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Abstract: Gears are key components in rotation machinery and its fault vibration signals usually show
strong nonlinear and non-stationary characteristics. It is not easy for classical time–frequency domain
analysis methods to recognize different gear working conditions. Therefore, this paper presents
a joint fault diagnosis scheme for gear fault classification via tensor nuclear norm canonical polyadic
decomposition (TNNCPD) and multi-scale permutation entropy (MSPE). Firstly, the one-dimensional
vibration data of different gear fault conditions is converted into a three-dimensional tensor
data, and a new tensor canonical polyadic decomposition method based on nuclear norm and
convex optimization called TNNCPD is proposed to extract the low rank component of the data,
which represents the feature information of the measured signal. Then, the MSPE of the extracted
feature information about different gear faults can be calculated as the feature vector in order to
recognize fault conditions. Finally, this researched scheme is validated by practical gear vibration
data of different fault conditions. The result demonstrates that the proposed scheme can effectively
recognize different gear fault conditions.

Keywords: tensor decomposition; nuclear norm; convex optimization; multi-scale permutation
entropy; gear fault classification

1. Introduction

Gears are key components in rotation machinery [1], whose operating performance can directly
affect the health status of the entire system. When the system stops work due to gear faults,
such as circular pitch faults, abrasion faults, and broken teeth faults, heavy productivity and
economic losses will occur. Consequently, it is of great practical significance to achieve fault
diagnosis of gear faults. So far, many fault diagnosis technologies for gear fault diagnosis has been
proposed, such as monitoring techniques based on vibration and noise [2], oil analysis methods [3],
and non-destructive testing techniques [4]. Vibration signal analysis may be the most useful
technology in light of its huge technological advantages. In general, the gear vibration signal is
composed of multi-components, where the meshing frequencies of each pair of gears are the dominant
characteristic [5]. When fault occurs, the meshing frequencies and their multiple frequencies are
modulated by the rotational frequency of the fault gears, thereby generating amplitude-modulated and
frequency-modulated (AM-FM) signals [6]. Moreover, the working environment of rotation machinery
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is relatively poor, the collected signals usually contain massive noise, and the fault component may
be masked by the strong noise. Commonly, the gear fault diagnosis of different working conditions
includes a fault feature extraction process and a fault recognition process [7], where feature extraction
is the essential step [8].

Many scholars have proposed different fault diagnosis methods for extracting fault information
from signals in the time domain or the frequency domain. The generalized demodulation
time–frequency analysis method [9] is suitable for dealing with multi-component and AM-FM
signals, which can decompose the signal into a set of single-component signals, whose instantaneous
frequencies have physical meaning. However, the choice of the phase function is a difficult
problem. Analogously, the local mean decomposition (LMD) method [10] can decompose any
complicated multi-component signal into a series of the product of an amplitude envelope signal and
a purely frequency-modulated signal, but it still possesses some problems such as modal aliasing.
Wavelet transform (WT) [11], which can decompose the signal into low-frequency components and
high-frequency components sub-band, has been widely used in mechanical equipment fault diagnosis.
However, the choice available of decomposition level and wavelet basis function has a great effect
on the analysis results. Transforming the one-dimensional signal to a high-dimensional phase space,
the attractor can view the dynamic behavior of the original signal, which facilitates the separation of
useful multi-component features and noise components [12]. As a powerful method for analyzing
a real-valued time series in matrix space, singular spectrum analysis (SSA) [13] can decompose a signal
into interpretable components, such as useful signal components and noise. However, SSA may not
work well for a non-stationary signal, and selecting a desired subgroup of eigenvalues should receive
considerable attention [14].

For the drawbacks of standard flat matrix models in dealing with non-linear and non-stationary
signals, high-dimensional space contains more abundant information than matrix space [15].
Therefore, converting the signal into high-dimensional space may explicitly show the properties of
the signal [14]. As the natural way of representing high-dimensional data, tensors (multi-dimensional
arrays) can efficiently maintain the intrinsic structural characteristics of data [15]. In fact, tensors can
be seen as the generalization of matrices (two-dimensional arrays), and signal processing techniques
using tensor decompositions can extract more latent features of data than matrix-based methods [16].
Tensor decomposition models can be theoretically divided into two categories: canonical polyadic
decomposition (CPD) [17] and tucker decomposition [18]. CPD is employed in this paper, as it can
decompose any complex multi-component signal data into a sum of rank-one sub-tensors composed of
factor matrices [19], which may represent characteristic information. Due to the deficiency of traditional
iterative least squares algorithm for CPD (CPD-ALS) in handling non-linear, non-stationary, and strong
noise background signals, a new tensor canonical polyadic decomposition method based on nuclear
norm [20] and convex optimization [21,22], named TNNCPD, is proposed in this paper. The matrix
nuclear norm, which is defined as the sum of all singular values, can solve the non-convex problem of
the rank constraint [23]. Nuclear norm minimization method can obtain an accurately approximate
low-rank matrix of the original matrix signal data, which represent characteristic information, and has
a positive effect on the image signal processing [24]. Therefore, we extend the matrix nuclear norm to
the three-dimensional tensor. Firstly, the one-dimensional gear vibration signal data is converted into
three-dimensional tensor data via segmentation [14,15] and the Löwner matrix [25]. Then, a tensor
nuclear norm definition is given by applying a nuclear norm minimum constraint on the approximate
tensor in each iteration, and the minimum problem can be transformed into a convex optimization
problem via imposing convex relaxation constraint on the factor matrices. Moreover, the alternating
iterative decline and singular value threshold [26] are employed to obtain globally optimal low-rank
factor matrices, which contain the characteristic components of the original signal. Lastly, the proposed
method is utilized to extract the fault feature of different gear working condition signals. The calculated
results demonstrate that the TNNCPD method is effective.
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Followed by the fault recognition process, the feature information of original signals can be
obtained through the TNNCPD model. Since the measured signal is composed of multi-components
due to the interaction between machine components, characterizing the characteristic distribution of
gear fault signal on a single scale may be insufficient [27]. As an effective approach to evaluate the
complexity of a time series in different scales, multi-scale permutation entropy (MSPE) [28] has become
an indicator for the dynamic behavior of different signal fault patterns [29]. Therefore, MPSE is used as
the gear fault pattern recognizer by solving the multi-scale permutation entropy vector of the extracted
feature component and setting it as the input vector of the back propagation (BP) neural network [30]
to perform fault classification. In summary, a joint fault diagnosis scheme via TNNCPD and MSPE
is presented and has been applied to gear fault classification. The results illustrate that the proposed
scheme can accurately recognize different gear working conditions. Thus, the proposed scheme can be
used for gear fault diagnosis.

