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Abstract: The first- and second-order optimum achievable exponents in the simple hypothesis testing
problem are investigated. The optimum achievable exponent for type II error probability, under the
constraint that the type I error probability is allowed asymptotically up to ε, is called the ε-optimum
exponent. In this paper, we first give the second-order ε-optimum exponent in the case where
the null hypothesis and alternative hypothesis are a mixed memoryless source and a stationary
memoryless source, respectively. We next generalize this setting to the case where the alternative
hypothesis is also a mixed memoryless source. Secondly, we address the first-order ε-optimum
exponent in this setting. In addition, an extension of our results to the more general setting such
as hypothesis testing with mixed general source and a relationship with the general compound
hypothesis testing problem are also discussed.
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1. Introduction

Let X = {Xn}∞
n=1 and X = {Xn}∞

n=1 be two general sources (cf. Han [1]), where we use the term
of general source to denote a sequence of random variables Xn (respectively, Xn) indexed by block
length n, where each component of Xn (respectively, Xn) takes values in alphabet X and may vary
depending on n.

We consider the hypothesis testing problem with null hypothesis X, alternative hypothesis X
and acceptance region An ⊂ X n. The probabilities of type I error and type II error are defined,
respectively, as

µn := Pr {Xn /∈ An} , λn := Pr
{

Xn ∈ An

}
. (1)

We focus mainly on how to determine the ε-optimum exponent, defined as the supremum of
achievable exponents R for the type II error probability λn ' e−nR under the constraint that the type I
error probability is allowed asymptotically up to a constant ε (0 ≤ ε < 1). The classical but fundamental
result in this setting is so-called Stein’s lemma [2], which gives the ε-optimum exponent in the case
where both the null and alternative hypotheses are stationary memoryless sources. The lemma shows
that the ε-optimum exponent is given by D(PX||PX), the divergence between stationary memoryless
sources X and X. Chen [3] has generalized this lemma to the case where both of X and X are general
sources, and established the general formula of ε-optimum exponent in terms of divergence spectra. The
ε-optimum exponent derived in [3] is called in this paper the first-order ε-optimum exponent.

On the other hand, the second-order asymptotics have also been investigated in several contexts
of information theory [4–9] to analyze the finer asymptotic behavior of the form λn ' e−nR−

√
nS.
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Strassen [4] has first introduced the notion of ε-optimum achievable exponent of the second-order
in hypothesis testing problem in the case where both of X and X are stationary memoryless sources.
The results in [4] have also revealed that the asymptotic normality of divergence density rate
(or likelihood ratio rate) plays an important role in computing the second-order ε-optimum exponent.

In this paper, on the other hand, we investigate the hypothesis testing for mixed memoryless
sources. The class of mixed sources is quite important, because all stationary sources can be regarded
as mixed sources consisting of stationary ergodic sources. Therefore, the analysis for mixed sources is
primitive but fundamental and thus we first focus on the case where the null hypothesis is a mixed
memoryless source and the alternative hypothesis is a memoryless source. In this direction, Han [1]
has first derived the single-letter formula for the first-order ε-optimum exponent in the case with
mixed memoryless source X and stationary memoryless source X. The first main result in this paper
is to establish the single-letter second-order ε-optimum exponent in the same setting by invoking
the relevant asymptotic normality. The result is a substantial generalization of that of Strassen [4].
Second, we generalize this setting to the case where both null and alternative hypotheses are mixed
memoryless X, X to establish the single-letter first-order ε-optimum exponent.

It should be emphasized that our results described here are valid for mixed memoryless sources
with general mixture in the sense that the mixing weight for component sources may be an arbitrary
probability measure. For the case of mixed general sources with finite discrete mixture, we reveal
the deep relationship with the compound hypothesis testing problem. We notice that the compound
hypothesis testing problem is important from both of theoretical and practical points of view. We show
that the first-order 0-optimum (respectively, exponentially r-optimum) exponent for the mixed general
hypothesis testing coincides with that for the 0-optimum (respectively, exponentially r-optimum)
exponent in the compound general hypothesis testing.

The present paper is organized as follows. In Section 2, we fix the problem setting and review
the general formula (Theorem 1) for the first-order ε-optimum exponent. This is used to prove
Theorem 5 to establish a first-order single-letter formula for hypothesis testing in the case where both
the null and alternative hypotheses are mixed memoryless. Moreover, we give the general formula
(Theorem 2) for the second-order ε-optimum exponent, which is used to prove Theorem 4 to establish
a second-order single-letter formula for hypothesis testing in the case where the null hypothesis is
mixed memoryless and the alternative hypothesis is stationary memoryless. In Section 3, we establish
the single-letter second-order ε-optimum exponent in the case with mixed memoryless source X
and stationary memoryless source X (cf. Theorem 4). Furthermore, in Section 4, we consider the
case where both of null and alternative hypotheses are mixed memoryless sources, and derive the
single-letter first-order ε-optimum exponent (cf. Theorem 5). Section 5 is devoted to an extension of
mixed memoryless sources to mixed general sources. Finally, in Section 6, we define the optimum
exponent for the compound general hypothesis testing problem to discuss a relevant relationship with
the hypothesis testing with mixed general sources. We conclude the paper in Section 7.

2. General Formulas for ε-Hypothesis Testing

In this section, we first review the first-order general formula and then give the second-order
general formula. Throughout in this paper, the following lemmas play the important role, where we
use the notation that PZ indicates the probability distribution of random variable Z.

Lemma 1 ([1] (Lemma 4.1.1)). For any t > 0, define the acceptance region as

An =

{
x ∈ X n

∣∣∣∣ 1n log
PXn(x)
PXn(x)

≥ t

}
, (2)
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then, it holds that

Pr
{

Xn ∈ An

}
≤ e−nt. (3)

Lemma 2 ([1] (Lemma 4.1.2)). For any t > 0 and any An, it holds that

Pr {Xn /∈ An}+ ent Pr
{

Xn ∈ An

}
≥ Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ t

}
. (4)

Proofs of these lemmas are found in [1].
We define the first and second-order ε-optimum exponents as follows.

Definition 1. Rate R is said to be ε-achievable, if there exists an acceptance region An such that

lim sup
n→∞

µn ≤ ε and lim inf
n→∞

1
n

log
1

λn
≥ R. (5)

Definition 2 (First-order ε-optimum exponent).

Bε(X||X) := sup{R|R is ε-achievable}. (6)

The right-hand side of Equation (5) specifies the asymptotic behavior of the form λn ' e−nR.
Chen [3] has derived the general limiting formula for Bε(X||X) as follows, which is utilized to establish
Theorem 5 in Section 4.

Theorem 1 (Chen [3] (Theorem 1)).

Bε(X||X) = sup{R|K(R) ≤ ε} (0 ≤ ∀ε < 1), (7)

where

K(R) = lim sup
n→∞

Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ R

}
. (8)

Moreover, we consider the second-order (ε, R)-optimum exponent as follows.

Definition 3. Rate S is said to be (ε, R)-achievable, if there exists an acceptance region An such that

lim sup
n→∞

µn ≤ ε and lim inf
n→∞

1√
n

log
1

λnenR ≥ S. (9)

Definition 4 (Second-order (ε, R)-optimum exponent).

Bε(R|X||X) := sup{S|S is (ε, R)-achievable}. (10)

The right-hand side of Equation (9) specifies the asymptotic behavior of the form λn ' e−nR−
√

nS.
The general limiting formula for Bε(R|X||X) is given as follows, which is the second-order counterpart
of Theorem 1, and is utilized to establish Theorem 4 in the next Section 3.2 to give a second-order
single-letter formula for hypothesis testing in the case where the null hypothesis is mixed memoryless
and the alternative hypothesis is stationary memoryless.

