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Abstract: This paper is concerned with invariance (Fj, F;)-scrambled sets under iterations. The main
results are an extension of the compound invariance of Li-Yorke chaos and distributional chaos.
New definitions of (Fj, F;,)-scrambled sets in non-autonomous discrete systems are given. For a
positive integer k, the properties P(k) and Q(k) of Furstenberg families are introduced. It is shown
that, for any positive integer k, for any s € [0, 1], Furstenberg family M(s) has properties P(k) and
Q(k), where M(s) denotes the family of all infinite subsets of Z* whose upper density is not less

than s. Then, the following conclusion is obtained. D is an (M(s), M(t))-scrambled set of (X, f1 «) if

and only if D is an (M(s), M(t))-scrambled set of (X, fl[rﬂ)
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1. Introduction

Chaotic properties of a dynamical system have been extensively discussed since the introduction
of the term chaos by Li and Yorke in 1975 [1] and Devaney in 1989 [2]. To describe some kind of
unpredictability in the evolution of a dynamical system, other definitions of chaos have also been
proposed, such as generic chaos [3], dense chaos [4], Li-Yorke sensitivity [5], and so on. An important
generalization of Li-Yorke chaos is distributional chaos, which is given in 1994 by B. Schweizer and
J. Smital [6]. Then, theories related to scrambled sets are discussed extensively (see [7-12] and others).
In 1997, the Furstenberg family was introduced by E. Akin [13]. J. Xiong, F. Tan described chaos with a
couple of Furstenberg Families. (Fj, F,)-chaos has also been defined [14]. Moreover, F-sensitivity
was given in [15] and shadowing properties were discussed in [16]. Most existing papers studied the
chaoticity in autonomous discrete systems (X, f). However, if a sequence of perturbations to a system
are described by different functions, then there are a sequence of maps to describe them, giving rise
to non-autonomous systems. Non-autonomous discrete systems were precisely introduced in [17],
in connection with non-autonomous difference equations (see [18,19] and some references therein).

Let (X, p) (briefly, X) be a compact metric space and consider a sequence of continuous maps
fn: X — X,n €N, denoted by f1 .o = (f1, f2,- - - ). This sequence defines a non-autonomous discrete
system (X, f1,). The orbit of any point x € X is given by the sequence (f{'(x)) = Orb(x, fi,c),
where fI' = f, 0o f; forn > 1, and £} is the identity map.

For m € N, define

1 =fmo--0f1,8=famo 0 fui1,-- 8 = fpm O 0 flp_1ymi1s -+ -
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Call (X, g1,00) @a compound system of (X, f1 ).

Also, denote g1 o by fl[";]) and denote fX = f, . 100 f, forn > 1. By [5], if (f4)>_, converges
uniformly to a map f. Then, for any m > 2(m € N), the sequence (f*"~1)®_ converges uniformly
to f™.

In the present work, some notions relating to Furstenberg families and properties P(k), Q(k) are
recalled in Sections 2 and 3. Section 4 states some definitions about (F7, F7)-chaos. In Section 5, it is
proved that, under the conditions of property P(k) and positive shift-invariant, fi « is (F1, F2)-chaos
(strong (F1, F2)-chaos, strong F-chaos) implies fl[kc]’o(k € Z") is (Fy, F2)-chaos (strong (Fy, F2)-chaos,
strong F-chaos). If the conditions property Q(k) and negative shift-invariant both hold, the above
conclusion can be inversed. As a conclusion, for arbitrary s and t in [0, 1], for every k € 7+, f1,00 and
fl[kio can share the same (M(s), M(t))-scrambled set (Theorem 3).

In this paper, it is always assumed that all the maps f,,, n € N, are surjective. It should be noted
that this condition is needed by most papers dealing with this kind of system (for example, [20-23]).
It is assumed that sequence (f,,)$°_; converges uniformly. The aim of this paper is to investigate the
(F1, F2)-scrambled sets of f co.