1.1. Notation

We use lowercase letters that represent a scalar, such as x1, bold and lowercase letters for a vector,
such as x ∈ Rn, and the upper case and bold letters for a matrix, such as X ∈ Rm×n. σi(X) represents
the i-th largest singular value of X, and the matrix nuclear norm is defined as ‖X‖∗ := ∑ σi(X).
A three-dimensional tensor is represented as χ ∈ RI1×I2×I3 , while the k-mode unfold matrix of
χ can be denoted as X(k), k = 1, 2, 3. The Frobenius norm of matrix and the tensor is defined as

‖X‖F := (∑
∣∣xij
∣∣2)0.5

and ‖χ‖F = (∑
∣∣xi1i2i3

∣∣2)0.5
, respectively.

1.2. Organization

This paper is organization as follows. The theory of TNNCPD is put forward in Section 2; Section 3
illustrates a joint fault diagnosis scheme based on TNNCPD and MSPE in detail; the measured gear
fault data is analyzed in Section 4, and conclusions are drawn in Section 5.

2. Tensor Nuclear Norm Canonical Polyadic Decomposition (TNNCPD)

2.1. Tensor Canonical Polyadic Decomposition

2.1.1. The Tensorization of One-Dimensional Vibration Signal Data

The segmentation [14,15] and Löwner matrix [25] is employed to convert the measured
one-dimensional gear vibration signal data x ∈ RN into a three-dimensional tensor data T ∈ RI×J×K.
The process is called tensorization and the tensor construction process is demonstrated in Figure 1.
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The tensor construction process contains two steps. Firstly, x is cut into a matrix T ∈ RI×L

with a non-overlapping window length L. To improve the computing speed, we select the window
length as L =

[√
N
]
.

T =


x1 x2 . . . xL

x(L+1) x(L+2) · · · x2L
...

...
. . .

...
x(I−1)×L+1 x(I−1)×L+2 · · · xN

. (1)

Then, each row of T is mapped into a Löwner matrix form with the corresponding horizontal
slice Ti:: ∈ RJ×K.

Ti:: =


ti,1−ti,2

1−2
ti,1−ti,4

1−3 · · · ti,1−ti,L
1−L

ti,3−ti,2
3−2

ti,3−ti,4
3−4 · · · ti,3−ti,L

3−L
...

...
. . .

...
ti,L−1−ti,2
(L−1)−2

ti,L−1−ti,4
(L−1)−4 · · · ti,L−1−ti,L

(L−1)−L

, 1 ≤ i ≤ I. (2)

2.1.2. Tensor Canonical Polyadic Decomposition Based on the Least-Squares Algorithm (CPD-ALS)

CPD can decompose a tensor T as a sum of R rank-1 sub-tensors, which is defined as an outer
product of three vectors χr = a1(r) ◦ a2(r) ◦ a3(r), 1 ≤ r ≤ R. The rank of T is defined as the smallest
value R [16].

T = T̃ + ε =
R

∑
r=1

a1(r) ◦ a2(r) ◦ a3(r) + ε = A1, A2, A3 + ε (3)

where A1 ∈ RI×R, A2 ∈ RJ×R, A3 ∈ RK×R are factor matrices, which represent the principal
components in each direction, T̃ ∈ RI×J×K is the approximate tensor with a size identical to T ,
and ε ∈ RI×J×K is the residual tensor. Figure 2 depicts the CPD of a three-dimensional rank-R tensor.
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The main goal of CPD is how to effectively solve factor matrices. The traditional method
concentrated on minimizing the problem of Equation (4) [18].

min
A,B,C

1
2
‖T −A1, A2, A3‖2

F. (4)

The CPD-ALS algorithm [18] is a well-known solution for Equation (4). Firstly, the factor matrices
are initialized using the random matrix method, then an iterative process as Equation (5) is applied until
Equation (4) converges or reaches the presupposed iteration number; thus, the R rank-1 sub-tensors as
well as the factor matrices can be obtained.

An
1 = T(1)

[
(An−1

2 �An−1
3 )

T]†
, An

2 = T(2)

[
(An−1

3 �An
1 )

T]†
, An

3 = T(3)

[
(An

2 �An
1 )

T
]†

. (5)

CPD-ALS is suitable for linear or high SNR signal processing. However, it is incapable of
handling the non-linear and non-stationary signals, such as fault signals with strong background
noise. In the following section, we propose the new tensor CPD method based on nuclear norm and
convex optimization.
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2.2. Tensor Nuclear Norm Canonical Polyadic Decomposition (TNNCPD)

2.2.1. Matrix Nuclear Norm

The classical theory of the matrix low rank approximation supports that a matrix data A ∈ Rm×n

can be decomposed into a low-rank component L ∈ Rm×n, r(L) < r(A) and a sparse component
S ∈ Rm × n, r(S)� r(A) [31]. In signal processing, the low-rank component represents the inherent
characteristics of signal and the sparse component captures the perturbations or additional noise [31].

A = L + S. (6)

The main difficulty is effectively obtaining the low rank component, L, which can be expressed as
a rank constraint problem [23]:

min
L

1
2‖L−A‖2

F

s.t. rank(L) ≤ r
. (7)

Solving Equation (7) is difficult because the rank constraint is not convex; a good way of
solving this problem is exerting a nuclear norm constraint ‖ · ‖∗ to the low-rank component, L.
Thus, Equation (7) can be turned into a convex optimization problem [32]:

min
L

1
2‖L−A‖2

F

s.t. ‖L‖∗ ≤ c
. (8)

An accurately approximate low-rank matrix L of original matrix A can be obtained via solving
Equation (8), which may represent the characteristic components of the signal.

2.2.2. Tensor Canonical Polyadic Decomposition Method Based on Nuclear Norm and
Convex Optimization

Duo to the great effect of matrix nuclear norm in signal feature extraction, we extend the matrix
nuclear norm to the three-dimensional tensor. The tensor can be seen as the generalization of the matrix.
Similar to the matrix condition, we assume that a three-dimensional tensor data, T , also consists of
a low-rank sub-tensor T = A1, A2, A3 and the sparse sub-tensor ε. Therefore, the approximate tensor
T̃ , which is composed of three low-rank factor matrices, can represent the characteristic components
of the data. The focus of the research is how to accurately extract the low-rank factor matrices.
We introduce the nuclear norm to the tensor CPD model by applying the nuclear norm constraint on
the approximate tensor:

min
T̃

1
2‖T̃ − T ‖

2
F

s.t. ‖T̃ ‖∗ ≤ c
. (9)

We propose a definition of the tensor nuclear norm as follows:

‖T̃ ‖∗ =
1
3

3

∑
i=1
‖T̃(i)‖∗. (10)

Equation (10) is the average of the nuclear norm of the three unfolded matrices. As the non-
independent relationship among unfolded matrices, solving Equation (10) is a challenge. For this
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problem, we use the factor matrices to replace T̃ ; thus, a nuclear norm constraint around the factor
matrices can be obtained:

min
T̃

1
2‖T̃ − T ‖

2
F = 1

6 min
T̃

3
∑

i=1
‖T̃(i) − T(i)‖

2
F

s.t. 1
3

3
∑

i=1
‖Ai‖∗ ≤ c

(11)

where the relationship between unfolded matrices and factor matrices in Equation (11) are shown as

