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Abstract: This paper is concerned with invariance (F1,F2)-scrambled sets under iterations. The main
results are an extension of the compound invariance of Li–Yorke chaos and distributional chaos.
New definitions of (F1,F2)-scrambled sets in non-autonomous discrete systems are given. For a
positive integer k, the properties P(k) and Q(k) of Furstenberg families are introduced. It is shown
that, for any positive integer k, for any s ∈ [0, 1], Furstenberg family M(s) has properties P(k) and
Q(k), where M(s) denotes the family of all infinite subsets of Z+ whose upper density is not less
than s. Then, the following conclusion is obtained. D is an (M(s), M(t))-scrambled set of (X, f1,∞) if

and only if D is an (M(s), M(t))-scrambled set of (X, f [m]
1,∞).
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1. Introduction

Chaotic properties of a dynamical system have been extensively discussed since the introduction
of the term chaos by Li and Yorke in 1975 [1] and Devaney in 1989 [2]. To describe some kind of
unpredictability in the evolution of a dynamical system, other definitions of chaos have also been
proposed, such as generic chaos [3], dense chaos [4], Li–Yorke sensitivity [5], and so on. An important
generalization of Li–Yorke chaos is distributional chaos, which is given in 1994 by B. Schweizer and
J. Smítal [6]. Then, theories related to scrambled sets are discussed extensively (see [7–12] and others).
In 1997, the Furstenberg family was introduced by E. Akin [13]. J. Xiong, F. Tan described chaos with a
couple of Furstenberg Families. (F1,F2)-chaos has also been defined [14]. Moreover, F -sensitivity
was given in [15] and shadowing properties were discussed in [16]. Most existing papers studied the
chaoticity in autonomous discrete systems (X, f ). However, if a sequence of perturbations to a system
are described by different functions, then there are a sequence of maps to describe them, giving rise
to non-autonomous systems. Non-autonomous discrete systems were precisely introduced in [17],
in connection with non-autonomous difference equations (see [18,19] and some references therein).

Let (X, ρ) (briefly, X) be a compact metric space and consider a sequence of continuous maps
fn : X → X, n ∈ N, denoted by f1,∞ = ( f1, f2, · · · ). This sequence defines a non-autonomous discrete
system (X, f1,∞). The orbit of any point x ∈ X is given by the sequence ( f n

1 (x)) = Orb(x, f1,∞),
where f n

1 = fn ◦ · · · ◦ f1 for n ≥ 1, and f 0
1 is the identity map.

For m ∈ N, define

g1 = fm ◦ · · · ◦ f1, g2 = f2m ◦ · · · ◦ fm+1, . . ., gp = fpm ◦ · · · ◦ f(p−1)m+1, . . ..
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Call (X, g1,∞) a compound system of (X, f1,∞).

Also, denote g1,∞ by f [m]
1,∞ and denote f k

n = fn+k−1 ◦ · · · ◦ fn for n ≥ 1. By [5], if ( fn)∞
n=1 converges

uniformly to a map f . Then, for any m ≥ 2(m ∈ N), the sequence ( f n+m−1
n )∞

n=1 converges uniformly
to f m.

In the present work, some notions relating to Furstenberg families and properties P(k), Q(k) are
recalled in Sections 2 and 3. Section 4 states some definitions about (F1,F2)-chaos. In Section 5, it is
proved that, under the conditions of property P(k) and positive shift-invariant, f1,∞ is (F1,F2)-chaos

(strong (F1,F2)-chaos, strong F -chaos) implies f [k]1,∞(k ∈ Z+) is (F1,F2)-chaos (strong (F1,F2)-chaos,
strong F -chaos). If the conditions property Q(k) and negative shift-invariant both hold, the above
conclusion can be inversed. As a conclusion, for arbitrary s and t in [0, 1], for every k ∈ Z+, f1,∞ and

f [k]1,∞ can share the same (M(s), M(t))-scrambled set (Theorem 3).
In this paper, it is always assumed that all the maps fn, n ∈ N, are surjective. It should be noted

that this condition is needed by most papers dealing with this kind of system (for example, [20–23]).
It is assumed that sequence ( fn)∞

n=1 converges uniformly. The aim of this paper is to investigate the
(F1,F2)-scrambled sets of f1,∞.