Theorem 2.
Bε(R|X||X) = sup{S|K(R, S) ≤ ε} (0 ≤ ∀ε < 1), (11)
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where

K(R, S) = lim sup
n→∞

Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ R +

S√
n

}
. (12)

Proof. See Appendix A.

3. Mixed Memoryless Sources

3.1. First-Order ε-Optimum Exponent

In the previous section, we have demonstrated the “limiting” formulas for general hypothesis
testing. In this and subsequent sections, we consider special but insightful cases and compute the
optimum exponents in single-letter forms.

Let Θ be an arbitrary probability space with general probability measure w(θ) (θ ∈ Θ). Then,
the hypothesis testing problem to be considered in this section is stated as follows:

• The null hypothesis is a mixed stationary memoryless source X = {Xn}∞
n=1, that is, for

∀x = (x1, · · · , xn) ∈ X n

PXn(x) =
∫

Θ
PXn

θ
(x)dw(θ), (13)

where Xn
θ is a stationary memoryless source for each θ ∈ Θ and

PXn
θ
(x) =

n

∏
i=1

PXθ
(xi) (14)

with generic random variable Xθ (θ ∈ Θ) taking values in X .

• The alternative hypothesis is a stationary memoryless source X =
{

Xn
}∞

n=1
with generic random

variable X taking values in X , that is,

PXn(x) =
n

∏
i=1

PX(xi). (15)

We assume X to be a finite alphabet hereafter.
To investigate this special case, first we introduce an expurgated parameter set on the basis of types,

where the type T of sequence x ∈ X n is the empirical distribution of x, that is, T = (N(x|x)/n)x∈X
with the number N(x|x) of i such that xi = x (i = 1, 2, · · · , n).

Let T1, T2, · · · , TNn denote all possible types of sequences of length n. Then, it is well-known that

Nn ≤ (n + 1)|X |. (16)

Now, for each x ∈ X n, we define the set

Θ(x) :=
{

θ ∈ Θ
∣∣∣PXn

θ
(x) ≤ e

4√nPXn(x)
}

. (17)

Since PXn
θ

is an i.i.d. source for each θ ∈ Θ, the set Θ(x) depends only on the type Tk of sequence
x, and therefore, we may write Θ(Tk) instead of Θ(x). Moreover, we define the “expurgated” set

Θ∗n :=
Nn⋂

k=1

Θ(Tk). (18)

Then, we have the following lemma:
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Lemma 3 (Han [1]). Let X = {Xn}∞
n=1 denote a mixed memoryless source defined in Equation (13), then

we have ∫
Θ∗n

dw(θ) ≥ 1− (n + 1)|X |e−
4√n. (19)

Next, we introduce two basic “decomposition” lemmas as follows.

Lemma 4 (Upper Decomposition Lemma). Let X = {Xn}∞
n=1 be a mixed memoryless source and

X =
{

Xn
}∞

n=1
be an arbitrary general source. Then, for any θ ∈ Θ∗n and any real zn it holds that

Pr

{
1
n

log
PXn(Xn

θ )

PXn(Xn
θ )
≤ zn

}
≤Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ zn +

1
4
√

n3

}
. (20)

Proof. See Appendix B.

Lemma 5 (Lower Decomposition Lemma). Let X = {Xn}∞
n=1 be a mixed memoryless source and

X =
{

Xn
}∞

n=1
be an arbitrary general source. Then, for any θ ∈ Θ, zn and γ > 0 it holds that

Pr

{
1
n

log
PXn(Xn

θ )

PXn(Xn
θ )
≤ zn

}
≥ Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ zn −

γ√
n

}
− e−

√
nγ. (21)

Proof. See Appendix C.

These Lemmas 3–5 are used later in order to establish Theorems 3–5. First, Theorem 3 concerning
the first-order ε-optimum exponent for mixed memoryless sources has earlier been given as follows:

Theorem 3 (First-order ε-optimum exponent: Han [1]). For 0 ≤ ε < 1,

Bε(X||X) = sup

{
R

∣∣∣∣∣
∫
{θ|D(PXθ

||PX)<R}
dw(θ) ≤ ε

}
(22)

where D(PX ||PX) denotes the Kullback–Leibler divergence between PX and PX .

Remark 1. If Θ is a singleton, the above formula reduces to

Bε(X||X) = D(PX ||PX) (0 ≤ ∀ε < 1), (23)

which is nothing but Stein’s lemma [2].

Remark 2. Bε(X||X) can be expressed also as

Bε(X||X) = sup

{
R

∣∣∣∣∣
∫
{θ|D(PXθ

||PX)≤R}
dw(θ) ≤ ε

}
. (24)

This can be verified as follows. Set

βε := sup

{
R

∣∣∣∣∣
∫
{θ|D(PXθ

||PX)<R}
dw(θ) ≤ ε

}
, (25)

β̃ε := sup

{
R

∣∣∣∣∣
∫
{θ|D(PXθ

||PX)≤R}
dw(θ) ≤ ε

}
. (26)
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Then, clearly β̃ε ≤ βε. Here, we assume that β̃ε < βε to show a contradiction. From the assumption,
there exists a constant γ > 0 satisfying β̃ε + 2γ < βε. On the other hand, from the definition of βε, for any η > 0

ε ≥
∫
{θ|D(PXθ

||PX)<βε−η}
dw(θ) (27)

holds. Thus, setting η < γ leads to

ε ≥
∫
{θ|D(PXθ

||PX)<βε−η} dw(θ)

≥
∫
{θ|D(PXθ

||PX)<βε−γ} dw(θ)

≥
∫
{θ|D(PXθ

||PX)≤β̃ε+γ} dw(θ)

> ε,

(28)

which is a contradiction, where the last inequality is due to the definition of β̃ε.

3.2. Second-Order ε-Optimum Exponent

Next, we establish the second-order ε-optimum exponent for mixed sources, which is the first
main result in this paper.

Theorem 4 (Second-order ε-optimum exponent). For 0 ≤ ε < 1,

Bε(R|X||X) = sup

{
S

∣∣∣∣∣
∫
{θ|D(PXθ

||PX)<R}
dw(θ) +

∫
{θ|D(PXθ

||PX)=R}
Φθ(S)dw(θ) ≤ ε

}
, (29)

where

Φθ(S) := G
(

S√
Vθ

)
, (30)

G(x) :=
1√
2π

∫ x

−∞
e−

x2
2 dx, (31)

Vθ := ∑
x∈X

PXθ
(x)
(

log
PXθ

(x)
PX(x)

− D(PXθ
||PX)

)2

. (32)

Proof. See Appendix D.

Remark 3. If Θ is a singleton (Θ = {θ0}), Theorem 4 reduces to Bε(R|X||X) =
√

Vθ0 Φ−1
θ0

(ε) for
R = Bε(X||X), which is originally due to Strassen [4].

Remark 4. From Theorem 3 with R = Bε(X||X), it is not difficult to verify that∫
{θ|D(PXθ

||PX)<R}
dw(θ) ≤ ε (33)

and ∫
{θ|D(PXθ

||PX)≤R}
dw(θ) ≥ ε. (34)

Here, let us consider the following canonical equation for S∫
Θ

dw(θ) lim
n→∞

Φθ(
√

n(Bε(X||X)− D(PXθ
||PX)) + S) = ε. (35)
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In view of Equations (33) and (34), this equation always has a solution S = S(ε). It should be noted that if∫
{θ|D(PXθ

||PX)=Bε(X||X)} dw(θ) = 0 holds, the solution is not unique and so S(ε) = +∞. By using the solution

S(ε), it is not difficult to check that Theorem 4 with R = Bε(X||X) can be expressed as

Bε(R|X||X) = S(ε). (36)

The canonical equation is a useful expression for the second-order ε-optimum rate [7,10–12]. Equation (35) is
the hypothesis testing counterpart of these results.