T̃(1) = A1(A2 � A3)
T , T̃(2) = A2(A3 � A1)

T , T̃(3) = A3(A2 � A1)
T . (12)

Equation (11) is still difficult to solve because of the constraints among factor matrices. Therefore,
we introduce three independent variable matrices Y1, Y2, Y3 as follows:

1
6 min

Y1,Ai

3
∑

i=1
‖Yi − T(i)‖

2
F

s.t. 1
3

3
∑

i=1
‖Yi‖∗ ≤ d

Y1 = T̃(1), Y2 = T̃(2), Y3 = T̃(3)

. (13)

The last line of Equation (13) is a tight constraint. We apply a convex relaxation constraint to it:

min
Yi ,Ai

1
6

3

∑
i=1

αi‖Yi − T(i)‖
2
F
+

1
6

3

∑
i=1

βi‖Yi − T̃(i)‖
2
F
+

1
3

3

∑
i=1

γi‖Yi‖∗ (14)

where γi (different regularization parameter) and αi, βi (different weights coefficient) can control the
weight of each factor matrices so as to obtain accurate low rank components. Thus, the nuclear norm
heuristics of the tensor CPD has been successfully established. Equation (14) is a typical convex
optimization problem and we introduce an effective algorithm to solve this problem.

2.2.3. The Working Algorithm

Many variables need to be solved: T̃i, Yi, Ai, i = 1, 2, 3, where the calculation of Yi is the main
challenge. The alternating iterative decline method can be utilized to solve this optimization problem
via calculating one variable with others fixing. Eventually, a global optimal solution of Equation (14)
can be obtained.

Computing T̃i: When the other variables are fixed, the optimization problem will be simplified as

min
Ai

1
6

3

∑
i=1

βi‖Yi − T̃i‖
2
F. (15)

The solution can be written as

T̃i = (

3
∑

j=1
β jyj

3
∑

j=1
β j

)(i), i = 1, 2, 3. (16)

Computing Ai: The optimal Ai can be obtained by Equation (12):

A1 = T̃(1)

[
(A2 �A3)

T
]†

, A2 = T̃(2)

[
(A3 �A1)

T
]†

, A3 = T̃(3)

[
(A2 �A1)

T
]†

. (17)
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Computing Yi: Similarly, the optimal Yi can be obtained by solving the following equation:

1
3

min
Yi

:
1
2

αi‖Yi − T(i)‖
2
F
+

1
2

βi‖Yi − T̃(i)‖
2
F
+ γi‖Yi‖∗. (18)

The singular value threshold [26] is employed to solve Equation (18), which is defined as follows:

Θλ(X) = U∑ λVT (19)

where ∑ λ = diag(max((σi − λ), 0)). The literature [33] has proved that the optimal solution of
Equation (20) can be shown as Equation (21).

min
X

:
Q

∑
q=1

τq

2
‖X−Dq‖2

F + γ‖X‖∗ (20)

X∗ = Θλ(D) (21)

where λ = γ
Q
∑

q=1
τq

and D = 1
Q
∑

q=1
τq

Q
∑

q=1
τqDq.

Therefore, the optimal solution of Equation (18) can be solved by

Y∗i = Θλi (Ŷi) (22)

where λi =
γi

αi+βi
, Ŷi =

αiT(i)+βiT̃(i)
αi+βi

. Thus, we can obtain the global optimal low-rank factor matrices,
as well as the low-rank approximate tensor, which displays the characteristic information of the
original signal data. The flowchart of the entire algorithm is shown in Algorithm 1.

Algorithm 1: TNNCPD
Input: T
Output: T̃ , Ai, Yi, i = 1, 2, 3
1: Initialize: T̃ = T , Ai = R order vectors in front of the of T(i); The largest number of iterations: n = 1000;
convergence threshold: η = 0.001;
2: while no convergence do
3: for i = 1 to 3 do
4: Yi = Θ γi

αi+βi
(

αiT(i)+βiT̃(i)
αi+βi

)

5: end for i = 1 to 3 do

6: T̃i = (

3
∑

j=1
β jyj

3
∑

j=1
β j

)

(i)
7: end for
A1 = T̃(1)

[
(A2 �A3)

T
]†

, A2 = T̃(2)

[
(A3 �A1)

T
]†

, A3 = T̃(3)

[
(A2 �A1)

T
]†

8: end

2.2.4. Simulation Analysis

Gears are essential components in rotation machinery and their vibration signals generally
consist of multi-components, where the meshing frequencies of each pair of gears are the dominant
characteristic [5]. Consider a pair of gears that mesh at a constant speed and constant load. When faults
occur in the gear, for instance, the first gear, the meshing frequency, and its multiple frequencies are
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modulated by the rotational frequency of the first gear. Theoretically, the tooth meshing vibration
function can be represented as [34]:

y(t) =
M

∑
m=0

Ym(1 + am(t)) cos(2πm fzt + φm + bm(t)) (23)

am(t) =
N

∑
n=0

Amn cos(zπn frt + αmn) (24)

bm(t) =
N

∑
n=0

Bmn cos(zπn frt + βmn) (25)

where M is the number of tooth meshing harmonics, fz is the tooth mesh frequency, Ym and φm

represent the amplitude and the phase of the m-th meshing harmonics, am and bm are the amplitude
modulation function and phase modulation function, respectively, fr is the rotational frequency of the
first gear, N is the number of pairs of modulation sidebands, and Amn and Bmn as well as αmn and βmn

represent the amplitude and the phase. Thus, we create a gear simulation signal as follows:

y(t) = 0.2(1 + am(t)) cos(2π × 300t + 10 + bm(t))
+0.3(1 + am(t)) cos(2π × 600t + 20 + bm(t))
+0.2(1 + am(t)) cos(2π × 900t + 40 + bm(t)) + n(t)

(26)

am(t) = 0.4 cos(2π × 15t + 10) + 0.4 cos(2π × 30t + 20) + 0.4 cos(2π × 45t + 40) (27)

bm(t) = 0.4 cos(2π × 15t + 20) + 0.4 cos(2π × 30t + 40) + 0.4 cos(2π × 45t + 60) (28)

where n(t) is the Gaussian white noise with a variance of 1.5. The sampling frequency and sampling
points are set as 4000 Hz and 4000. The clean original signal in the time domain and frequency
domain are shown in Figure 3a,b, respectively. Additionally, the original signal with noise is shown
in Figure 3c,d.

The modulation sidebands are masked by the strong background noise, and the fault feature is
difficult to recognize. The TNNCPD method is employed to extract the useful feature component of
the signal, while the SSA, WT, and CPD-ALS methods are selected for comparative analysis.

