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Abstract: We derive the Born probability rule from Gudder’s theorem—a theorem that addresses
orthogonally-additive functions. These functions are shown to be tightly connected to the functions
that enter the definition of a signed measure. By imposing some additional requirements besides
orthogonal additivity, the addressed functions are proved to be linear, so they can be given in terms
of an inner product. By further restricting them to act on projectors, Gudder’s functions are proved
to act as probability measures obeying Born’s rule. The procedure does not invoke any property that
fully lies within the quantum framework, so Born’s rule is shown to apply within both the classical
and the quantum domains.
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1. Introduction

Originally, Born’s probability rule was considered to be one of those salient features of quantum
theory which make it markedly depart from a classical description of physical phenomena. Born’s rule
was complemented by another one, which is a prescription that establishes how a system changes
when submitted to measurement: the so-called collapse rule. There have been some attempts to
derive the Born rule from basic concepts of probability theory, thereby reducing the axiomatic basis of
quantum mechanics. Notably, Gleason’s theorem [1] claims to achieve such a reduction by deriving the
Born rule from the properties of a probability measure. However, Gleason’s theorem does not hold for
two-dimensional quantum systems (i.e., for qubits). This is also the case with a prominent corollary of
Gleason’s theorem, the Bell–Kochen–Specker (BKS) theorem [2,3], which disproves the assumption that
it is always possible to assign noncontextual values to observables prior to measurement. Thus, in the
quantum framework, it is not possible to interpret measurement outcomes as revealing pre-existing
values of the measured observables. However, such a fundamental claim does not include qubits.
Moreover, Bell violations showing the impossibility of hidden-variable models require composite
systems [2,4]. It is thus possible to construct a hidden-variable model for a single qubit [3,5]. This state
of affairs has prompted some people to place qubits—and them alone—into a sort of limbo, as being
half quantum and half classical objects [6,7]. Indeed, as pointed out in [8], it is widely believed that
“a single qubit is not a truly quantum system”. No matter how appealing the motivations for such
a belief might seem, its untenability becomes clear when seen from the perspective of the quantum
formalism alone: there is nothing in this formalism that distinguishes two-level systems from other
systems of higher dimensionality. We should therefore simply admit that Gleason’s approach does not
meet its intended goal.

The inclusion of qubits was achieved in Busch’s extension [9] of Gleason’s theorem. Instead of the
pairwise orthogonal projectors Pi entering Gleason’s theorem, Busch addresses positive operator-valued
measures (POVMs) En. However, the inclusion of qubits in Busch’s approach was obtained at the cost
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of departing from our most intuitive notion of a measure. The mathematical tool that corresponds to
our basic notion of a measure is a non-negative function m over a σ-algebra. This function is required to
satisfy m(A ∪ B) = m(A) + m(B), whenever A ∩ B = ∅. The last condition must hold because in case
A∩ B 6= ∅, we should subtract m(A∩ B) from m(A) +m(B) in order to encompass our intuitive notion
of a measure. A particular and important case is the “probability measure”. In quantum mechanics,
this measure is defined over the projection lattice P(H) of a Hilbert spaceH, and it is thus consistent to
require for Pi, Pj ∈ P(H) that m(Pi + Pj) = m(Pi) + m(Pj), whenever PiPj = 0. On the other hand, it is
rather unnatural to call v a measure if it is required to satisfy v(En + Em) = v(En) + v(Em), even though
EnEm 6= 0. However, this is the case in Busch’s extension of Gleason’s theorem, in which projectors
are replaced by POVMs. As for the BKS theorem, Cabello [8] has similarly proved its validity in
the case of qubits by replacing projective measurements with POVMs, while Aravind [10] extended
Cabello’s proof to arbitrary finite dimensions. The introduction of POVMs in the quantum formalism as
a generalization of von Neumann’s projection-valued measures has been required for various reasons,
such as the quantum information approach to quantum mechanics, the employment of non-optimal
devices that deliver unsharp measurement outcomes, the description of composite measurements, etc.
However, none of these reasons bears any particular connection with two-state systems. It is thus
unclear why the inclusion of qubits in the aforementioned theorems should require the replacement of
projective measurements by POVMs.

Recently, we have presented an alternative derivation of the Born rule [11], starting from Gudder’s
theorem [12]—a theorem which is in a sense the reciprocal of Pythagoras’s theorem. Such a derivation
begins with two-dimensional systems and then extends to higher-dimensional ones, including both
pure and mixed states. By observing that the Born rule involves only two states, its derivation can be
generally reduced to the two-dimensional case, irrespective of the (finite or infinite) dimensionality
of the addressed vector space. Moreover, the derivation blurs the distinction between quantum and
classical measurements, so Born’s rule is shown to apply beyond its original purely quantum domain.
This opens the way for the construction of hidden-variable models of Bell violations produced by
maximally entangled states [13].