4. Mixed Memoryless Alternative Hypothesis

In this section, we consider the case where not only the null hypothesis but also the alternative
hypothesis are mixed memoryless sources to establish the single-letter formula for the first-order
ε-optimum exponent, by which we intend to generalize Theorem 3.

Let
{

PXσ

}
σ∈Σ

be a family of probability distributions on X , where Σ is a probability space with

probability measure v(σ). We assume here that Σ is a compact space and PXσ
is continuous as a

function of σ ∈ Σ.
The hypothesis testing problem considered in this section is stated as follows:

• The null hypothesis is a mixed memoryless source X = {Xn}∞
n=1 as defined by Equations (13)

and (14) in Section 3.1.

• The alternative hypothesis is another mixed memoryless source X =
{

Xn
}∞

n=1
, that is, for ∀x ∈ X n

PXn(x) =
∫

Σ
PXn

σ
(x)dv(σ), (37)

where

PXn
σ
(x) =

n

∏
i=1

PXσ
(xi). (38)

Let us now consider, for each P ∈ P(X ) (the set of probability distributions on X ), the equation
with respect to σ′ ∈ Σ as follows:

D(P||Pσ′) = v-ess. inf D(P||Pσ) (for each P ∈ P(X )) (39)

with v-ess. inf fσ := sup{β|Pr{ fσ < β} = 0} (the essential infimum of fσ with respect to v(σ)), where “ Pr ”
is measured with respect to the probability measure v(σ).

Since the solution σ′ of this equation depends on P, we may write as σ′ = σ(P) (σ(·) : P(X )→ Σ).
Notice here that D(P||Pσ) is continuous in (P, Pσ), and as we have assumed that Σ is compact and
Pσ is continuous in σ, there indeed exists such a function σ(P). Now, to avoid technical subtleties,
we assume here that the function σ(P) may be chosen so as to be continuous. For example, if we
consider a special case such that Σ is a closed convex subset of P(X ), then it is not difficult to verify
that the function σ(P) is uniquely determined and continuous (or even differentiable), which follows
from the strict convexity of D(P||P) in (P, P). Another simple example will be the case that Σ is
a countable set.

Hereafter, for simplicity, we write Pθ , Pn
θ (respectively, Pσ, Pn

σ) instead of PXθ
, PXn

θ
(respectively,

PXσ
, PXn

σ
), then we have the second main result in this paper as

Theorem 5 (First order ε-optimum exponent). For 0 ≤ ε < 1,

Bε(X||X) = sup

{
R

∣∣∣∣∣
∫
{θ|D(Pθ ||Pσ(Pθ )

)<R}
dw(θ) ≤ ε

}
. (40)
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Remark 5. In the case that Σ is a singleton, the above theorem coincides with Theorem 3. Therefore, this theorem
is a direct generalization of Theorem 3. This means also that both Θ and Σ are singletons, the theorem coincides
with Stein’s lemma (see Remark 1).

Remark 6. Remark 2 is also valid in this theorem. That is, Bε(X||X) can be expressed also as

Bε(X||X) = sup

{
R

∣∣∣∣∣
∫
{θ|D(Pθ ||Pσ(Pθ )

)≤R}
dw(θ) ≤ ε

}
. (41)

Proof of Theorem 5. To show the theorem, let T n
θ,ν ⊆ X n be the set of ν-typical sequence with respect

to PXθ
, that is, let T n

θ,ν be the set of all x = (x1, x2, · · · , xn) ∈ X n such that∣∣N(x|x)/n− PXθ
(x)
∣∣ ≤ νPXθ

(x) (∀x ∈ X ), (42)

where N(x|x) is the number of i such that xi = x, and ν > 0 is an arbitrary constant. Then, it is well
known that

Pr
{

Xn
θ ∈ T n

θ,ν
}
→ 1 (n→ ∞). (43)

In the sequel, we use the upper and lower bounds of the probability

PXn(x) =
∫

Σ
Pn

σ(x)dv(σ) (44)

in the form

1
n

log
1

PXn(x)
≥ 1

n
log

1
Pn

σ(Pθ)
(x)
− δθ(ν), (45)

1
n

log
1

PXn(x)
≤ 1

n
log

1

Pn
σ(Pθ)

(x)
+

1
n

log
1

cτm(Pθ)
+ (τ − δθ(ν)), (46)

for each x ∈ T n
θ,ν, where δθ(ν) satisfies δθ(ν) → 0 as ν → 0, and τ > 0 and cτm(Pθ) > 0 are some

constants independent of n. Proofs of Equations (45) and (46) appear in Appendix E.
We then prove the theorem by using Equations (45) and (46) as follows. In view of Theorem 1 and

Remark 6, it suffices to show two inequalities:

lim sup
n→∞

Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ R

}
≤
∫
{θ|D(Pθ ||Pσ(Pθ )

)≤R}
dw(θ), (47)

lim sup
n→∞

Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ R

}
≥
∫
{θ|D(Pθ ||Pσ(Pθ )

)<R}
dw(θ). (48)

• Proof of Equation (47):

Similar to the derivation of Equation (A23) with Lemma 4, we have

lim sup
n→∞

Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ R

}

= lim sup
n→∞

∫
Θ

dw(θ)Pr

{
1
n

log
PXn(Xn

θ )

PXn(Xn
θ )
≤ R

}
(49)

≤
∫

Θ
dw(θ) lim sup

n→∞
Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

1
4
√

n3

}
.



Entropy 2018, 20, 174 9 of 27

From the definition of the ν-typical set and Equation (45), we also have

lim sup
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

1
4
√

n3

}

≤ lim sup
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

1
4
√

n3 , Xn
θ ∈ T n

θ,ν

}
+ lim sup

n→∞
Pr
{

Xn
θ /∈ T n

θ,ν
}

≤ lim sup
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

Pn
σ(Pθ)

(Xn
θ )
≤ R +

1
4
√

n3 + δθ(ν), Xn
θ ∈ T n

θ,ν

}

≤ lim sup
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

Pn
σ(Pθ)

(Xn
θ )
≤ R +

1
4
√

n3 + δθ(ν)

}
,

(50)

for any θ ∈ Θ. Here, we define two sets:

Θ1 :=
{

θ ∈ Θ
∣∣∣D(Pθ ||Pσ(Pθ)

) ≤ R
}

, (51)

Θ2 :=
{

θ ∈ Θ
∣∣∣D(Pθ ||Pσ(Pθ)

) > R
}

. (52)

Then, from the definition of Θ2 there exists a small constant γ > 0 satisfying

D(Pθ ||Pσ(Pθ)
) ≥ R + 3γ (53)

for θ ∈ Θ2. Thus, it holds that

lim sup
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

Pn
σ(Pθ)

(Xn
θ )
≤ R +

1
4
√

n3 + δθ(ν)

}

≤ lim sup
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

Pn
σ(Pθ)

(Xn
θ )
≤ D(Pθ ||Pσ(Pθ)

) +
1

4
√

n3 + δθ(ν)− 3γ

}
(54)

≤ lim sup
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

Pn
σ(Pθ)

(Xn
θ )
≤ D(Pθ ||Pσ(Pθ)

)− γ

}
,

where we have used the relation 1
4√n3 < γ, and δθ(ν) < γ for sufficiently large n and sufficiently

small ν > 0.
Therefore, noting that, with Xn

θ = (Xθ,1, Xθ,2, · · · , Xθ,n),

1
n

log
PXn

θ
(Xn

θ )

Pn
σ(Pθ)

(Xn
θ )

=
1
n

n

∑
i=1

log
PXθ

(Xθ,i)

Pσ(Pθ)
(Xθ,i)

(55)

gives the arithmetic average of n i.i.d. variables with expectation

E
[

1
n

n

∑
i=1

log
PXθ

(Xθ)

Pn
σ(Pθ)

(Xθ)

]
= D(Pθ ||Pσ(Pθ)

). (56)

Then, the weak law of large numbers yields that for ∀θ ∈ Θ2,

lim sup
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

Pn
σ(Pθ)

(Xn
θ )
≤ D(Pθ ||Pσ(Pθ)

)− γ

}
= 0. (57)
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Thus, from Equations (54) and (57), the right-hand side of Equation (49) is upper bounded by

∫
Θ

dw(θ) lim sup
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

Pn
σ(Pθ)

(Xn
θ )
≤ R +

1
4
√

n3 + δθ(ν)

}

≤
∫

Θ1

dw(θ) lim sup
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

Pn
σ(Pθ)

(Xn
θ )
≤ D(Pθ ||Pσ(Pθ)

)− γ

}

+
∫

Θ2

dw(θ) lim sup
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

Pn
σ(Pθ)

(Xn
θ )
≤ D(Pθ ||Pσ(Pθ)

)− γ

}
≤
∫

Θ1

dw(θ)

=
∫
{θ|D(Pθ ||Pσ(Pθ )

)≤R}
dw(θ),

(58)

which completes the proof of (47).