The results of the SSA and WT methods are shown in Figures 4 and 5. In the SSA, we select
characteristic components to construct the final time series by the hard threshold method [35]
with a singular value threshold to retain 95%. In Figure 4b, the tooth meshing harmonics ( fz, 2 fz, 3 fz)
and some of their modulation sidebands ( fz ± fr, 2 fz − fr, 3 fz − fr) can be found. However, the fault
feature is still not easy to be identified because the modulation sidebands are incomplete. Following
the method of WT, we select the layer number of wavelet decomposition as 5 and the basis function as
db15. Analogously, the modulation sidebands in Figure 5 are incomplete as well.
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Figure 3. Simulation signal; (a,b) clean original signal in the time domain and the frequency domain;
(c,d) original signal with noise in the time domain and the frequency domain.
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Figure 4. Results obtained by the singular spectrum analysis (SSA) method; (a,b) extracted feature
component in the time domain and the frequency domain respectively.
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Figure 5. Result obtained by the wavelet transform (WT) method; (a,b) extracted feature component in
the time domain and the frequency domain.

Subsequently, the CPD-ALS method is utilized to extract the feature information of the simulation
signal. The rank of the tensor is chosen as 10, so ten rank-1 sub-tensors can be obtained by the
CPD-ALS algorithm. Then, the correlation coefficient between each sub-tensors and the original signal
is calculated, and some sub-tensors whose coefficient is larger (for instance, the top five sub-tensors)
is reconstructed as the one-dimensional time series representing the extracted feature component of
the signal. Results are shown in Figure 6. The modulation sidebands have almost disappeared in
Figure 6b. Obviously, we cannot judge the fault condition of the simulation signal.
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Figure 6. Result obtained by the least squares algorithm for CPD (CPD-ALS) method; (a,b) extracted
feature component in the time domain and the frequency domain.

The proposed method is employed to address the simulation signal. Firstly, the original simulation
signal is analyzed using the TNNCPD method, so we can obtain a low-rank approximate tensor,
which consists of three factor matrices representing a feature component of the original signal.
Then, we reconstruct the low-rank approximate tensor as a one-dimensional time series, the result
of which is shown in Figure 7. The tooth meshing harmonics ( fz, 2 fz, 3 fz) and almost all of their
modulation sidebands are very clear. Consequently, the fault feature of the simulation signal has
been successfully extracted via the TNNCPD method. The numerical simulation results show that the
performance of the TNNCPD method is clearly superior to the three above-mentioned alternatives.
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Figure 7. Result obtained by the proposed method; (a,b) extracted feature component in the time
domain and the frequency domain.

To allow for a more direct evaluation of the four methods’ performance, Table 1 reveals the
correlation coefficient between the extracted results obtained using the above four methods and the
original signal without noise. The results of the proposed method are closer to the original signal
without noisy components, explicating that the performance of the proposed method outperforms the
three alternative methods.

Table 1. The correlation coefficient between the feature component obtained by the four methods and
the source signal without noisy components.

SSA WT CPD-ALS The Proposed Method

correlation coefficient 0.8142 0.8352 0.7051 0.9351

SSA: singular spectrum analysis; WT: wavelet transform; CPD-ALS: least squares algorithm for canonical
polyadic decomposition.
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3. A Joint Fault Diagnosis Scheme Based on TNNCPD and MSPE

After the fault feature component of the measured vibration signal is extracted via TNNCPD,
the fault patterns need to be identified. Multi-scale permutation entropy (MSPE) [28] can evaluate the
complexity of signal in different scales by measuring the relative frequencies of different ordinal
patterns. Therefore, MSPE can be chosen as the recognizer of different signal fault patterns.
Thus, we proposed a joint fault diagnosis scheme based on TNNCPD and MSPE to perform gear fault
classification and a detailed description of the method is as follows:

(1) Vibration signals reflecting the different working conditions of gears are acquired through the
vibration acceleration sensor.

(2) The vibration signals are decomposed by the TNNCPD method to obtain the useful
feature component.

(3) The MSPE of the feature component is calculated as a fault feature vector. The calculation process
of MSPE is as follows:

Firstly, the fault feature time series x = [x1, x2, . . . , xN ] is transformed into a successive
coarse-grained time series y(ε) with a scale factor ε:

yε
j =

1
ε

jε

∑
k=(j−1)ε+1

xk, j = 1, 2, . . . , [N/ε]. (29)

The coarse-grained time series are then converted into a series of data segments through the
predetermined embedding dimension d and time-lag τ:

vn = [yε
n, yε

n+τ , . . . , yε
n+(d−1)τ ], n = 1, 2, . . . , N − (d− 1)τ. (30)

There are d! possible ordinal patterns (ϕi, i = 1, . . . , d!) by arranging vn in increasing order of
magnitudes. Let f (ϕi), i = 1, . . . , d! denote the frequency of its occurrence in the data segments,
so that the relative frequency is thus

p(ϕi) = f (ϕi)/(N − (d− 1)τ). (31)

Finally, the MSPE is defined as

P(ε) = −
d!

∑
i=1

p(ϕi) log2 p(ϕi). (32)

For convenience, we normalize P(ε) by its maximum value log2 d!:

0 ≤ P(ε)/ log2d! ≤ 1. (33)

Thus, we can obtain the fault feature vector P = [P(1), P(2), · · · ]. Figure 8 illustrates the
coarse-graining and data segments of the fault feature time series.
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(1) Vibration signals reflecting the different working conditions of gears are acquired through the 
vibration acceleration sensor. 

(2) The vibration signals are decomposed by the TNNCPD method to obtain the useful  
feature component. 

(3) The MSPE of the feature component is calculated as a fault feature vector. The calculation 
process of MSPE is as follows: 

Firstly, the fault feature time series 1 2[ , , , ]Nx x x=x   is transformed into a successive 

coarse-grained time series 
( )εy  with a scale factor ε : 

( 1) 1

1 ,  1, 2, ,[ / ]
j

j k
k j

y x j N
ε

ε

ε

ε
ε = − +

= =∑  . (29) 

The coarse-grained time series are then converted into a series of data segments through the 
predetermined embedding dimension d  and time-lag τ : 

( 1)[ , , , ],  1, 2, , ( 1)n
n n n dy y y n N dε ε ε

τ τ τ+ + −= = − −v  

. (30) 

There are !d  possible ordinal patterns ( , 1, , !i i dϕ =  ) by arranging 
nv  in increasing order of 

magnitudes. Let ( ), 1, , !if i dϕ =   denote the frequency of its occurrence in the data segments, so that 
the relative frequency is thus 

( ) ( ) / ( ( 1) )i ip f N dϕ ϕ τ= − − . (31) 

Finally, the MSPE is defined as 
!

2
1

P( )= ( ) log ( )ε ϕ ϕ
=

−∑
d

i i
i

p p
.
 (32) 

For convenience, we normalize P( )ε  by its maximum value 
2log !d : 

20 P( )/log ! 1dε≤ ≤ . (33) 

Thus, we can obtain the fault feature vector [P(1),P(2), ]=P  . Figure 8 illustrates the 
coarse-graining and data segments of the fault feature time series. 
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Figure 8. The scheme illustrating the coarse-graining and data segments of the fault feature time 

series with 2, 3, 2dε τ= = = . 
Figure 8. The scheme illustrating the coarse-graining and data segments of the fault feature time series
with ε = 2, d = 3, τ = 2.
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(4) Enter the fault feature vector as the input of the BP neural network chosen fault classifier in order
to achieve fault classification. The flowchart of the proposed method is depicted in Figure 9.