2. Furstenberg Families

Let P be the collection of all subsets of the positive integers set Z™ = {0,1,2,...}. A collection
F C Pis called a Furstenberg family if it is hereditary upwards, i.e, F; C F, and F; € F imply F, € F.
Obviously, the collection of all infinite subsets of Z™ is a Furstenberg family, denoted by 5.

Define the dual family kF of a Furstenberg family F by

kF={FeP:Z*-F¢ F}={FeP:FNF # ¢forany F' € F}.

It is clear that kF is a Furstenberg family and k(kF) = F (see [13]).

ForF € P,ic€ Zt,letF—i={j—i>0:je€ Ffand F+i = {j+i >0:j € F}.
Furstenberg family F is positive shift-invariant if F +i € F for every F € F and any i € ZT.
Furstenberg family F is negative shift-invariant if F —i € F for every F € F and any i € Z™.
Furstenberg family F is shift-invariant if it is positive shift-invariant and negative shift-invariant.

The following shows a class of Furstenberg families which is related to upper density.

Let F C P. The upper density and the lower density of F are defined as follows:
| u(F) = liminf#(Fm {0,1,...,n— 1})’

n—soco n

2(F) = timsup TEOO L = 1})

n—o0 n

where #(A) denotes the cardinality of the set A.
For any s in [0,1], set M(s) = {F € B: u(F) > s}.

Proposition 1. For any s in [0,1], M(s) is shift-invariant Furstenberg family. And M(0) = B.

Proof.

(i) LetF,F € M(s),F| C F,, then, Vn € N (where N = {1,2,3,...}),

2(Fy) = limsup T n=1)) o #HBN{0,. 0 1))

n—00 n n—00 n

=u(kR)

Thus, F; € M(s) (i.e, 7i(F) > s) implies F, € M(s) (i.e., i(F) > s). So, M(s)(Vs € [0,1]) are
Furstenberg families.
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(i)

(iii)

O

Let F € M(s), that is, u(F) = limsupw

n—oo

(where t, € Z%, t, < t,(ki < k), then F+i = {tj +ity+i---} and

1
F—i={ty, —ityy—i,--- }(l, —i>0)foranyie Z".

> s. Denote F = {f,tp,- -}

limsup#((F_'—l)m{O'l""'n_l}) :limsup#({tl+1/t2+1,"'}ﬁ{0,1,...,n—l})

n—00 n n—00 n

#({ti, b2, 10 {0,1,..., n—1})

= limsup =7(F) >s
n—c0 n
and
limsup#((F_l) n{0,1,..., n—1}) > lim sup #(FN{0,1,..., n—1}) —i _H(F) > s

n—00 n n—00 n
So, M(s) is shift-invariant.
Obviously,

M(0) = {FeB:7i(F) >0} = {F e B: limsup 7L 40 L n=1h) oy g

n—00 n

This completes the proof.

3. Properties P(k), Q(k) of Furstenberg Families

Definition 1. Let k be a positive integer and F be a Furstenberg family.

(1)

2)

Forany F € F, if there exists an integer j € {0,1,--- ,k — 1} such that F; = {i € Z* :ki+j € F} € F,
we say F have property P(k);
IR ={ki+jeZ":je{0,1,--- , k—1},i € F} € F, we say F have property Q(k).

The following proposition is given by [24]. For completeness, we give the proofs.

Proposition 2. Forany s € [0,1] and any k € Z, M(s) have properties P(k) and Q(k).

Proof.

M

Ifk=1,VF € M(s), g = {i € Z" :i € F} = F, i.e, there exists an integer j = 0 such that
Fyj € M(s). The following will discuss the case k > 1.

If s = 0, M(0) = B. VF € B, Vk € Z*, obviously, there exist j € {0,1,..., k — 1} such that
Fk,]' e B.

If 0 < s < 1, suppose properties P(k) does not hold. Then there exists a F € M(s) such that
7i(Fj) <sforeveryje{0,1,..., k—1}.