• Proof of Equation (48):

Similar to the derivation of Equation (A32) with Lemma 5, we have

lim sup
n→∞

Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ R

}

≥
∫

Θ
dw(θ) lim inf

n→∞
Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R− γ√

n

}
.

(59)

From the definition of the ν-typical set and Equation (46), we also have

lim inf
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R− γ√

n

}

≥ lim inf
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R− γ√

n
, Xn

θ ∈ T n
θ,ν

}

≥ lim inf
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

Pn
σ(Pθ)

(Xn
θ )
≤ R− γ√

n
− 1

n
log

1
cτm(Pθ)

− τ + δθ(ν)

}
− lim sup

n→∞
Pr
{

Xn
θ /∈ T n

θ,ν
}

= lim inf
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

Pn
σ(Pθ)

(Xn
θ )
≤ R− γ√

n
− 1

n
log

1
cτm(Pθ)

− τ + δθ(ν)

}
(60)

for any θ ∈ Θ.
We also partition the parameter space Θ into two sets.

Θ′1 :=
{

θ ∈ Θ
∣∣∣D(Pθ ||Pσ(Pθ)

) < R
}

, (61)

Θ′2 :=
{

θ ∈ Θ
∣∣∣D(Pθ ||Pσ(Pθ)

) ≥ R
}

. (62)

Then, for θ ∈ Θ′1, if we set ν > 0 and τ > 0 sufficiently small, then there exists a constant η > 0 satisfying

R− γ√
n
− 1

n
log

1
cτm(Pθ)

− τ + δθ(ν) > D(Pθ ||Pσ(Pθ)
) + η (∀n > n0). (63)
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Thus, again by invoking the weak law of large numbers, we have for ∀θ ∈ Θ′1

lim inf
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

Pn
σ(Pθ)

(Xn
θ )
≤ R− γ√

n
− 1

n
log

1
cτm(Pθ)

− τ + δθ(ν)

}

≥ lim inf
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

Pn
σ(Pθ)

(Xn
θ )
≤ D(Pθ ||Pσ(Pθ)

) + η

}
= 1.

(64)

Summarizing up, we obtain

lim sup
n→∞

Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ R

}

≥
∫

Θ
dw(θ) lim inf

n→∞
Pr

{
1
n

log
PXn

θ
(Xn

θ )

Pn
σ(Pθ)

(Xn
θ )
≤ R− γ√

n
− 1

n
log

1
cτm(Pθ)

− τ + δθ(ν)

}

≥
∫

Θ′1
dw(θ) lim inf

n→∞
Pr

{
1
n

log
PXn

θ
(Xn

θ )

Pn
σ(Pθ)

(Xn
θ )
≤ D(Pθ ||Pσ(Pθ)

) + η

}
=
∫

Θ′1
dw(θ)

=
∫
{θ|D(Pθ ||Pσ(Pθ )

)<R}
dw(θ).

(65)

This completes the proof of Equation (48).

Remark 7. Theorem 3 is a special case of Theorem 5 when Σ is a singleton.

To illustrate a significance of Theorem 5, let us now consider the special case with ε = 0. Then, by
virtue of Theorem 5, we have the following simplified result:

Corollary 1. In the special case of ε = 0, we have

B0(X||X) = w-ess. inf
θ∈Θ

v-ess. inf
σ∈Σ

D(Pθ ||Pσ). (66)

Proof. The formula (40) can be written in this case as

B0(X||X) = sup

{
R

∣∣∣∣∣
∫
{θ|D(Pθ ||Pσ(Pθ )

)<R}
dw(θ) = 0

}
. (67)

Let

R1 < sup

{
R

∣∣∣∣∣
∫
{θ|D(Pθ ||Pσ(Pθ )

)<R}
dw(θ) = 0

}
, (68)

then this means that
R1 ≤ w-ess. inf

θ∈Θ
D(Pθ ||Pσ(Pθ)

)

= w-ess. inf
θ∈Θ

v-ess. inf
σ∈Σ

D(Pθ ||Pσ).
(69)

Contrarily, let

R2 > sup

{
R

∣∣∣∣∣
∫
{θ|D(Pθ ||Pσ(Pθ )

)<R}
dw(θ) = 0

}
, (70)
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then this means that
R2 ≥ w-ess. inf

θ∈Θ
D(Pθ ||Pσ(Pθ)

)

= w-ess. inf
θ∈Θ

v-ess. inf
σ∈Σ

D(Pθ ||Pσ).
(71)

As a consequence, (66) follows from (67), (69) and (71).

Remark 8. One may wonder if it might be possible to deal with the second-order ε-optimum problem too using
the arguments as developed in the above for the first-order ε-optimum problem with mixed memoryless sources X
and X. To do so, however, it seems that we need some novel techniques, which remain to be studied.

5. Hypothesis Testing with Mixed General Sources

We have so far investigated the ε-hypothesis testing for mixed memoryless sources. In this section,
we deal with more general settings such as hypothesis testings with mixed general sources, which inherits
the crux of that for mixed memoryless sources (cf. Theorem 5). This leads us to a primitive but insightful
“general” observation.

To do so, we consider the case where both of null hypothesis X and alternative hypothesis X are
finite mixtures of general sources as follows:

• The null hypothesis is a mixed general source X = {Xn}∞
n=1 consisting of K general (not necessarily

memoryless) sources Xi = {Xn
i }∞

n=1 (i = 1, 2, · · · , K), that is, ∀x ∈ X n,

PXn(x) =
K

∑
i=1

αiPXn
i
(x), (72)

where αi > 0 (i = 1, 2, · · · , K) and ∑K
i=1 αi = 1.

• The alternative hypothesis is another mixed general source X =
{

Xn
}∞

n=1
consisting of L general

(not necessarily memoryless) sources Xj = {X
n
j }∞

n=1 (j = 1, · · · , L), that is, ∀x ∈ X n,

PXn(x) =
L

∑
j=1

β jPXn
j
(x), (73)

where β j > 0 (j = 1, 2, · · · , L) and ∑L
j=1 β j = 1.

In this general setting, it is hard to derive a compact formula for the first-order ε-optimum
exponent (with 0 < ε < 1). Instead, we can obtain the following theorem in the special case of ε = 0.

Theorem 6.

B0(X||X) = min
1≤i≤K,1≤j≤L

B0(Xi||Xj). (74)

In particular, if Xi and Xj are all stationary memoryless sources specified by Xi (i = 1, 2, · · · , K) and
X j (j = 1, 2, · · · , L), respectively, then

B0(X||X) = min
1≤i≤K,1≤j≤L

D(PXi ||PX j
), (75)

which is a special case of Corollary 1.

Proof. See Appendix F.