2. Furstenberg Families

Let P be the collection of all subsets of the positive integers set Z+ = {0, 1, 2, . . .}. A collection
F ⊂ P is called a Furstenberg family if it is hereditary upwards, i.e., F1 ⊂ F2 and F1 ∈ F imply F2 ∈ F .
Obviously, the collection of all infinite subsets of Z+ is a Furstenberg family, denoted by B.

Define the dual family kF of a Furstenberg family F by

kF = {F ∈ P : Z+ − F /∈ F} = {F ∈ P : F ∩ F′ 6= φ for any F′ ∈ F}.

It is clear that kF is a Furstenberg family and k(kF ) = F (see [13]).
For F ∈ P , i ∈ Z+, let F − i = {j − i ≥ 0 : j ∈ F} and F + i = {j + i ≥ 0 : j ∈ F}.

Furstenberg family F is positive shift-invariant if F + i ∈ F for every F ∈ F and any i ∈ Z+.
Furstenberg family F is negative shift-invariant if F − i ∈ F for every F ∈ F and any i ∈ Z+.
Furstenberg family F is shift-invariant if it is positive shift-invariant and negative shift-invariant.

The following shows a class of Furstenberg families which is related to upper density.
Let F ⊂ P . The upper density and the lower density of F are defined as follows:

µ(F) = lim sup
n→∞

#(F ∩ {0, 1, . . . , n− 1})
n

, µ(F) = lim inf
n→∞

#(F ∩ {0, 1, . . . , n− 1})
n

,

where #(A) denotes the cardinality of the set A.
For any s in [0, 1], set M(s) = {F ∈ B : µ(F) ≥ s}.

Proposition 1. For any s in [0, 1], M(s) is shift-invariant Furstenberg family. And M(0) = B.

Proof.

(i) Let F1, F2 ∈ M(s), F1 ⊂ F2, then, ∀n ∈ N (where N = {1, 2, 3, . . .}),

µ(F1) = lim sup
n→∞

#(F1 ∩ {0, 1, . . . , n− 1})
n

≤ lim sup
n→∞

#(F2 ∩ {0, 1, . . . , n− 1})
n

= µ(F2)

Thus, F1 ∈ M(s) (i.e., µ(F1) ≥ s) implies F2 ∈ M(s) (i.e., µ(F1) ≥ s). So, M(s)(∀s ∈ [0, 1]) are
Furstenberg families.
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(ii) Let F ∈ M(s), that is, µ(F) = lim sup
n→∞

#(F∩{0,1,..., n−1})
n ≥ s. Denote F = {t1, t2, · · · }

(where tk ∈ Z+, tk1 < tk2(k1 < k2)), then F + i = {t1 + i, t2 + i, · · · } and
F− i = {tk1 − i, tk2 − i, · · · }(tkj

− i ≥ 0) for any i ∈ Z+.

lim sup
n→∞

#((F + i) ∩ {0, 1, . . . , n− 1})
n

= lim sup
n→∞

#({t1 + i, t2 + i, · · · } ∩ {0, 1, . . . , n− 1})
n

= lim sup
n→∞

#({t1, t2, · · · } ∩ {0, 1, . . . , n− 1})
n

= µ(F) ≥ s

and

lim sup
n→∞

#((F− i) ∩ {0, 1, . . . , n− 1})
n

≥ lim sup
n→∞

#(F ∩ {0, 1, . . . , n− 1})− i
n

= µ(F) ≥ s

So, M(s) is shift-invariant.
(iii) Obviously,

M(0) = {F ∈ B : µ(F) ≥ 0} = {F ∈ B : lim sup
n→∞

#(F ∩ {0, 1, . . . , n− 1})
n

≥ 0} = B.

This completes the proof.

3. Properties P(k), Q(k) of Furstenberg Families

Definition 1. Let k be a positive integer and F be a Furstenberg family.