For any j € {0,1,..., k— 1}, put ¢; > 0 which satisfied 7i(F;;) < s —¢;. One can find a
sufficiently large number N such that, n > N, #,(F;) < n(s — ¢;) (where #,(Fy ;) denotes the
cardinality of the set Fyj N {0,1,..., n—1}). Then #n(F,é].) >n—n(s— sj), where F]f,]. denotes the
complementary set of F,j-

Give an integer m = kn + 1l,, > kN, I, € {0,1,..., k — 1}. By the definition of Fj ki+j & Fif
i¢ Fk,j- And kil +j1 7& kiz —|—j2 if il,iz € {0,1,..., n— 1}, j1,j2 (S {0,1,..., k— 1} andj1 7& jz.

Then
k—1

k-1
#,(F°) > Z#W(Flg'j) > Z(;(n —n(s —¢j)).
]:

j=0
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So,

PutS:min{s]-:ij,l,...,k—l},then

k—1
m—Y: s(n—n(s—e;)) _ — (s —
#(F) =limsup #u(F) < lim /=0 ( /) < lim m—k(n—nfs —¢))
n—00 m n—00 m n—00 m
— lim kn+ 1, —kn +kn(s —€) s
n—oo kn+lm

This contradicts to 7i(F) > s.
(2) Similarly, just consider the case k > 1,0 <s < 1.

Suppose properties Q(k) does not hold. Then there exists an integer F € M(s) such that 7i(F) < s.
Put ¢ > 0 which satisfied 71(F;) < s —e. One can find a sufficiently large number N such that,
m > N, #,(F) < m(s —¢). Giveam = kn+1,, > kN(m > N), 1, € {0,1,..., k—1}. By the
definition of F, ki +j € F(j € {0,1,..., k—1}) ifi € F. And kiy + j1 # kip + j» if i1 # ip and
n,2€40,1,..., k—1}. Then

k(#,(F)) < #5,(F) < m(s —¢).

So,

A(F) < lim m(s—e) _ fim (kn 4 1) (s —€)

=s—¢e<
n—00 n n—00 kn STESS
This contradicts to 7i(F) > s.
This completes the proof.
O
4. (F1, F,)-Chaos in Non-Autonomous Systems

Now, we state the definition of (Fi, F,)-chaos in nonautonomous systems.

Definition 2. Let (X, p) be a compact metric space, F1 and F, are two Furstenberg families. D C X is called
a (Fi1, Fp)-scrambled set of (X, f1,e0) (briefly, f10), if V x # y € D, the following two conditions are satisfied:

(i) Vt>0,{neN:p(fi(x), f(y)) <t} € Fy;
(i) 36>0,{neN:p(fl(x), fi(y)) > 6} € Fa.

The pair (x,y) which satisfies the above two conditions is called an (Fy, F)-scrambled pair of f1 co.

fieo is said to be (Fy, Fy)-chaotic if there exists an uncountable (Fi, F,)-scrambled set of fi co.
If Fi = Fo = F, fieo is said to be F-chaotic and (x,y) is an F-scrambled pair. f1 « is said to be strong
(F1, Fa)-chaotic if there are some 6 > 0 and an uncountable subset D C X such that for any x,y € D with
x # y, the following two conditions holds:

(i) {neN:p(fl(x), fil(y)) <t} € Fyforallt >0;
(i) {neN:p(fi(x) fy) > o) € Fo

f1,00 is said to be strong F-chaos if it is strong (F1, Fa)-chaotic and Fy = Fp = F.

Let us recall the definitions of Li-Yorke chaos and distributional chaos in non-autonomous systems
(see [25,26]).
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Definition 3. Assume that (X, f1 ) is a non-autonomous discrete system. If x,y € X with x # y, (x,y) is
called a Li-Yorke pair if

limsup p(f7'(x), fi'(y)) > 0 and liminfp(fy'(x), fi'(y)) =

The set D C X is called a Li—Yorke scrambled set if all points x,y € D with x # vy, (x,y) is a Li—Yorke
pair. f1,« is Li=Yorke chaotic if X contains an uncountable Li—Yorke scrambled set.