Furthermore, we can also consider the following exponentially r-optimum exponent in hypothesis
testing with two mixed general sources X and X as above.
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Definition 5. Let r > 0 be any fixed constant. Rate R is said to be exponentially r-achievable if there exists
an acceptance region An such that

lim inf
n→∞

1
n

log
1

µn
≥ r, lim inf

n→∞

1
n

log
1

λn
≥ R. (76)

Definition 6 (First-order exponentially r-optimum exponent).

Be(r|X||X) := sup{R|R is exponentially r-achievable}. (77)

Then, it is not difficult to verify that a result analogous to Theorem 6 holds, which is a generalization
of [1] (Remark 4.4.3):

Theorem 7.
Be(r|X||X) = min

1≤i≤K,1≤j≤L
Be(r|Xi||Xj). (78)

In particular, if the null and alternative hypotheses consist of stationary memoryless sources
Xi (i = 1, 2, · · · , K) and X j (j = 1, 2, · · · , L), respectively, then

Be(r|X||X) = min
1≤i≤K,1≤j≤L

inf
P:D(P||PXi

)<r
D(P||PX j

), (79)

by virtue of Hoeffding’s theorem.

6. Hypothesis Testing with Compound General Sources

In this section, let us consider the compound hypothesis testing problem with finite null
hypotheses Xi = {Xn

i }∞
n=1 (i = 1, 2, · · · , K) and finite alternative hypotheses Xj = {Xn

j }∞
n=1 (j =

1, 2, · · · , L), where Xi and Xj are general sources. As is well-known, this problem is expected to have a
primitive but “general” relationship to that of mixed hypothesis at the structural level.

Specifically, the compound hypothesis testing is the problem in which a pair of general sources
(Xi, Xj) occurs as a pair (null hypothesis, alternative hypothesis), and the tester does not know which
pair (Xi, Xj) is actually working. This means that the acceptance region An cannot depend on i and j.
The type I error probabilities of the compound hypothesis testing are given by

µ
(i)
n := Pr {Xn

i /∈ An} , (80)

for each general null hypothesis Xi. The type II error probabilities are also given by

λ
(j)
n := Pr

{
Xn

j ∈ An

}
, (81)

for each general alternative hypothesis Xj. Then, the following achievability is of our interest.

Definition 7. Rate R is said to be 0-achievable for the compound hypothesis testing, if there exists an acceptance
region An such that

lim
n→∞

µ
(i)
n = 0 and lim inf

n→∞

1
n

log
1

λ
(j)
n

≥ R, (82)

for all i = 1, 2, · · · , K and j = 1, 2, · · · , L.

Definition 8 (First-order 0-optimum exponent).

B({Xi}K
i=1||{Xj}L

j=1) := sup{R|R is 0-achievable}. (83)



Entropy 2018, 20, 174 14 of 27

Now, we have

Theorem 8. Assuming that αi > 0 and β j > 0 hold for all i = 1, 2, · · · , K and j = 1, 2, · · · , L, it holds that

B({Xi}K
i=1||{Xj}L

j=1) = B({αi, Xi}K
i=1||{β j, Xj}L

j=1), (84)

where with sources Equations (72) and (73), we use here the notation

B({αi, Xi}K
i=1||{β j, Xj}L

j=1) (85)

to denote B0(X||X) to make explicit dependence on αi, β j.

Proof. See Appendix G.

From Theorems 6 and 8, we immediately obtain the first-order 0-optimum exponent for the
compound hypothesis testing as:

Corollary 2. Assuming that αi > 0 and β j > 0 hold for all i = 1, 2, · · · , K and j = 1, 2, · · · , L, we have

B({Xi}K
i=1||{Xj}L

j=1) = min
1≤i≤K,1≤j≤L

B0(Xi||Xj). (86)

In particular, if Xi and Xj are all stationary memoryless sources specified by Xi and X j, respectively, Equation (86)
reduces to

B({Xi}K
i=1||{Xj}L

j=1) = min
1≤i≤K,1≤j≤L

D(PXi ||PX j
). (87)

Remark 9. Similar to Definition 5, we can define the exponentially r-optimum exponent also for the compound
hypothesis testing problem as follows.

Definition 9. Let r > 0 be any fixed constant. Rate R is said to be exponentially r-achievable for the compound
hypothesis testing, if there exists an acceptance region An such that

lim inf
n→∞

1
n

log
1

µ
(i)
n

≥ r, (88)

lim inf
n→∞

1
n

log
1

λ
(j)
n

≥ R, (89)

for all i = 1, 2, · · · , K and j = 1, 2, · · · , L.

Definition 10 (First-order exponentially r-optimum exponent).

Be(r|{Xi}K
i=1||{Xj}L

j=1) := sup{R|R is exponentially r-achievable}. (90)

Then, using an argument similar to the proof of Theorem 8, the following theorem can be shown:

Theorem 9. Let αi > 0 and β j > 0 hold for all i = 1, 2, · · · , K and j = 1, 2, · · · , L, then it holds that

Be(r|{Xi}K
i=1||{Xj}L

j=1) = Be(r|{αi, Xi}K
i=1||{β j, Xj}L

j=1), (91)

where with sources Equations (72) and (73) we use the notation

Be(r|{αi, Xi}K
i=1||{β j, Xj}L

j=1) (92)
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to denote Be(r|X||X) (cf. Definitions 5 and 6).

Combining Theorems 7 and 9, we immediately obtain the following corollary:

Corollary 3. Let αi > 0 and β j > 0 hold for all i = 1, 2, · · · , K and j = 1, 2, · · · , L, then it holds that

Be(r|{Xi}K
i=1||{Xj}L

j=1) = min
1≤i≤K,1≤j≤L

Be(r|Xi||Xj). (93)

In particular, if the null and alternative hypotheses consist of stationary memoryless sources specified by
Xi (i = 1, 2, · · · , K) and X j (j = 1, 2, · · · , L), respectively, as in Theorem 7, then

Be(r|{Xi}K
i=1||{Xj}L

j=1) = min
1≤i≤K,1≤j≤L

inf
P:D(P||PXi

)<r
D(P||PX j

), (94)

which corresponds to Equation (79).

7. Concluding Remarks

Thus far, we have investigated the first- and second-order ε-optimum exponents in the hypothesis
testing problem. First, we have studied the second-order ε-optimum problem with mixed memoryless
null hypothesis and stationary memoryless alternative hypothesis. As we have shown in the analysis
of the second-order ε-optimum exponent, we use, as a key property, the asymptotic normality of
divergence density rate for each of the component sources. We also observe that the canonical
representation, first introduced in [11], is still efficient to express the second-order ε-optimum exponent
for mixed memoryless sources in the hypothesis testing problem.

The first-order ε-optimum exponent in the case with mixed memoryless null and alternative
hypotheses has also been established. One may wonder whether we can apply the same approach
in the derivation of the second-order ε-optimum exponent in this setting. Notice that one of our key
techniques to derive the first-order ε-optimum exponent is an expansion Px around Pθ . More careful
evaluation of this expansion would be needed to compute the second-order ε-optimum exponent.
This remains to be a future work. Our final goal is the problem of hypothesis testing in which both of
null and alternative hypotheses are general stationary sources. This paper characterizes the first- and
second-order performance of hypothesis testing for mixed memoryless sources as a simple but crucial
step toward this goal.

Finally, the relationship between the first-order 0-optimum (respectively, exponentially
r-optimum) exponent in the hypothesis testing with mixed general sources and the 0-optimum
(respectively, exponentially r-optimum) exponent in the compound hypothesis testing has also
been demonstrated.
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Appendix A. Proof of Theorem 2

The proof consists of two parts.