(1) For any F ∈ F , if there exists an integer j ∈ {0, 1, · · · , k− 1} such that Fk,j = {i ∈ Z+ : ki + j ∈ F} ∈ F ,
we say F have property P(k);

(2) If Fk = {ki + j ∈ Z+ : j ∈ {0, 1, · · · , k− 1}, i ∈ F} ∈ F , we say F have property Q(k).

The following proposition is given by [24]. For completeness, we give the proofs.

Proposition 2. For any s ∈ [0, 1] and any k ∈ Z+, M(s) have properties P(k) and Q(k).

Proof.

(1) If k = 1, ∀F ∈ M(s), F1,0 = {i ∈ Z+ : i ∈ F} = F, i.e., there exists an integer j = 0 such that
Fk,j ∈ M(s). The following will discuss the case k > 1.

If s = 0, M(0) = B. ∀F ∈ B, ∀k ∈ Z+, obviously, there exist j ∈ {0, 1, . . . , k − 1} such that
Fk,j ∈ B.

If 0 < s ≤ 1, suppose properties P(k) does not hold. Then there exists a F ∈ M(s) such that
µ(Fk,j) < s for every j ∈ {0, 1, . . . , k− 1}.
For any j ∈ {0, 1, . . . , k − 1}, put ε j > 0 which satisfied µ(Fk,j) < s − ε j. One can find a
sufficiently large number N such that, n ≥ N, #n(Fk,j) < n(s− ε j) (where #n(Fk,j) denotes the
cardinality of the set Fk,j ∩ {0, 1, . . . , n− 1}). Then #n(Fc

k,j) > n− n(s− ε j), where Fc
k,j denotes the

complementary set of Fk,j.

Give an integer m = kn + lm > kN, lm ∈ {0, 1, . . . , k− 1}. By the definition of Fk,j, ki + j /∈ F if
i /∈ Fk,j. And ki1 + j1 6= ki2 + j2 if i1, i2 ∈ {0, 1, . . . , n− 1}, j1, j2 ∈ {0, 1, . . . , k− 1} and j1 6= j2.
Then

#m(Fc) ≥
k−1

∑
j=0

#n(Fc
k,j) >

k−1

∑
j=0

(n− n(s− ε j)).
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So,

#m(F) < m−
k−1

∑
j=0

(n− n(s− ε j)).

Put ε = min{ε j : j = 0, 1, . . . , k− 1}, then

µ(F) = lim sup
n→∞

#m(F)
m

≤ lim
n→∞

m−∑k−1
j=0 (n− n(s− ε j))

m
≤ lim

n→∞

m− k(n− n(s− ε))

m

= lim
n→∞

kn + lm − kn + kn(s− ε)

kn + lm
= s− ε < s

This contradicts to µ(F) ≥ s.
(2) Similarly, just consider the case k > 1, 0 < s ≤ 1.

Suppose properties Q(k) does not hold. Then there exists an integer F ∈ M(s) such that µ(Fk) < s.
Put ε > 0 which satisfied µ(Fk) < s− ε. One can find a sufficiently large number N such that,
m ≥ N, #m(Fk) < m(s− ε). Give a m = kn + lm > kN(m ≥ N), lm ∈ {0, 1, . . . , k− 1}. By the
definition of Fk, ki + j ∈ Fk(j ∈ {0, 1, . . . , k− 1}) if i ∈ F. And ki1 + j1 6= ki2 + j2 if i1 6= i2 and
j1, j2 ∈ {0, 1, . . . , k− 1}. Then

k(#n(F)) ≤ #m(Fk) < m(s− ε).

So,

µ(F) ≤ lim
n→∞

m(s− ε)

kn
= lim

n→∞

(kn + lm)(s− ε)

kn
= s− ε ≤ s.

This contradicts to µ(F) ≥ s.

This completes the proof.

4. (F1,F2)-Chaos in Non-Autonomous Systems

Now, we state the definition of (F1,F2)-chaos in nonautonomous systems.