Entropy 2018, 20, 161  12 of 22 

 

(4) Enter the fault feature vector as the input of the BP neural network chosen fault classifier in order 
to achieve fault classification. The flowchart of the proposed method is depicted in Figure 9. 

 
Figure 9. The flowchart of the proposed joint fault diagnosis scheme based on tensor nuclear norm 
canonical polyadic decomposition (TNNCPD) and multi-scale permutation entropy (MSPE). 

4. Experimental Signal Analysis 

In order to verify the effectiveness of the proposed joint fault diagnosis, we collected the gear 
vibration signals of different working conditions for analysis, including normal condition, circular 
pitch fault, broken teeth fault, and abrasion fault. The experimental device is demonstrated in  
Figure 10. It consists of an AC motor, couplings, dynamometers, a gearbox with a pair of meshing 
gears, and a magnetic powder brake. The red arrow indicates the acceleration vibration sensor 
placement. The number of teeth on the pinion and wheel are 20 and 37, and the gear modulus is equal 
to 3. The spindle speed is maintained at 1154 r/min, while the data sampling frequency is 2,000 Hz. We 
have tested three operating states of different loads for each gear working condition, including a 
no-load operating state, an operating state with a load of 10 N/m, and an operating state with a load 
of 20 N/m. Each working condition under operating states with different loads contains 19 group 
data samples, so there are 76 group data samples in total for each operating state, and each data 
sample has 15,000 data points. 

one-dimensional 
time signal

Gear vibration signals of four working 
conditions under different load operating state

Fault feature extraction

Vibration data collected
 by an acceleration sensor

2 4 6 8 10 12
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Scale factor

M
SP

E

 

 

Normal
circular pitch fault
broken teeth fault
abrasion fault

2 4 6 8 10 12
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Scale factor

M
SP

E

 

 

Normal
circular pitch fault
broken teeth fault
 abrasion fault

2 4 6 8 10 12

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Scale factor

M
SP

E

 

 

Normal
circular pitch fault
broken teeth fault
 abrasion fault

TNNCPD

MSPE

fault classification

Figure 9. The flowchart of the proposed joint fault diagnosis scheme based on tensor nuclear norm
canonical polyadic decomposition (TNNCPD) and multi-scale permutation entropy (MSPE).

4. Experimental Signal Analysis

In order to verify the effectiveness of the proposed joint fault diagnosis, we collected the gear
vibration signals of different working conditions for analysis, including normal condition, circular
pitch fault, broken teeth fault, and abrasion fault. The experimental device is demonstrated in
Figure 10. It consists of an AC motor, couplings, dynamometers, a gearbox with a pair of meshing
gears, and a magnetic powder brake. The red arrow indicates the acceleration vibration sensor
placement. The number of teeth on the pinion and wheel are 20 and 37, and the gear modulus is equal
to 3. The spindle speed is maintained at 1154 r/min, while the data sampling frequency is 2000 Hz.
We have tested three operating states of different loads for each gear working condition, including
a no-load operating state, an operating state with a load of 10 N/m, and an operating state with a load
of 20 N/m. Each working condition under operating states with different loads contains 19 group data
samples, so there are 76 group data samples in total for each operating state, and each data sample has
15,000 data points.
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Figure 10. Experimental device. (a) Device image. (b) Device structure diagram: 1—AC motor; 
2—measurement point; 3—gearbox; 4—magnetic powder brake. 

Figure 11 reveals the collected vibration signals of four gear working conditions under different 
operating state loads in the time domain. It can be seen that these signals show strong non-linear and 
non-stationary features. Moreover, the features and amplitudes of the normal condition, the circular 
pitch fault condition, and the abrasion fault condition are very similar, so it is not easy to distinguish 
these four working conditions. 
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Figure 10. Experimental device. (a) Device image. (b) Device structure diagram: 1—AC motor;
2—measurement point; 3—gearbox; 4—magnetic powder brake.

Figure 11 reveals the collected vibration signals of four gear working conditions under different
operating state loads in the time domain. It can be seen that these signals show strong non-linear and
non-stationary features. Moreover, the features and amplitudes of the normal condition, the circular
pitch fault condition, and the abrasion fault condition are very similar, so it is not easy to distinguish
these four working conditions.

Entropy 2018, 20, 161  13 of 22 

 

 

4

3

1

2

 
(a) (b) 

Figure 10. Experimental device. (a) Device image. (b) Device structure diagram: 1—AC motor; 
2—measurement point; 3—gearbox; 4—magnetic powder brake. 

Figure 11 reveals the collected vibration signals of four gear working conditions under different 
operating state loads in the time domain. It can be seen that these signals show strong non-linear and 
non-stationary features. Moreover, the features and amplitudes of the normal condition, the circular 
pitch fault condition, and the abrasion fault condition are very similar, so it is not easy to distinguish 
these four working conditions. 

 
(a) 

 
(b) 

0 1 2 3 4 5 6 7
-2
0
2

0 1 2 3 4 5 6 7
-4
0
5

0 1 2 3 4 5 6 7
-2
0
2

A
m

pl
itu

de
/V

0 1 2 3 4 5 6 7
-3-2
-10
1

t/s

( )1

( )2

( )3

( )4

0 1 2 3 4 5 6 7
-5
0
5

0 1 2 3 4 5 6 7
-10

0
10

0 1 2 3 4 5 6 7
-5
0
5

A
m

pl
itu

de
/V

0 1 2 3 4 5 6 7
-5
0
5

t/s

( )1

( )2

( )3

( )4

Figure 11. Cont.
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The WT and the TNNCPD methods were used to extract the feature component of the four 
working condition signals. The computed results are plotted in Figures 12 and 13, respectively. From 
the two figures, we can inspect that the extracted feature components of different working states 
show different characteristics, mainly including different periodicities and amplitudes. 
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Figure 11. The collected gear vibration signals of four working conditions ((1) normal condition;
(2) circular pitch fault; (3) broken teeth fault; (4) abrasion fault) under different operating state
loads in the time domain; (a) no-load operating state; (b) an operating state with a load of 10 N/m;
(c) an operating state with a load of 20 N/m.

The WT and the TNNCPD methods were used to extract the feature component of the four
working condition signals. The computed results are plotted in Figures 12 and 13, respectively.
From the two figures, we can inspect that the extracted feature components of different working states
show different characteristics, mainly including different periodicities and amplitudes.
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Figure 12. The feature extracted results of the gear signals of four working conditions ((1) normal 
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state loads in the time domain by the WT method; (a) no-load operating state; (b) an operating state 
with a load of 10 N/m; (c) an operating state with a load of 20 N/m. 

Then, we calculate the MPSE of the obtained feature components via the two methods and the 
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factor is determined as 1 12ε = − . The computed results are displayed in Figures 14–16. 