(1) Direct Part:

Set S0 = sup{S|K(R, S) ≤ ε}. Then, we show that S = S0 − γ is (ε, R)-achievable for ∀γ > 0.
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Define the acceptance region An as

An =

{
1
n

log
PXn(x)
PXn(x)

> R +
S√
n

}
. (A1)

Then, from Lemma 1 with t = R + S√
n we have the upper bound for the type II error probability λn:

λn = Pr
{

Xn ∈ An

}
≤ e−nR−

√
nS, (A2)

from which it follows that
lim inf

n→∞

1√
n

log
1

λnenR ≥ S. (A3)

We next evaluate the type I error probability µn. Noting that

µn = Pr {Xn /∈ An} = Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ R +

S√
n

}
, (A4)

we have

lim sup
n→∞

µn = lim sup
n→∞

Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ R +

S√
n

}
≤ ε, (A5)

because S = S0 − γ by the definition. Hence, from Equations (A3) and (A5), S = S0 − γ is
(ε, R)-achievable. Since γ > 0 is arbitrary, the direct part has been proved.

(2) Converse Part:

Suppose that S is (ε, R)-achievable. Then, there exists an acceptance region An such that

lim sup
n→∞

µn ≤ ε and lim inf
n→∞

1√
n

log
1

λnenR ≥ S. (A6)

We fix this acceptance region An. The second inequality means that for any γ > 0

λn ≤ e−nR−
√

n(S−γ) (A7)

holds for sufficiently large n. On the other hand, from Lemma 2 with t = R + S−2γ√
n it holds that

µn + enR+
√

n(S−2γ)λn ≥ Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ R +

S− 2γ√
n

}
. (A8)

Substituting Equation (A7) into this inequality, we have

µn + e−
√

nγ ≥ Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ R +

S− 2γ√
n

}
, (A9)

for sufficiently large n. Thus, we have

lim sup
n→∞

µn ≥ lim sup
n→∞

Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ R +

S− 2γ√
n

}
. (A10)
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Here, from Equation (A6) we have

ε ≥ lim sup
n→∞

µn ≥ lim sup
n→∞

Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ R +

S− 2γ√
n

}
, (A11)

which means that

S− 2γ ≤ Bε(R|X||X). (A12)

Since γ > 0 is arbitrarily, the proof of the converse part has been completed.

Appendix B. Proof of Lemma 4

Since PXn
θ
(x) ≤ e

4√nPXn(x) holds for ∀θ ∈ Θ∗n, we have

Pr
{

1
n

log PXn(Xn
θ ) ≤ zn

}
≤ Pr

{
1
n

log PXn
θ
(Xn

θ )−
1

4
√

n3 ≤ zn

}

= Pr

{
1
n

log PXn
θ
(Xn

θ ) ≤ zn +
1

4
√

n3

} (A13)

for any zn. By using this inequality with zn +
1
n log PXn(Xn

θ ) instead of zn, we have

Pr

{
1
n

log
PXn(Xn

θ )

PXn(Xn
θ )
≤ zn

}
≤ Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ zn +

1
4
√

n3

}
(A14)

which completes the proof.

Appendix C. Proof of Lemma 5

Setting γ > 0, we define a set

Dn =

{
x ∈ X n

∣∣∣∣ 1n log PXn
θ
(x)− 1

n
log PXn(x) ≤ − γ√

n

}
, (A15)

for θ ∈ Θ. Then, it holds that

Pr
{

Xn
θ ∈ Dn

}
= ∑x∈Dn PXn

θ
(x)

≤ ∑x∈Dn PXn(x)e−
√

nγ

≤ e−
√

nγ.

(A16)

Thus, for any real number zn it holds that

Pr
{

1
n

log PXn
θ
(Xn

θ ) ≤ zn −
γ√
n

}
= Pr

{
1
n log PXn

θ
(Xn

θ ) ≤ zn − γ√
n , Xn

θ /∈ Dn

}
+ Pr

{
1
n log PXn

θ
(Xn

θ ) ≤ zn − γ√
n , Xn

θ ∈ Dn

}
≤ Pr

{
1
n log PXn(Xn

θ ) ≤ zn

}
+ Pr

{
Xn

θ ∈ Dn
}

≤ Pr
{

1
n log PXn(Xn

θ ) ≤ zn

}
+ e−

√
nγ.

(A17)
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Hence, we obtain the inequality

Pr
{

1
n

log PXn(Xn
θ ) ≤ zn

}
≥ Pr

{
1
n

log PXn
θ
(Xn

θ ) ≤ zn −
γ√
n

}
− e−

√
nγ, (A18)

from which with zn +
1
n log PXn(Xn

θ ) instead of zn it follows that

Pr

{
1
n

log
PXn(Xn

θ )

PXn(Xn
θ )
≤ zn

}
≥ Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ zn −

γ√
n

}
− e−

√
nγ (A19)

for all θ ∈ Θ. This completes the proof.

Appendix D. Proof of Theorem 4

Setting

Bε(R, S) :=
∫
{θ|D(PXθ

||PX)<R}
dw(θ) +

∫
{θ|D(PXθ

||PX)=R}
Φθ(S)dw(θ), (A20)

it suffices, in view of Theorem 2, to show two inequalities:

Bε(R, S) ≥ lim sup
n→∞

Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ R +

S√
n

}
, (A21)

Bε(R, S) ≤ lim sup
n→∞

Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ R +

S√
n

}
. (A22)

• Proof of Equation (A21):

By the definitions of X and X, it holds that

lim sup
n→∞

Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ R +

S√
n

}

= lim sup
n→∞

∫
Θ

dw(θ)Pr

{
1
n

log
PXn(Xn

θ )

PXn(Xn
θ )
≤ R +

S√
n

}

≤ lim sup
n→∞

∫
Θ∗n

dw(θ)Pr

{
1
n

log
PXn(Xn

θ )

PXn(Xn
θ )
≤ R +

S√
n

}
+ lim sup

n→∞

∫
Θ−Θ∗n

dw(θ)

= lim sup
n→∞

∫
Θ∗n

dw(θ)Pr

{
1
n

log
PXn(Xn

θ )

PXn(Xn
θ )
≤ R +

S√
n

}

≤ lim sup
n→∞

∫
Θ∗n

dw(θ)Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

S√
n
+

1
4
√

n3

}

≤ lim sup
n→∞

∫
Θ

dw(θ)Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

S√
n
+

1
4
√

n3

}

≤
∫

Θ
dw(θ) lim sup

n→∞
Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

S√
n
+

1
4
√

n3

}
,

(A23)

where the second equality and the second inequality are due to Lemmas 3 and 4, respectively, and the
last inequality is from the reverse Fatou’s lemma.
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Here, we define three sets:

Θ0 :=
{

θ ∈ Θ
∣∣D(PXθ

||PX) = R
}

, (A24)

Θ1 :=
{

θ ∈ Θ
∣∣D(PXθ

||PX) < R
}

, (A25)

Θ2 :=
{

θ ∈ Θ
∣∣D(PXθ

||PX) > R
}

. (A26)

Noting that, setting Xn
θ = (Xθ,1, Xθ,2, · · · , Xθ,n),

1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )

=
1
n

n

∑
i=1

log
PXθ

(Xθ,i)

PX(Xθ,i)
(A27)

gives the arithmetic average of n i.i.d. variables with expectation

E
[

1
n

n

∑
i=1

log
PXθ

(Xθ)

PX(Xθ)

]
= D(PXθ

||PX). (A28)

Then, the weak law of large numbers yields that for ∀θ ∈ Θ2

lim sup
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

S√
n
+

1
4
√

n3

}
= 0. (A29)

Moreover, for ∀θ ∈ Θ0, the central limit theorem leads to

lim sup
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

S√
n
+

1
4
√

n3

}

= lim sup
n→∞

Pr

{
1√
n

(
log

PXn
θ
(Xn

θ )

PXn(Xn
θ )
−
√

nD(PXθ
||PX)

)
≤ S +

1
4
√

n

}
= Φθ (S) .