Definition 2. Let (X, ρ) be a compact metric space, F1 and F2 are two Furstenberg families. D ⊂ X is called
a (F1,F2)-scrambled set of (X, f1,∞) (briefly, f1,∞), if ∀ x 6= y ∈ D, the following two conditions are satisfied:

(i) ∀t > 0,
{

n ∈ N : ρ( f n
1 (x), f n

1 (y)) < t
}
∈ F1;

(ii) ∃δ > 0,
{

n ∈ N : ρ( f n
1 (x), f n

1 (y)) > δ
}
∈ F2.

The pair (x, y) which satisfies the above two conditions is called an (F1,F2)-scrambled pair of f1,∞.
f1,∞ is said to be (F1,F2)-chaotic if there exists an uncountable (F1,F2)-scrambled set of f1,∞.

If F1 = F2 = F , f1,∞ is said to be F -chaotic and (x, y) is an F -scrambled pair. f1,∞ is said to be strong
(F1,F2)-chaotic if there are some δ > 0 and an uncountable subset D ⊂ X such that for any x, y ∈ D with
x 6= y, the following two conditions holds:

(i)
{

n ∈ N : ρ( f n
1 (x), f n

1 (y)) < t
}
∈ F1 for all t > 0;

(ii)
{

n ∈ N : ρ( f n
1 (x), f n

1 (y)) > δ
}
∈ F2.

f1,∞ is said to be strong F -chaos if it is strong (F1,F2)-chaotic and F1 = F2 = F .

Let us recall the definitions of Li-Yorke chaos and distributional chaos in non-autonomous systems
(see [25,26]).
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Definition 3. Assume that (X, f1,∞) is a non-autonomous discrete system. If x, y ∈ X with x 6= y, (x, y) is
called a Li–Yorke pair if

lim sup
n→∞

ρ( f n
1 (x), f n

1 (y)) > 0 and lim inf
n→∞

ρ( f n
1 (x), f n

1 (y)) = 0.

The set D ⊂ X is called a Li–Yorke scrambled set if all points x, y ∈ D with x 6= y, (x, y) is a Li–Yorke
pair. f1,∞ is Li–Yorke chaotic if X contains an uncountable Li–Yorke scrambled set.

Assume that (X, f1,∞) is a non-autonomous discrete system. For any pair of points x, y ∈ X,
define the upper and lower (distance) distributional functions generated by f1,∞ as

F∗xy(t, f1,∞) = lim sup
n→∞

1
n

n

∑
i=1

χ[0,t)(ρ( f i
1(x), f i

1(y)))

and

Fxy(t, f1,∞) = lim inf
n→∞

1
n

n

∑
i=1

χ[0,δ)(ρ( f i
1(x), f i

1(y)))

respectively. Where χ[0,t) is the characteristic function of the set [0, t), i.e., χ[0,t)(a) = 1 when a ∈ [0, t)
or χ[0,t)(a) = 0 when a /∈ [0, t).

Definition 4. f1,∞ is distributionally chaotic if exists an uncountable subset D ⊂ X such that for any pair of
distinct points x, y ∈ D, we have that F∗xy(t, f1,∞) = 1 for all t > 0 and Fxy(t, f1,∞) = 0 for some δ > 0.

The set D is a distributionally scrambled set and the pair (x, y) a distributionally chaotic pair.

It is not difficult to obtain that the pair (x, y) is a (M(0), M(0))-scrambled pair if and only if (x, y)
is a Li–Yorke scrambled pair, and the pair (x, y) is a (M(1), M(1))-scrambled pair if and only if (x, y)
is a distributionally scrambled pair. In fact,

M(0) = B, M(1) = {F ∈ B : lim sup
n→∞

#(F ∩ {1, 2, . . . , n})
n

= 1}.

Then, {n ∈ N : ρ( f n
1 (x), f n

1 (y)) < t} ∈ M(0) for any t > 0 and {n ∈ N : ρ( f n
1 (x), f n

1 (y)) > δ} ∈
M(0) for some δ > 0 is equivalent to that lim sup

n→∞
ρ( f n

1 (x), f n
1 (y)) > 0 and lim inf

n→∞
ρ( f n

1 (x), f n
1 (y)) = 0.