 
(a) 

 
(b) 

0 1 2 3 4 5 6 7
-5
0
5

0 1 2 3 4 5 6 7
-10

0
10

0 1 2 3 4 5 6 7
-5
0
5

A
m

pl
itu

de
/V

0 1 2 3 4 5 6 7
-4
-2
0
2

t/s

( )1

( )2

( )3

( )4

0 1 2 3 4 5 6 7
-4-2
02
4

0 1 2 3 4 5 6 7
-5
0
5

0 1 2 3 4 5 6 7
-2
0
2

A
m

pl
itu

de
/V

0 1 2 3 4 5 6 7
-2
0
2

t/s

( )1

( )2

( )3

( )4

0 1 2 3 4 5 6 7
-10

0
10

0 1 2 3 4 5 6 7
-10

0
10

0 1 2 3 4 5 6 7
-10

0
10A

m
pl

itu
de

/V

0 1 2 3 4 5 6 7
-4-2
02
4

t/s

( )1

( )2

( )3

( )4

Figure 12. The feature extracted results of the gear signals of four working conditions ((1) normal
condition; (2) circular pitch fault; (3) broken teeth fault; (4) abrasion fault) under different operating
state loads in the time domain by the WT method; (a) no-load operating state; (b) an operating state
with a load of 10 N/m; (c) an operating state with a load of 20 N/m.

Then, we calculate the MPSE of the obtained feature components via the two methods and the
original signals. The parameters of the MPSE are set as m = 4, τ = 2 and the value range of the scale
factor is determined as ε = 1− 12. The computed results are displayed in Figures 14–16.
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condition; (2) circular pitch fault; (3) broken teeth fault; (4) abrasion fault) under different operating 
state loads in the time domain by the TNNCPD method; (a) no-load operating state; (b) an operating 
state with a load of 10 N/m; (c) an operating state with a load of 20 N/m. 
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working condition from the original signals. From Figure 15, we can see that the MSPE of the normal 
condition, broken teeth fault, and abrasion fault remain mixed together, therefore, making it 
challenging to differentiate between the three kinds of faults. As such, the WT method may possess 
some deficiencies in terms of dealing with the measured faulty gear signals. 
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Figure 13. The feature extracted results of the gear signals of four working conditions ((1) normal
condition; (2) circular pitch fault; (3) broken teeth fault; (4) abrasion fault) under different operating
state loads in the time domain by the TNNCPD method; (a) no-load operating state; (b) an operating
state with a load of 10 N/m; (c) an operating state with a load of 20 N/m.

Figure 14 shows that the MSPE of all samples of original gear signals under different operating
state loads are almost mixing together. Therefore, it is difficult to immediately recognize the working
condition from the original signals. From Figure 15, we can see that the MSPE of the normal condition,
broken teeth fault, and abrasion fault remain mixed together, therefore, making it challenging to
differentiate between the three kinds of faults. As such, the WT method may possess some deficiencies
in terms of dealing with the measured faulty gear signals.
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Figure 14. MPSE of over 12 scales of all the samples of original gear signals of four working conditions
under different operating state loads; (a) no-load operating state; (b) an operating state with a load of
10 N/m; (c) an operating state with a load of 20 N/m.



Entropy 2018, 20, 161 17 of 22
Entropy 2018, 20, 161  17 of 22 

 

  
(a) (b) 

 
(c) 

Figure 15. MPSE of over 12 scales of all samples of extracted feature components of four working 
conditions under different operating state loads by the WT method; (a) no-load operating state; (b) 
an operating state with a load of 10 N/m; (c) an operating state with a load of 20 N/m. 

From Figure 16, it is evident that the lines corresponding to the four working conditions under 
different operating state loads can be separated in many scales. The analysis results demonstrate that 
the proposed scheme not only has a good fault feature extraction effect for the gear signals, but also 
can effective identify the working condition of different fault feature components. 

  
(a) (b) 

 
(c) 

Figure 16. MPSE of over 12 scales of all samples of extracted feature components of four working 
conditions under different operating state loads by the TNNCPD method; (a) no-load operating 
state; (b) an operating state with a load of 10 N/m; (c) an operating state with a load of 20 N/m. 

2 4 6 8 10 12

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Scale factor

M
SP

E

 

 

Normal
circular pitch fault
broken teeth fault
 abrasion fault

2 4 6 8 10 12

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Scale factor

M
SP

E

 

 

Normal
circular pitch fault
broken teeth fault
 abrasion fault

2 4 6 8 10 12
0.4

0.5

0.6

0.7

0.8

0.9

1

Scale factor

M
PS

E

 

 

Normal
circular pitch fault
broken teeth fault
 abrasion fault

2 4 6 8 10 12
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Scale factor

M
SP

E

 

 

Normal
circular pitch fault
broken teeth fault
abrasion fault

2 4 6 8 10 12
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Scale factor

M
SP

E

 

 

Normal
circular pitch fault
broken teeth fault
 abrasion fault

2 4 6 8 10 12

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Scale factor

M
SP

E

 

 

Normal
circular pitch fault
broken teeth fault
 abrasion fault

Figure 15. MPSE of over 12 scales of all samples of extracted feature components of four working
conditions under different operating state loads by the WT method; (a) no-load operating state;
(b) an operating state with a load of 10 N/m; (c) an operating state with a load of 20 N/m.

From Figure 16, it is evident that the lines corresponding to the four working conditions under
different operating state loads can be separated in many scales. The analysis results demonstrate that
the proposed scheme not only has a good fault feature extraction effect for the gear signals, but also
can effective identify the working condition of different fault feature components.
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Figure 16. MPSE of over 12 scales of all samples of extracted feature components of four working
conditions under different operating state loads by the TNNCPD method; (a) no-load operating state;
(b) an operating state with a load of 10 N/m; (c) an operating state with a load of 20 N/m.
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In order to further evaluate the performance of the proposed method for gear fault diagnosis,
the MSPE vectors were chosen as the inputs of the BP neural network to achieve fault classification.
The parameter of the classifier was set as follows: the input layer has 12 nodes, a hidden layer has
25 nodes, and the output layer has 4 nodes. Since there are 19 group data samples in each working
condition for different operating state loads, we randomly selected 5 group samples as the training set
and the remaining 14 group samples as the test set. Thus, there are 20 group train set and 56 group
test train set in total for different operating state loads. The classification results of the original
signals by the MSPE method, by combining WT with the MSPE method and by the proposed joint
fault diagnosis scheme, are shown in Figures 17–19, respectively. The category labels 1, 2, 3, and 4
represent normal conditions, circular pitch faults, broken teeth faults, and abrasion faults, respectively.
Obviously, for the original signals, all four working conditions are difficult to distinguish. In Figure 18,
the separation effect of the normal condition, broken teeth fault, and circular pitch fault is suboptimal.
As shown in Figure 19, each gear working state was recognized. Table 2 lists the classification accuracy
of each method, it is very clear that the accuracy of the proposed scheme is close to 100%, indicating
that its performance is significantly better than the MSPE method and combining WT with the MSPE
method. The classification results show that the proposed joint fault diagnosis scheme has excellent
classification performance for different gear faults.