(A30)

Summarizing these equalities, we obtain

∫
Θ

dw(θ) lim sup
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

S√
n
+

1
4
√

n3

}

=
∫

Θ1

dw(θ) lim sup
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

S√
n
+

1
4
√

n3

}

+
∫

Θ0

dw(θ) lim sup
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

S√
n
+

1
4
√

n3

}
≤
∫
{θ|D(PXθ

||PX)<R}
dw(θ) +

∫
{θ|D(PXθ

||PX)=R}
Φθ (S) dw(θ).

(A31)

Plugging Equation (A31) into Equation (A23) yields Equation (A21).

• Proof of Equation (A22):
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By the definitions of X and X, and Lemma 5 with zn = R + S√
n , it holds that

lim sup
n→∞

Pr

{
1
n

log
PXn(Xn)

PXn(Xn)
≤ R +

S√
n

}

≥ lim inf
n→∞

∫
Θ

dw(θ)Pr

{
1
n

log
PXn(Xn

θ )

PXn(Xn
θ )
≤ R +

S√
n

}

≥ lim inf
n→∞

∫
Θ

dw(θ)Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

S√
n
− γ√

n

}

= lim inf
n→∞

∫
Θ

dw(θ)Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

S− γ√
n

}

≥
∫

Θ
dw(θ) lim inf

n→∞
Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

S− γ√
n

}
,

(A32)

for any γ > 0, where the last inequality is due to Fatou’s lemma. We also partition the parameter space
Θ into three sets as in Equations (A24)–(A26).

Then, similarly to the derivation of Equations (A29) and (A30), we obtain

lim inf
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

S− γ√
n

}
=

{
Φθ (S− γ) , θ ∈ Θ0

1. θ ∈ Θ1
(A33)

Thus, the right-hand side of Equation (A32) is rewritten as

∫
Θ

dw(θ) lim inf
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

S− γ√
n

}

≥
∫

Θ1

dw(θ) lim inf
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

S− γ√
n

}

+
∫

Θ0

dw(θ) lim inf
n→∞

Pr

{
1
n

log
PXn

θ
(Xn

θ )

PXn(Xn
θ )
≤ R +

S− γ√
n

}
=
∫
{θ|D(PXθ

||PX)<R}
dw(θ) +

∫
{θ|D(PXθ

||PX)=R}
Φθ (S− γ) dw(θ).

(A34)

Substituting Equation (A34) into Equation (A32) and noting that γ > 0 is arbitrary, we obtain
Equation (A22).

Appendix E. Proofs of Equations (45) and (46)

(1) Proof of Equation (45):

To prove Equation (45), we define a(x) as

a(x) := v-ess. sup Pn
σ(x), (A35)

where v-ess. sup fσ denotes the essential supremum of fσ with respect to v(σ), i.e., v-ess. sup fσ :=
inf{α|Pr{ fσ > α} = 0}. Thus, from the property of the essential supremum we immediately have

a(x) ≥ PXn(x), (A36)

for ∀n = 1, 2, · · · .
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Let Px denote the type of x ∈ T n
θ,ν. Then, noting that

Pn
σ(x) = ∏x∈X Pσ(x)N(x|x)

= exp
[
∑x∈X N(x|x) log Pσ(x)

]
= exp

[
−n
(

H(Px) + D(Px||Pσ)
)] (A37)

holds, a(x) is written as

a(x) = exp
[
−n
(

H(Px) + v-ess. inf D(Px||Pσ)
)]

= exp
[
−n
(

H(Px) + D(Px||Pσ(Px))
)]

.
(A38)

Here, it is important to notice that D(P||Pσ) is continuous in (P, Pσ) and hence, owing to the
assumption, D(P||Pσ(Q)) is continuous in Q ∈ P(X ). Thus, expanding D(P||Pσ(Px)) in Px around Pθ

leads to

D
(

P||Pσ(Px)

)
= D(P||Pσ(Pθ)

) + δθ(ν) (x ∈ T n
θ,ν). (A39)

with some δθ(ν) such that δθ(ν)→ 0 as ν→ 0, because ∑x∈X |Pθ(x)− Px(x)| ≤ ν for x ∈ T n
θ,ν.

Then, with Px instead of P in Equation (A39) and in view of Equation (A36) for each x ∈ T n
θ,ν we

have the upper bound:

PXn(x) ≤ a(x)

= exp
[
−n
(

H(Px) + D(Px||Pσ(Px))
)]

= exp
[
−n
(

H(Px) + D(Px||Pσ(Pθ)
)− δθ(ν)

)]
= Pn

σ(Pθ)
(x) exp[nδθ(ν)],

(A40)

from which it follows that for each x ∈ T n
θ,ν

1
n

log
1

PXn(x)
≥ 1

n
log

1

Pn
σ(Pθ)

(x)
− δθ(ν). (A41)

Therefore, the proof of Equation (45) has been completed.

(2) Proof of Equation (46):

To prove Equation (46), we show the lower bound of PXn(x). For any P ∈ P(X ) and any small
constant τ > 0, set

Sτ(P) :=
{

σ ∈ Σ
∣∣∣D(P||Pσ) < D(P||Pσ(P)) + τ

}
, (A42)

then, by the definition of v-ess.inf,

cτ(P) :=
∫
Sτ(P)

dv(σ) > 0 (A43)

holds. Our claim is that for any θ ∈ Θ and sufficiently small τ > 0 and with some positive constant
cθ > 0

inf
x∈T n

θ,ν

cτ(Px) ≥ cθ . (A44)
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To see this, consider a sequence {τi}∞
i=1 such that 0 < τ1 < τ2 < · · · → τ. Then, there exists a positive

integer m such that cτm(Pθ) > 0. Otherwise, the continuity of probability measure implies that

0 = lim
i→∞

cτi (Pθ) = cτ(Pθ) > 0, (A45)

which is a contradiction. On the other hand, in view of Equation (A42), σ ∈ Sτm(Pθ) is equivalent to

D(Pθ ||Pσ) < D(Pθ ||Pσ(Pθ)
) + τm, (A46)

D(Px||Pσ) < D(Px||Pσ(Px)) + τm + γ(ν) (∀x ∈ T n
θ,ν), (A47)

where Equation (A47) follows from Equation (A46) by expanding Pθ around Px with some γ(ν) > 0
such that γ(ν) → 0 as ν → 0. Therefore, all σ ∈ Sτm(Pθ) satisfy Equation (A47). Now we can take
ν > 0 so that τm + γ(ν) < τ to have

D(Px||Pσ) < D(Px||Pσ(Px)) + τ (∀x ∈ T n
θ,ν). (A48)

Therefore, Sτm(Pθ) ⊂ Sτ(Px). Hence, we have

0 < cτm(Pθ) ≤ cτ(Px) (∀x ∈ T n
θ,ν). (A49)

This is nothing but Equation (A44).
Thus, again for ∀x ∈ T n

θ,ν, we have the lower bound

PXn(x) =
∫

Σ Pn
σ(x)dv(σ)

≥
∫
Sτ(Px)

Pn
σ(x)dv(σ)

=
∫
Sτ(Px)

exp
[
−n
(

H(Px) + D(Px||Pσ)
)]

dv(σ)

≥
∫
Sτ(Px)

exp
[
−n
(

H(Px) + D(Px||Pσ(Px)) + τ
)]

dv(σ)

= cτ(Px) exp
[
−n
(

H(Px) + D(Px||Pσ(Pθ)
) + τ − δθ(ν)

)]
≥ cτm(Pθ)Pn

σ(Pθ)
(x) exp [n (δθ(ν)− τ)] ,

(A50)

where in the second last equality and in the last inequality we have used the continuity of
D
(

Px||Pσ(Px)

)
in Px around Pθ and Equation (A49), respectively. From Equation (A50), we obtain

1
n

log
1

PXn(x)
≤ 1

n
log

1

Pn
σ(Pθ)

(x)
+

1
n

log
1

cτm(Pθ)
+ (τ − δθ(ν)), (A51)

for each x ∈ T n
θ,ν, which completes the proof of Equation (46).