{n ∈ N : ρ( f n
1 (x), f n

1 (y)) < t} ∈ M(1) for any t > 0 and {n ∈ N : ρ( f n
1 (x), f n

1 (y)) > δ} ∈ M(1) for
some δ > 0 is equivalent to that F∗xy(t, f1,∞) = 1 and Fxy(δ, f1,∞) = 0.

Hence, (M(0), M(0))-chaos is Li–Yorke chaos and (M(1), M(1))-chaos is distributional Chaos.

5. Main Results

Theorem 1. Let F1 and F2 are two Furstenberg families with property P(k), where k is a positive integer.
F1 is positive shift-invariant. If the system (X, f1,∞) is (F1,F2)-chaos, then the system (X, f [k]1,∞) is
(F1,F2)-chaos too.

Proof. If D is an (F1,F2)-scrambled set of f1,∞, the following proves that D is an (F1,F2)-scrambled

set of f [k]1,∞.

(i) Since X is compact and fi(i ∈ N) are continuous, then, for any j ∈ {1, 2, . . . , k− 1}, fs1 , . . . , fsk−j

are uniformly continuous (where fs1 , . . . , fsk−j are freely chosen from the sequence fi(i ∈ N)).
That is, for any δ > 0, there exists a δ∗ > 0, ∀a, b ∈ X, ρ(a, b) < δ∗ implies ρ( fsk−j ◦ · · · ◦
fs1(a), fsk−j ◦ · · · ◦ fs1(b)) < δ (j = 1, 2, . . . , k− 1).
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Since D is an (F1,F2)-scrambled set of f1,∞, then, ∀x 6= y ∈ D, for the above δ∗, we have

F = {n ∈ N : ρ( f n
1 (x), f n

1 (y)) < δ∗} ∈ F1.

And because F1 have property P(k), there exists some j ∈ {1, 2, . . . , k− 1} such that

Fk,j = {i ∈ Z+ : ki + j ∈ F} = {i ∈ Z+ : ρ( f ki+j
1 (x), f ki+j

1 (y)) < δ∗} ∈ F1.

By the selection of δ∗, we put sr = ki + j + r(r = 1, 2, . . . , k− j), then

Fk,j ⊂ {i ∈ Z+ : ρ( f ki+j+k−j
1 (x), f ki+j+k−j

1 (y)) < δ} = {i ∈ Z+ : ρ( f k(i+1)
1 (x), f k(i+1)

1 (y)) < δ}.

Write Fk,j + 1 = {i + 1 : i ∈ Z+, ki + j ∈ F1}(∀j = 1, 2, . . . , k − 1), then Fk,j + 1 ⊂ {i ∈ Z+ :
ρ( f ki

1 (x), f ki
1 (y)) < δ}.

By the positive shift-invariant of F1 and Fk,j ∈ F1, we have Fk,j + 1 ∈ F1. And with the hereditary
upwards of F1, for any x, y ∈ D : x 6= y, ∀δ > 0, {i ∈ Z+ : ρ( f ki

1 (x), f ki
1 (y)) < δ} ∈ F1.

(ii) Since D is a (F1,F2)-scrambled set of f1,∞, then, for the above x, y ∈ D(x 6= y), ∃ε∗ > 0,
such that E = {n ∈ Z+ : ρ( f n

1 (x), f n
1 (y)) > ε∗} ∈ F2. And because F2 have property P(k), then,

there exists some j ∈ {1, 2, . . . , k− 1} such that

Ek,j = {i ∈ Z+ : ki + j ∈ E} = {i ∈ Z+ : ρ( f ki+j
1 (x), f ki+j

1 (y)) > ε∗} ∈ F2.

X is compact and fi(i ∈ N) are continuous, then, for any j ∈ {1, 2, . . . , k − 1}, fs1 , . . . , fsj are
uniformly continuous (where fs1 , . . . , fsj are freely chosen from the sequence fi(i ∈ N)). For the
above ε∗ > 0, ∃ε > 0, ∀p, q ∈ X satisfied ρ(p, q) ≤ ε, inequality ρ( fsj ◦ · · · ◦ fs1(p), fsj ◦ · · · ◦
fs1(q)) ≤ ε∗ holds.