Table 2. The classification accuracy of each method.

Operating State Set MSPE Combining WT with MSPE Proposed Scheme

no load
train 80% 90% 100%
test 66.07% 76.79% 100%

a load of 10 N/m
train 75% 90% 100%
test 53.57% 80.36% 100%

a load of 20 N/m
train 40% 70% 100%
test 23.21% 64.28% 98.21%

MSPE: multi-scale permutation entropy.
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Figure 17. The classification results of gear signals of four working conditions under different operating
state loads by the MSPE ((1) train set; (2) test set); (a) no-load operating state; (b) an operating state
with a load of 10 N/m; (c) an operating state with a load of 20 N/m.
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Figure 18. The classification results of gear signals of four working conditions under different operating
state loads by combining WT with MSPE method ((1) train set; (2) test set); (a) no-load operating state;
(b) an operating state with a load of 10 N/m; (c) an operating state with a load of 20 N/m.
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Figure 19. The classification results of gear signals with four working conditions under different
operating state loads by the proposed joint fault diagnosis scheme ((1) train set; (2) test set);
(a) no-load operating state; (b) an operating state with a load of 10 N/m; (c) an operating state
with a load of 20 N/m.

5. Conclusions

A joint fault diagnosis scheme based on tensor nuclear norm canonical polyadic decomposition
(TNNCPD) and multi-scale permutation entropy (MSPE) has been proposed for gear fault classification.
The main contributions of this paper are as follows: (1) A new tensor canonical polyadic decomposition
method based on nuclear norm and convex optimization is established, and an efficient working
algorithm is provided. (2) The proposed TNNCPD method and MSPE method is combined to achieve
gear fault classification, in which the characteristic components of the original signals can be extracted
via the TNNCPD method, and the MPSE of the characteristic components has been calculated as the
feature vector to recognize fault conditions. (3) The proposed scheme has been applied in different
gear fault classifications under different operating state loads. The proposed scheme demonstrated
excellent fault classification performance. It needs to be pointed out, however, that the calculation
time of the scheme is a problem. Since the TNNCPD converts the one-dimensional time series
into three-dimensional data, which inevitably leads to an increased amount of computing data,
the calculation time of the TNNCPD is longer than that of the other methods based on vectors or matrix
models. Thus, how the calculation efficiency of the TNNCPD method can be effectively improved will
be one of the highlights of our next research work.



Entropy 2018, 20, 161 21 of 22

Acknowledgments: This work was supported by the National Natural Science Foundation of China under Grants
No. 51475339, the Natural Science Foundation of Hubei province under Grant No. 2016CFA042, the Wuhan
Science and Technology Project Grant No. 2017010201010115, the Engineering Research Center for Metallurgical
Automation and Measurement Technology of Ministry of Education (Wuhan University of Science and Technology)
under Grant No. MARC201701, and the Guangxi Key Laboratory of Optoelectronic Information Processing Open
Foundation of China under Grant No. KFJJ2017-01.

Author Contributions: Mao Ge and Cancan Yi conceived and designed the experiments; Mao Ge and Yong Lv
performed the experiments; Mao Ge and Yi Zhang analyzed the data; Mao Ge, Yong Lv and Xiangkun Chen
contributed reagents/materials/analysis tools; Mao Ge and Cancan Yi wrote the paper.

Conflicts of Interest: The authors declare that no conflict of interests regarding the publication of this article.

References

1. Yang, D.; Liu, Y.; Li, S.; Li, X.; Ma, L. Gear fault diagnosis based on support vector machine optimized by
artificial bee colony algorithm. Mech. Mach. Theory 2015, 90, 219–229. [CrossRef]

2. Forrester, B.D. Advanced Vibration Analysis Techniques for Fault Detection and Diagnosis in Geared
Transmission Systems. PhD Thesis, Swinburne University of Technology, Hawthorn, Australia, 1996.

3. Tan, C.K.; Irving, P.; Mba, D. A comparative experimental study on the diagnostic and prognostic capabilities
of acoustics emission, vibration and spectrometric oil analysis for spur gears. Mech. Syst. Signal Process. 2007,
21, 208–233. [CrossRef]

4. Heydarzadeh, M.; Nourani, M.; Hansen, J.; Kia, S.H. Non-invasive gearbox fault diagnosis using scattering
transform of acoustic emission. In Proceedings of the 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 371–375.

5. Dalpiaz, G.; Rivola, A.; Rubini, R. Effectiveness and sensitivity of vibration processing techniques for local
fault detection in gears. Mech. Syst. Signal Process. 2000, 14, 387–412. [CrossRef]

6. Feng, Z.; Liang, M.; Zhang, Y.; Hou, S. Fault diagnosis for wind turbine planetary gearboxes via demodulation
analysis based on ensemble empirical mode decomposition and energy separation. Renew. Energy 2012, 47,
112–126. [CrossRef]

7. Wu, X.L.; Peter, W.T.; Gui, C.Z.; Tielin, S. Classification of gear faults using cumulants and the radial basis
function network. Mech. Syst. Signal Process. 2004, 18, 381–389.

8. Yi, C.; Lv, Y.; Xiao, H.; Huang, T.; You, G. Multisensor signal denoising based on matching synchrosqueezing
wavelet transform for mechanical fault condition assessment. Meas. Sci. Technol. 2018. [CrossRef]

9. Cheng, J.S.; Yu, Y.; Yu, D. The envelope order spectrum based on generalized demodulation time—Frequency
analysis and its application to gear fault diagnosis. Mech. Syst. Signal Process. 2010, 24, 508–521. [CrossRef]

10. Cheng, J.; Zhang, K.; Yang, Y. An order tracking technique for the gear fault diagnosis using local mean
decomposition method. Mech. Mach. Theory 2012, 55, 67–76. [CrossRef]

11. Saravanan, N.; Ramachandran, K.I. Incipient gear box fault diagnosis using discrete wavelet transform
(DWT) for feature extraction and classification using artificial neural network (ANN). Expert Syst. Appl. 2010,
37, 4168–4181. [CrossRef]

12. Kennel, M.B.; Brown, R.; Abarbanel, H.D.I. Determining embedding dimension for phase-space
reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403. [CrossRef] [PubMed]

13. Su, Z.; Zhang, Y.; Jia, M.; Xu, F.; Hu, J. Gear fault identification and classification of singular value
decomposition based on Hilbert-Huang transform. J. Mech. Sci. Technol. 2011, 25, 267–272. [CrossRef]

14. Kouchaki, S.; Sanei, S.; Arbon, E.L.; Dijk, D.J. Tensor based singular spectrum analysis for automatic scoring
of sleep EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 1–9. [CrossRef] [PubMed]

15. Yi, C.; Lv, Y.; Ge, M.; Xiao, H.; Yu, X. Tensor Singular Spectrum Decomposition Algorithm Based on
Permutation Entropy for Rolling Bearing Fault Diagnosis. Entropy 2017, 19, 139. [CrossRef]