Appendix F. Proof of Theorem 6

First, we prove the inequality:

B0(X||X) ≥ min
1≤i≤K,1≤j≤L

B0(Xi||Xj). (A52)

To do so, we arbitrarily fix Rij for 1 ≤ ∀i ≤ K, 1 ≤ ∀j ≤ L so that

Rij < B0(Xi||Xj). (A53)
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Then, by the definition of B0(Xi||Xj), there exists an acceptance region A(i,j)
n satisfying

lim
n→∞

µ
(i,j)
n = 0, (A54)

lim inf
n→∞

1
n

log
1

λ
(i,j)
n

≥ Rij, (A55)

where µ
(i,j)
n and λ

(i,j)
n are defined respectively as

µ
(i,j)
n := Pr

{
Xn

i /∈ A(i,j)
n

}
, λ

(i,j)
n := Pr

{
Xn

j ∈ A
(i,j)
n

}
. (A56)

By using these regions, we define the acceptance region An as

An :=
K⋃

i=1

 L⋂
j=1

A(i,j)
n

 . (A57)

Then, we have

µn = Pr {Xn /∈ An} =
K

∑
i=1

αi Pr

Xn
i /∈

 K⋃
i′=1

L⋂
j=1

A(i′ ,j)
n


≤

K

∑
i=1

αi Pr

Xn
i /∈

 L⋂
j=1

A(i,j)
n


≤

K

∑
i=1

L

∑
j=1

αi Pr
{

Xn
i /∈

(
A(i,j)

n

)}
=

K

∑
i=1

L

∑
j=1

αiµ
(i,j)
n ,

(A58)

from which, together with Equation (A54), we obtain

lim
n→∞

µn = 0. (A59)

Similarly, we have

λn = Pr
{

Xn ∈ An

}
≤

L

∑
j=1

K

∑
i=1

β jλ
(i,j)
n , (A60)

from which, together with Equation (A55), we obtain for any small γ > 0

lim inf
n→∞

1
n

log
1

λn
≥ min

1≤i≤K,1≤j≤L
Rij−γ. (A61)

Since Rij are arbitrary as far as Equation (A53) is satisfied, we have Equation (A52).
Next, we prove the inequality:

B0(X||X) ≤ min
1≤i≤K,1≤i≤L

B0(Xi||Xj). (A62)
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To do so, let R be 0-achievable, then there exists an acceptance region An satisfying

lim
n→∞

µn = 0, (A63)

lim inf
n→∞

1
n

log
1

λn
≥ R. (A64)

We fix such an An and consider the hypothesis testing with null hypothesis Xi and alternative
hypothesis Xj for arbitrarily fixed i and j. Then, probabilities of type I error and type II error are given by

µ
(i,j)
n = Pr {Xn

i /∈ An} , (A65)

λ
(i,j)
n = Pr

{
Xn

j ∈ An

}
. (A66)

Since

µn =
K

∑
i=1

αi Pr {Xn
i /∈ An}

=
K

∑
i=1

αiµ
(i,j)
n ,

(A67)

we have

µ
(i,j)
n ≤ µn

αi
. (A68)

From this inequality and Equation (A63) we obtain

lim
n→∞

µ
(i,j)
n = 0. (A69)

Similar to the derivation of Equation (A68), we have

λ
(i,j)
n ≤ λn

β j
. (A70)

Hence, from Equation (A64) we obtain

R ≤ lim inf
n→∞

1
n

log
1

λn

≤ lim inf
n→∞

1
n

log
1

λ
(i,j)
n

+ lim sup
n→∞

1
n

log
1
β j

= lim inf
n→∞

1
n

log
1

λ
(i,j)
n

.

(A71)

From Equations (A69) and (A71), it follows that R is 0-achievable for the hypothesis testing with
Xi against Xj. Noting that i, j are arbitrary with 1 ≤ i ≤ K and 1 ≤ j ≤ L, we obtain

R ≤ min
1≤i≤K,1≤i≤L

B0(Xi||Xj). (A72)

This means that Equation (A62) holds, completing the proof of Theorem 6.
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Appendix G. Proof of Theorem 8

It suffices to show two inequalities:

B({Xi}K
i=1||{Xj}L

j=1) ≤ B({αi, Xi}K
i=1||{β j, Xj}L

j=1), (A73)

B({Xi}K
i=1||{Xj}L

j=1) ≥ B({αi, Xi}K
i=1||{β j, Xj}L

j=1). (A74)

• Proof of Equation (A73):

Suppose that R is 0-achievable for the compound hypothesis testing, that is, there exists an acceptance
regionAn such that

lim
n→∞

µ
(i)
n = 0 (i = 1, 2, · · · , K), (A75)

lim inf
n→∞

1
n

log
1

λ
(j)
n

≥ R (j = 1, 2, · · · , L). (A76)

Then, the type I error probability µn for the hypothesis testing with mixed general sources is
evaluated as follows. By the definition of µn and Equation (72), we have

µn = Pr {Xn /∈ An}

=
K

∑
i=1

αi Pr {Xn
i /∈ An}

=
K

∑
i=1

αiµ
(i)
n ,

(A77)

from which, together with Equation (A75), we obtain

lim
n→∞

µn = 0. (A78)

Similarly, we have
λn = Pr

{
Xn ∈ An

}
=

L

∑
j=1

β j Pr
{

Xn
j ∈ An

}
=

L

∑
j=1

β jλ
(j)
n .

(A79)

On the other hand, Equation (A76) implies

λ
(j)
n ≤ e−n(R−γ) (n ≥ n0), (A80)

holds for any γ > 0 and all j = 1, 2, · · · , L. Substituting this inequality into Equation (A79) yields

lim inf
n→∞

1
n

log
1

λn
≥ R− γ. (A81)

Since γ > 0 is arbitrary, from Equations (A78) and (A81) we conclude that Equation (A73) holds.
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• Proof of Equation (A74):

Suppose that R is 0-achievable for the mixed hypothesis testing, that is, there exists an acceptance
region An such that

lim
n→∞

µn = 0, (A82)

lim inf
n→∞

1
n

log
1

λn
≥ R. (A83)

We fix such an An and set

µ
(i)
n = Pr {Xn

i /∈ An} , (A84)

λ
(j)
n = Pr

{
Xn

j ∈ An

}
. (A85)

Then, from Equation (72) we have

µn =
K

∑
i=1

αi Pr {Xn
i /∈ An}

=
K

∑
i=1

αiµ
(i)
n ,

(A86)

from which, it follows that
µ
(i)
n ≤

µn

αi
(A87)

for all i = 1, 2, · · · , K. From this inequality and Equation (A82), we obtain

lim
n→∞

µ
(i)
n = 0, (A88)

for all i = 1, 2, · · · , K. Similarly,

λn =
L

∑
j=1

β j Pr
{

Xn
j ∈ An

}
=

L

∑
j=1

β jλ
(j)
n ,

(A89)

so that we have for j = 1, 2, · · · , L,

λ
(j)
n ≤

λn

β j
, (A90)

which means that
1
n log 1

λ
(j)
n
≥ 1

n log
β j
λn

= 1
n log 1

λn
− 1

n log 1
β j

.
(A91)

Noting that β j (j = 1, 2, · · · , L) are constants, from Equation (A83) we obtain

lim inf
n→∞

1
n

log
1

λ
(j)
n

≥ R, (A92)

for all j = 1, 2, · · · , L. From Equations (A88) and (A92), we conclude that Equation (A74) holds.
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