The following will prove that {i ∈ Z+ : ρ( f ki
1 (x), f ki

1 (y)) > ε} ∈ F2.

Suppose {i ∈ Z+ : ρ( f ki
1 (x), f ki

1 (y)) > ε} /∈ F2, then

Z+ − {i ∈ Z+ : ρ( f ki
1 (x), f ki

1 (y)) > ε} = {i ∈ Z+ : ρ( f ki
1 (x), f ki

1 (y)) ≤ ε} ∈ kF2.

By the selection of ε∗, we put sr = ki + r(r = 1, 2, . . . , j), then

{i ∈ Z+ : ρ( f ki+j
1 (x), f ki+j

1 (y)) ≤ ε∗} ∈ kF2.

So,
{i ∈ Z+ : ρ( f ki+j

1 (x), f ki+j
1 (y)) > ε∗} /∈ kF2,

This contradicts Ek,j ∈ F2.

Hence, for x 6= y ∈ D in (i), there exists a ε > 0 such that {i ∈ Z+ : ρ( f ki
1 (x), f ki

1 (y)) > ε} ∈ F2.

Combining with (i) and (ii), f [k]1,∞ is (F1,F2)-chaos.

This completes the proof.

Theorem 2. Let F1 and F2 are two Furstenberg families with property Q(k), where k is a positive integer. F2 is
negative shift-invariant. If the system (X, f [k]1,∞) is (F1,F2)-chaos, then the system (X, f1,∞) is (F1,F2)-chaos too.

Proof. If D is a (F1,F2)-scrambled set of f [k]1,∞, the following prove that D is a (F1,F2)-scrambled set
of f1,∞.
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(i) Similar to Theorem 1, for any j ∈ {1, 2, . . . , k− 1}, fs1 , . . . , fsj are uniformly continuous (where
fs1 , . . . , fsj are freely chosen from the sequence fi(i ∈ N)). That is, for any δ > 0, there exists a
δ∗ > 0, ∀a, b ∈ X, ρ(a, b) < δ∗ implies ρ( fsj ◦ · · · ◦ fs1(a), fsj ◦ · · · ◦ fs1(b)) < δ (j = 1, 2, . . . , k− 1).

For any pair of distinct points x, y ∈ D, for the above δ∗, one has

F = {n ∈ Z+ : ρ( f kn
1 (x), f kn

1 (y)) < δ∗} ∈ F1.

By the selection of δ∗, for ∀n ∈ F, ∀j ∈ {1, 2, · · · , k − 1}, put sr = ki + j + r(r = 1, 2, . . . , j),
then ρ( f kn+j

1 (x), f kn+j
1 (y)) < δ. And because F1 have property Q(k), then

Fk = {kn + j ∈ Z+ : j = 1, 2, . . . , k− 1, n ∈ F} ∈ F1.

Notice that Fk ⊂ {m ∈ Z+ : ρ( f m
1 (x), f m

1 (y)) < δ}, then {m ∈ Z+ : ρ( f m
1 (x), f m

1 (y)) < δ} ∈ F1.
(ii) Since D is an (F1,F2)-scrambled set of f [k]1,∞, then, for the above x, y ∈ D(x 6= y), there exist

ε∗ > 0, such that E = {n ∈ Z+ : ρ( f kn
1 (x), f kn

1 (y)) > ε∗} ∈ F2.

For any j ∈ {1, 2, . . . , k− 1}, fs1 , . . . , fsj are uniformly continuous (where fs1 , . . . , fsj are freely
chosen from the sequence fi(i ∈ N)), then, for the above ε∗ > 0, there exist ε > 0 such that
ρ(p, q) < ε(p, q ∈ X) implies ρ( fsj ◦ · · · ◦ fs1(p), fsj ◦ · · · ◦ fs1(q)) ≤ ε∗(j = 1, 2, . . . , k − 1).