Assume that (X, f1 ) is a non-autonomous discrete system. For any pair of points x,y € X,
define the upper and lower (distance) distributional functions generated by f; « as

(tf1oo)—hmsup Zx(n (p(fi(x), i)

n—o0 =1

and

Fry(t, f1,00) —hmlnf*ZXOzs p(fi(x), fiy)))

=1

respectively. Where x| ) is the characteristic function of the set [0, ), i.e., X[ (2) = 1 whena € [0,)
or X[os)(a) =0whena ¢ [0,t).

Definition 4. f , is distributionally chaotic if exists an uncountable subset D C X such that for any pair of
distinct points x,y € D, we have that F{,(t, f1,0) = 1 forall t > 0 and Fyy(t, f1,0) = 0 for some 6 > 0.
The set D is a distributionally scmmbled set and the pair (x,y) a distributionally chaotic pair.

It is not difficult to obtain that the pair (x,y) is a (M(0), M(0))-scrambled pair if and only if (x,v)
is a Li-Yorke scrambled pair, and the pair (x,y) isa (M(1), M(1))-scrambled pair if and only if (x,y)
is a distributionally scrambled pair. In fact,

M(0) = B,M(1) = {F € B : limsup T {1200 1

n—00 n

Doy

~ Then, {n € N: p(fi'(x), f{(y)) <t} € M(0) forany t > Oand {n € N : p(f{'(x), f{'(v)) > }
M(0) for some § > 0 is equivalent to that lhr?jogp p(f(x), fi(y)) > 0 and ligglfp(ff( ) ftly)) =

{1 € N 5 (7 (), 7)) < £} € M(1) for any £ > 0and {n € N p(7 (), 1) > 0} € W) for
some 0 > 0 is equivalent to that FJ; (t, f1.0) = 1 and Fxy(9, f1,.) = 0.
Hence, (M(0), M(0))-chaos is L1—Y0rke chaos and (M(1), M(1))-chaos is distributional Chaos.

5. Main Results

Theorem 1. Let Fy and F; are two Furstenberg families with property P(k), where k is a positive integer.
JFy is positive shift-invariant. If the system (X, f100) is (F1,F2)-chaos, then the system (X, fl[ko]o) is
(F1, F2)-chaos too.

Proof. If D is an (Fj, F;)-scrambled set of fi «, the following proves that D is an (Fi, F;)-scrambled
set of fl[kio

(i) Since X is compact and f;(i € N) are continuous, then, forany j € {1,2,..., k—1}, f;,,..., fsk—j
are uniformly continuous (where f;,, ..., f5 ; are freely chosen from the sequence f;(i € N ))-
That is, for any 6 > 0, there exists a 6* > 0, Va,b € X, p(a,b) < ¢* implies p(fs, ;00

fsl(a)/fskfj O Of51(b)) < 5(] =L2...,k=1).
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(ii)

O

Since D is an (Fj, F,)-scrambled set of fi «, then, Vx # y € D, for the above 6*, we have
F={neN:p(fl(x), fi(y)) <"} € Fi.
And because F; have property P(k), there exists some j € {1,2,..., k — 1} such that
PP o kit Ki+j .
Rij={ieZ :kitjeFy={ie€Z :p(f; '(x),f; "(y) <} e .
By the selection of 6*, we puts, =ki+j+r(r=1,2,..., k—j), then
. ki+j+k—j ki+j+k—j . k(i+1 k(i4+1
Fjc{ieZ:p(ff 7 (), A () < o} = (i e 2 - p(f 7 (), A7V () < 6},

Write Fi; +1 = {i+1:ieZ"ki+je F}Vj=12,...,k—1), then Fj+1cC {ieZ:
p(fY (%), i (y)) < 6}

By the positive shift-invariant of 71 and Fy ; € 1, we have Fij +1 € F7. And with the hereditary
upwards of F, forany x,y € D : x #y, V3 > 0, {i € Z* : p(fFi(x), fFi(y)) < 6} € Fi.

