastable system.

Finally, the role of different spectral densities, either in sub-Ohmic or super-Ohmic dissipation
regime and different cutoff frequencies, on the the relaxation dynamics from the quantum metastable
state was investigated. We found that for higher values of the exponent s the populations undergoes
less damped intrawell oscillations and the relaxation time exhibits a minimum at a value of s depending
on the cutoff frequency [71]. The results obtained indicate that, in the crossover dynamical regime
characterized by damped intrawell oscillations and incoherent tunneling, the spectral properties of the
thermal bath influence non-trivially the time scales of the relaxation dynamics from the metastable state.

The phenomenon of quantum noise enhanced stability (qNES) can be observed within existing
experimental frames such as superconducting qubits [75] and optical trapping [98,99]. Moreover,
our results on the escape dynamics from metastable states can be useful to control the stability
of trapped particle in optical communication, and to engineer dissipative environments for
superconducting and quantum computation devices [100–102].
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