16. Cichocki, A.; Mandic, D.; de Lathauwer, L.; de Lathauwer, L.; Zhou, G.; Zhao, Q.; Caiafa, C.; Phan, H.A.
Tensor decompositions for signal processing applications: From two-way to multiway component analysis.
IEEE Signal Process. Mag. 2015, 32, 145–163. [CrossRef]

17. Domanov, I.; de Lathauwer, L. Canonical polyadic decomposition of third-order tensors: Reduction to
generalized eigenvalue decomposition. SIAM J. Matrix Anal. Appl. 2014, 35, 636–660. [CrossRef]

18. Sidiropoulos, N.D.; de Lathauwer, L.; Fu, X.; Huang, K.; Papalexakis, E.E.; Faloutsos, C. Tensor decomposition
for signal processing and machine learning. IEEE Trans. Signal Process. 2017, 65, 3551–3582. [CrossRef]

http://dx.doi.org/10.1016/j.mechmachtheory.2015.03.013
http://dx.doi.org/10.1016/j.ymssp.2005.09.015
http://dx.doi.org/10.1006/mssp.1999.1294
http://dx.doi.org/10.1016/j.renene.2012.04.019
http://dx.doi.org/10.1088/1361-6501/aaa50a
http://dx.doi.org/10.1016/j.ymssp.2009.07.003
http://dx.doi.org/10.1016/j.mechmachtheory.2012.04.008
http://dx.doi.org/10.1016/j.eswa.2009.11.006
http://dx.doi.org/10.1103/PhysRevA.45.3403
http://www.ncbi.nlm.nih.gov/pubmed/9907388
http://dx.doi.org/10.1007/s12206-010-1117-6
http://dx.doi.org/10.1109/TNSRE.2014.2329557
http://www.ncbi.nlm.nih.gov/pubmed/24951703
http://dx.doi.org/10.3390/e19040139
http://dx.doi.org/10.1109/MSP.2013.2297439
http://dx.doi.org/10.1137/130916084
http://dx.doi.org/10.1109/TSP.2017.2690524


Entropy 2018, 20, 161 22 of 22

19. Phan, A.H.; Cichocki, A. Tensor decompositions for feature extraction and classification of high dimensional
datasets. Nonlinear Theory Its Appl. IEICE 2010, 1, 37–68. [CrossRef]

20. Recht, B.; Fazel, M.; Parrilo, P.A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear
norm minimization. SIAM Rev. 2010, 52, 471–501. [CrossRef]

21. Candès, E.J.; Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9, 717.
[CrossRef]

22. Yi, C.; Lv, Y.; Xiao, H.; Ke, K.; Yu, X. A novel baseline correction method using convex optimization framework
in laser-induced breakdown spectroscopy quantitative analysis. Spectrochim. Acta Part B At. Spectrosc. 2017,
138, 72–80. [CrossRef]

23. De, S.C.; Olukotun, K.; Ré, C. Global convergence of stochastic gradient descent for some non-convex matrix
problems. arXiv 2014, arXiv:1411.1134.

24. Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted nuclear norm minimization with application to image
denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus,
OH, USA, 23–28 June 2014; pp. 2862–2869.

25. Debals, O.; van Barel, M.; de Lathauwer, L. Löwner-Based Blind Signal Separation of Rational Functions
with Applications. IEEE Trans. Signal Process. 2016, 64, 1909–1918. [CrossRef]

26. Donoho, D.; Gavish, M. Minimax risk of matrix denoising by singular value thresholding. Ann. Stat. 2014,
42, 2413–2440. [CrossRef]

27. Zhang, L.; Xiong, G.; Liu, H.; Zou, H.; Guo, W. Bearing fault diagnosis using multi-scale entropy and
adaptive neuro-fuzzy inference. Expert Syst. Appl. 2010, 37, 6077–6085. [CrossRef]

28. Morabito, F.C.; Labate, D.; la Foresta, F.; Bramanti, A.; Morabito, G.; Palamara, I. Multivariate multi-scale
permutation entropy for complexity analysis of Alzheimer’s disease EEG. Entropy 2012, 14, 1186–1202.
[CrossRef]

29. Zhao, L.Y.; Wang, L.; Yan, R.Q. Rolling bearing fault diagnosis based on wavelet packet decomposition and
multi-scale permutation entropy. Entropy 2015, 17, 6447–6461. [CrossRef]

30. Wang, S.; Liu, H.; Xu, X. Fan fault diagnosis based on symmetrized dot pattern and improved BP neural
network. In Proceedings of the 2016 3rd International Conference on Materials Engineering, Manufacturing
Technology and Control, Taiyuan, China, 27–28 February 2016.

31. Erichson, N.B.; Voronin, S.; Brunton, S.L.; Kutz, J.N. Randomized matrix decompositions using R. arXiv 2016,
arXiv:1608.02148.

32. Ma, S.; Goldfarb, D.; Chen, L. Fixed point and Bregman iterative methods for matrix rank minimization.
Math. Program. 2011, 128, 321–353. [CrossRef]

33. Ji, S.; Ye, J. An accelerated gradient method for trace norm minimization. In Proceedings of the 26th Annual
International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 457–464.

34. McFadden, P.D. Examination of a technique for the early detection of failure in gears by signal processing of
the time domain average of the meshing vibration. Mech. Syst. Signal Process. 1987, 1, 173–183. [CrossRef]

35. Tanner, J.; Wei, K. Normalized iterative hard thresholding for matrix completion. SIAM J. Sci. Comput. 2013,
35, S104–S125. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1587/nolta.1.37
http://dx.doi.org/10.1137/070697835
http://dx.doi.org/10.1007/s10208-009-9045-5
http://dx.doi.org/10.1016/j.sab.2017.10.014
http://dx.doi.org/10.1109/TSP.2015.2500179
http://dx.doi.org/10.1214/14-AOS1257
http://dx.doi.org/10.1016/j.eswa.2010.02.118
http://dx.doi.org/10.3390/e14071186
http://dx.doi.org/10.3390/e17096447
http://dx.doi.org/10.1007/s10107-009-0306-5
http://dx.doi.org/10.1016/0888-3270(87)90069-0
http://dx.doi.org/10.1137/120876459
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Notation 
	Organization 

	Tensor Nuclear Norm Canonical Polyadic Decomposition (TNNCPD) 
	Tensor Canonical Polyadic Decomposition 
	The Tensorization of One-Dimensional Vibration Signal Data 
	Tensor Canonical Polyadic Decomposition Based on the Least-Squares Algorithm (CPD-ALS) 

	Tensor Nuclear Norm Canonical Polyadic Decomposition (TNNCPD) 
	Matrix Nuclear Norm 
	Tensor Canonical Polyadic Decomposition Method Based on Nuclear Norm and Convex Optimization 
	The Working Algorithm 
	Simulation Analysis 


	A Joint Fault Diagnosis Scheme Based on TNNCPD and MSPE 
	Experimental Signal Analysis 
	Conclusions 
	References