Hall [14] recently criticized our derivation of the Born rule, arguing that a non-linear
counterexample that shows why qubits are excluded from the scope of Gleason’s theorem also applies in
our approach. One of the purposes of the present work is to show that this is not so. The reason can be
stated very simply and in advance: the assumptions underlying our approach imply that any function
we deal with is a linear one. This was not explicitly shown in [11], but only implicitly, by deriving
Born’s linear expression. We present here an explicit demonstration of linearity, and moreover, go
beyond the goals of our previous work. Indeed, Hall’s criticisms represent a welcome opportunity to
expand the scope of Ref. [11], as well as to clear up the physical content of the proposed extension of
Gleason’s theorem.

We should stress that we do not attempt to solve the so-called “measurement problem”; that is,
we do not attempt to answer the question as to how measurements fit into the quantum formalism.
Instead, we follow a similar approach as in Ref. [15] and take measurements as something fundamental
that require a proper self-consistent description. Thus, we restrict ourselves to the probability rule,
leaving aside the collapse rule and the question as to whether collapse is a physical process or just
an updating of our system’s knowledge. On the other hand, we do address the question about the
placement of the Born rule with respect to the quantum–classical border. To this day, the latter remains
a controversial issue [16–24], to which the present work intends to make a contribution.

This paper is organized as follows. In Section 2 we recall Gleason’s theorem and in Section 3
we reproduce—for the sake of completeness—the essential points of Ref. [11]. At the same time, we
extend somewhat the results presented in Ref. [11], by completely fixing the orthogonally additive
function that we addressed there and that was left partially undefined in the cited work. We also
address Hall’s criticisms. In Section 4 we present an alternative derivation of the Born rule which
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bypasses the reduction to two-level systems that was used in Ref. [11], and generally applies to N-level
systems, with N ≥ 2. We close the paper by discussing our results.

2. Gleason’s Theorem and Its Restriction to Dimensions Greater Than Two

Let us recall Gleason’s theorem. It states that any probability measure over the lattice P(H) of
orthogonal projectors Pi ∈ P(H) acting on a Hilbert spaceH has the form given by the Born rule [1].
The defining properties of a probability measure m(P) : P(H)→ [0, 1] read as follows:

m(I) = 1, (1)

m

(
∑

i
Pi

)
= ∑

i
m (Pi) . (2)

It is straightforward to show that ∑i Pi ∈ P(H) implies that PiPj = 0, for i 6= j . Gleason proved
that whenever dimH ≥ 3, there exists a unique density operator ρ such that

m(P) = Tr (ρP) , ∀P ∈ P(H), (3)

which is the Born rule.
The exclusion of qubits from the scope of Gleason’s theorem may be traced back to the fact

that assumptions ((1) and (2))—in particular (2)—are not strong enough to imply Equation (3) in
the two-dimensional case. Indeed, Gleason’s proof requires showing that m is continuous. This
can be done only for dimH ≥ 3. In the 2D case, there are discontinuous measures satisfying
assumptions ((1) and (2)). While Gleason’s proof is technically difficult (and for this reason the
exclusion of the 2D case is not quite transparent), in the case of its prominent corollary, the BKS
theorem, it is easier to understand why the latter does not hold in the 2D case. Indeed, an independent
demonstration of the BKS theorem—i.e., not as a corollary of Gleason’s—can be reduced to the
task of coloring the surface of a unit hyper-sphere with two colors [7]. This is possible for two
dimensions—viz., in the case of the unit circle—but not for higher dimensions.

There is yet another way to show that the 2D case must lie outside the domain of Gleason’s
theorem. We observe that measure m(P) entering Born’s rule (see Equation (3)) is not only continuous,
but also linear. Hall [14] provided a non-linear measure m over the set of qubit-projectors which satisfies
conditions ((1) and (2)), thereby proving that Gleason’s theorem cannot hold for qubits. As for the
derivation of the Born rule that we reported in [11], the conditions we impose on the addressed
measures can be satisfied only by linear functions. This notwithstanding, Hall claimed to have
provided a non-linear function satisfying said conditions [14]. Below, we will discuss what went wrong
in Hall’s reasoning.

3. Gudder’s Theorem and the Born Rule for Two-Level Systems

Linearity is a central issue in the derivation of Born’s rule from any chosen
assumptions [9,15,25–28]. For instance, the derivation in Ref. [9]—which includes qubits—entails the
demonstration that the measure v(E) over POVMs is a positive linear functional that can be obtained
from a density operator. As we have seen, Gleason’s assumptions are instead too weak to enforce
linearity in the case of qubits. In our approach, linearity is enforced by imposing upon the concept
of a measure a series of requirements that reflect the most general experimental procedures. These
requirements generally apply when submitting any system to measurement. As stressed in Ref. [11],
our assumptions are not restricted to the quantum case, and therefore some classical measurements
can also be encoded in terms of the Born rule. Said assumptions are strongly driven by physical
considerations rather than by mathematical motivations.