Since D is a (Fj, F2)-scrambled set of fi o, then, for the above x,y € D(x # y), Je* > 0,
such that E = {n € Z" : p(f]'(x), f{(y)) > €*} € F». And because F; have property P(k), then,
there exists some j € {1,2,..., k — 1} such that

Ej={ieZ" :kitjeE}={icZ":p(f(x), 7 (y) > €} € Fo.

X is compact and f;(i € N) are continuous, then, for any j € {1,2,..., k—1}, fs,,..., fs; are
uniformly continuous (where f;,, ..., fs; are freely chosen from the sequence fi(i € N)). For the
above ¢* > 0, 3¢ > 0, Vp,q € X satisfied p(p,q) < ¢ inequality p(fs; 0+~ o fs,(p), fs;0 -0
fs,(q)) < " holds.

The following will prove that {i € Z* : p(f¥ (x), fii(y)) > €} € .
Suppose {i € Z* : p(ff(x), fFi(y)) > e} ¢ F>», then

zt—{ieZ p(ff (%), A y) > et ={i € Z" : p(f'(x), ' () < €} € kFo.
By the selection of ¢*, we puts, = ki+r(r =1,2,..., j), then
iezZ" p(f7x), A7 (y) <€} € kP

SO’ . . . .
liez" p(AM(x), A (y) > €} £ kP,

This contradicts Ey ; € F>.

Hence, for x # y € D in (i), there exists a ¢ > 0 such that {i € Z* : p(ff(x), f¥i(y)) > ¢} € Fa.
Combining with (i) and (ii), f1[kc]>o is (F1, F2)-chaos.

This completes the proof.

Theorem 2. Let Fy and F; are two Furstenberg families with property Q(k), where k is a positive integer. J; is
negative shift-invariant. If the system (X, fl[kio) is (F1, F2)-chaos, then the system (X, f1 o) is (F1, F2)-chaos too.

Proof. If D is a (F7, F,)-scrambled set of fl[kio, the following prove that D is a (Fj, F,)-scrambled set
of fl,oo~
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(i)

(ii)

O

Similar to Theorem 1, forany j € {1,2,..., k—1}, f5,, ..., fs], are uniformly continuous (where
fss---, fs; are freely chosen from the sequence f;(i € N)). That is, for any J > 0, there exists a
0*>0,VYa,be X, p(ab) < impliesp(fsjo . ~ofsl(a),f5jo cofy (b)) <o(G=12,...,k=1).

For any pair of distinct points x,y € D, for the above §*, one has
F={neZ":p(fi"(x), fi"(y)) <"} € Fi.

By the selection of ¢6*, for Vn € F,Vj € {1,2,--- ,k—1}, puts, = ki+j+r(r =1,2,...,]),

then p( fnﬂ(x), {mﬂ(y)) < 4. And because F; have property Q(k), then

Fk:{kn+j€Z+Ij:1,2,...,k—1,l’l€F}E.Fl.

Notice that F, C {m € Z" : p(f"(x), f{"(y)) < 6}, then {m € ZT : p(fI"(x), f{*(y)) < 6} € Fi.
Since D is an (F;, F;)-scrambled set of flf{oo, then, for the above x,y € D(x # y), there exist
¢ > 0,suchthat E = {n € Z% : p(ff"(x), ff"(y)) > '} € Fo.