That is, ρ( f k
1 (p), f k

1 (q)) > ε∗(p, q ∈ X) implies ρ( f j
1(p), f j

1(q)) > ε(j = 1, 2, . . . , k− 1).

∀n ∈ E, ∀j = 1, 2, . . . , k− 1, put sr = k(n− 1) + r(r = 1, 2, . . . , j), then

ρ( f k(n−1)+j
1 (x), f k(n−1)+j

1 (y)) > ε.

Since F2 is negative shift-invariant, then E − 1 ∈ F2. And because F2 have property Q(k),
then (E− 1)k ∈ F2, i.e., {k(n − 1) + j ∈ Z+ : n − 1 ∈ E − 1, j = 1, 2, . . . , k − 1} ∈ F2.
Combining (E− 1)k ⊂ {m ∈ Z+ : ρ( f m

1 (x), f m
1 (y)) > ε} with the hereditary upwards of F2,

we have {m ∈ Z+ : ρ( f m
1 (x), f m

1 (y)) > ε} ∈ F2.

By (i) and (ii), D is an (F1,F2)-scrambled set of f1,∞.

This completes the proof.

Similarly, the following corollaries hold.

Corollary 1. Let F1 and F2 are two Furstenberg families with property P(k), where k is a positive integer.
F1 is positive shift-invariant. If the system (X, f1,∞) is F -chaos (strong (F1,F2)-chaos, or strong F -chaos),
then the system (X, f [k]1,∞) is F -chaos (strong (F1,F2)-chaos, or strong F -chaos).

Corollary 2. Let F1 and F2 are two Furstenberg families with property Q(k), where k is a positive integer.
F2 is negative shift-invariant. If the system (X, f [k]1,∞) is F -chaos (strong (F1,F2)-chaos, or strong F -chaos),
then the system (X, f1,∞) is F -chaos (strong (F1,F2)-chaos, or strong F -chaos).

Combining with Propositions 1 and 2, Theorems 1 and 2, and Corollarys 1 and 2, the following
conclusions are obtained.

Theorem 3. Let s and t are arbitrary two numbers in [0, 1], then

(1) If D is an (M(s), M(t))-scrambled set (or strong (M(s), M(t))-scrambled set) of f1,∞, then, for every
k ∈ Z+, D is an (M(s), M(t))-scrambled set(or strong (M(s), M(t))-scrambled set) of f [k]1,∞.

(2) For some positive integer k, if D is an (M(s), M(t))-scrambled set (or strong (M(s), M(t))-scrambled set) of
f [k]1,∞, then D is an (M(s), M(t))-scrambled set (or strong (M(s), M(t))-scrambled set) of f1,∞.
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Proof.

(1) By Proposition 1, M(s) is shift-invariant (obviously positive shift-invariant). And because
M(s), M(t) are two Furstenberg families with property P(k) (Proposition 2). Then, according to
the proof of Theorem 1, if D is an (M(s), M(t))-scrambled set of f1,∞, then, for every k ∈ Z+, D
is an (M(s), M(t))-scrambled set of f [k]1,∞.

(2) In the same way, (2) holds.

This completes the proof.

With the preparations in Section 4, we have

Corollary 3.

(1) If D is a Li–Yorke scrambled set (or distributionally scrambled set) of f1,∞, then, for every k ∈ Z+, D is a
Li–Yorke scrambled set (or distributionally scrambled set) of f [k]1,∞.

(2) For some positive integer k, if D is a Li–Yorke scrambled set (or distributionally scrambled set) of f [k]1,∞,
then, D is a Li–Yorke scrambled set (or distributionally scrambled set) of f1,∞.

Remark 1. In the non-autonomous systems, the iterative properties of Li–Yorke chaos and distributional chaos
are discussed in [25,26] before. The conclusions in Corollary 3 remains consistent with them.

This paper has presented several properties of (F1,F2)-chaos, strong (F1,F2)-chaos, and strong
F -chaos. There are some other problems, such as generically F -chaos and F -sensitivity, to discuss.
Moreover, property P(k) is closely related to congruence theory. Follow this line, one can consider
other Furstenberg families which consist of number sets with some special characteristics.
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