Foranyje {1,2,...,k—1}, f,..., fs]- are uniformly continuous (where f; , ..., fs]. are freely
chosen from the sequence f;(i € N)), then, for the above ¢* > 0, there exist ¢ > 0 such that

p(p.q) < e(pg € X) implies p(fs; 0 -+~ 0 foy(p), f;0 - -0 fu(q)) < €(G = L2..., k=1)
Thatis, o(ff(p), f{(9)) > €*(p,q € X) implies p(f](p), f(9)) > e(j =1,2,..., k= 1).
Vne EVj=12,...,k—1,puts, =k(n—1)+r(r=1,2,..., j), then

oA (), AUV () >

Since F; is negative shift-invariant, then E —1 € F,. And because F, have property Q(k),
then (E—1)y € Fp, ie, {k(in—-1)+j € Z* : n—1 € E-1,j = 1,2,...,k—1} € F.
Combining (E — 1), C {m € Z* : p(f"(x), f{"(y)) > €} with the hereditary upwards of F,
wehave {m € Z* : p(f"(x), f{"(y)) > €} € Fo.

By (i) and (ii), D is an (F;, F2)-scrambled set of fi co.
This completes the proof.

Similarly, the following corollaries hold.

Corollary 1. Let Fq and F;, are two Furstenberg families with property P(k), where k is a positive integer.
J is positive shift-invariant. If the system (X, f1 ) is F-chaos (strong (F1, F)-chaos, or strong F-chaos),

then the system (X, fl[kio) is F-chaos (strong (F1, F)-chaos, or strong F-chaos).

Corollary 2. Let F; and F, are two Furstenberg families with property Q(k), where k is a positive integer.

F; is negative shift-invariant. If the system (X, f][kc]>o) is F-chaos (strong (F1, F2)-chaos, or strong F-chaos),
then the system (X, f1 o) is F-chaos (strong (Fy, Fa)-chaos, or strong F-chaos).

Combining with Propositions 1 and 2, Theorems 1 and 2, and Corollarys 1 and 2, the following

conclusions are obtained.

Theorem 3. Let s and t are arbitrary two numbers in [0,1], then

(1)

(2)

If D is an (M(s), M(t))-scrambled set (or strong (M(s), M(t))-scrambled set) of f1 o, then, for every
k € Z*, D is an (M(s), M(t))-scrambled set(or strong (M(s), M(t))-scrambled set) offl[klo.

For some positive integer k, if D is an (M(s), M(t))-scrambled set (or strong (M(s), M(t))-scrambled set) of
M then D is an (M(s), M(t))-scrambled set (or strong (M(s), M(t))-scrambled set) of f1 co-

1,007
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Proof.

(1) By Proposition 1, M(s) is shift-invariant (obviously positive shift-invariant). And because
M(s), M(t) are two Furstenberg families with property P(k) (Proposition 2). Then, according to
the proof of Theorem 1, if D is an (M(s), M(t))-scrambled set of f1 «, then, for every k € Z*, D

is an (M(s), M(t))-scrambled set of fl[kio
(2) Inthe same way, (2) holds.

This completes the proof.
O

With the preparations in Section 4, we have

Corollary 3.

(1) If D is a Li-Yorke scrambled set (or distributionally scrambled set) of f1 o, then, for every k € Z, D is a
Li-Yorke scrambled set (or distributionally scrambled set) of f1[kj>o

(2)  For some positive integer k, if D is a Li—Yorke scrambled set (or distributionally scrambled set) of fl[ko]o’
then, D is a Li-Yorke scrambled set (or distributionally scrambled set) of fi .

Remark 1. In the non-autonomous systems, the iterative properties of Li—Yorke chaos and distributional chaos
are discussed in [25,26] before. The conclusions in Corollary 3 remains consistent with them.

This paper has presented several properties of (Fj, F2)-chaos, strong (F7, F2)-chaos, and strong
F-chaos. There are some other problems, such as generically F-chaos and F-sensitivity, to discuss.
Moreover, property P(k) is closely related to congruence theory. Follow this line, one can consider
other Furstenberg families which consist of number sets with some special characteristics.
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