Most measurement procedures in physics are essentially “counting” procedures. They consist
of counting how many times a given unit—a measure—fits into the observable that is submitted to
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measurement. As already said, the primary standard mathematical tool that captures our basic notion
of a measure is a non-negative function m over a σ-algebra. The restriction to be non-negative is a
convenient one in some cases, such as integration theory. Instead, in physics it is often convenient to
distinguish between, e.g., two sides (left and right), or to be able to add and subtract a given amount.
Hence, a generalization of the original concept of measure is convenient, to what is called a signed
measure µ. A signed measure is defined over a σ-algebra Aσ, as µ : Aσ → R, with µ(∪n An) =

∑n µ(An), for any sequence A1, A2, . . . , An of pairwise disjoint sets in Aσ. Besides these mathematical
requirements, we can include some additional ones that reflect our dealing with physical measurements.
First of all, we restrict ourselves to dealing with continuous functions f . This requirement captures our
basic notion that infinitesimal variations of the observable being measured should lead to infinitesimal
variations of the measurement result. Second, we restrict ourselves to dealing with functions f that
are defined over an inner product vector space V. With these restrictions, what was initially a signed
measure ends up being the subject matter of Gudder’s theorem [12]. Indeed, Gudder’s theorem
deals with an inner product vector space V and a continuous function f that is orthogonally additive.
The definition of such a function reads as follows:

Definition 1.

f : V → R is orthogonally additive if f (r + r′) = f (r) + f (r′) whenever r · r′ = 0. (4)

Gudder proves that the following result holds true:

Theorem 1. If f : V → R is orthogonally additive and continuous, then it has the form

f (r) = c(r · r) + k · r, (5)

where c ∈ R and k ∈ V.

Our aim is to show how Born’s rule arises from Gudder’s theorem. To this end, we first focus
on qubits. A qubit can be represented by a unit vector |φ〉 ∈ H2 of an equivalence class—a so-called
“ray”—or alternatively, it can be represented by the corresponding projector

Pφ ≡ |φ〉〈φ| =
1
2
(
I2 + n̂φ · σ

)
. (6)

Here, I2 is the identity operator inH2 and the unit vector n̂φ = Tr
(
σPφ

)
, with σ standing for the

triple of Pauli matrices. In general, for a non-normalized qubit |ψ〉 ∈ H2, we can write

Rψ ≡ |ψ〉〈ψ| =
1
2

3

∑
µ=0

rµσµ, (7)

with σ0 ≡ I2 and rµ = Tr
(
σµRψ

)
. We see that Rψ = Pψ whenever 〈ψ|ψ〉 = 1. There is a one-to-one

correspondence between operators Rψ and vectors r := (r0, r1, r2, r3) ≡ (r0, r). The latter span a
four-dimensional real vector space V4 that can be made an inner product space by defining the
Euclidean inner product

r · r′ =
3

∑
µ=0

rµr′µ. (8)

We now wish to define a measure fφ that is associated to a particular qubit |φ〉 ↔ rφ ≡ (1, n̂φ).
In a sense, fφ and |φ〉 represent one and the same physical object that is mathematically encoded in
two alternative ways [11]. To start with, fφ must satisfy the following requirements.

(1) fφ must satisfy the assumptions of Theorem 1.
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(2) fφ(rφ) = 1, which corresponds to requiring that our unit of measure fits exactly one time
into itself.

(3) fφ(rφ⊥) = 0 for the vector |φ⊥〉 ↔ rφ⊥ ≡ (1,−n̂φ) that is orthogonal to |φ〉.
On applying Gudder’s theorem with k = (k0, k), we obtain

fφ

[
(1, n̂φ)

]
= 2c + k0 + n̂φ · k = 1, (9)

fφ

[
(1,−n̂φ)

]
= 2c + k0 − n̂φ · k = 0. (10)

From these equations, we get 2c + k0 = 1/2 and n̂φ · k = 1/2. Up to this point, we have
been dealing with a function fφ that is not necessarily identifiable with a probability measure.
Let us further restrict fφ to satisfy the following requirement:

(4) fφ

[
(1, n̂ψ)

]
∈ [0, 1] for any four-vector (1, n̂ψ)↔ |ψ〉〈ψ| = Pψ.

In such a case, fφ

[
(1, n̂ψ)

]
= 2c + k0 + n̂ψ · k = 1/2 + n̂ψ · k ∈ [0, 1]; i.e.,

− 1
2
≤ |k| cos θ ≤ 1

2
, (11)

where cos θ = n̂ψ · k̂ spans the interval [−1, 1] under variation of n̂ψ. This implies that |k| = 1/2,
hence k = n̂φ/2, and we can finally write

fφ

[
(1, n̂ψ)

]
=

1
2
(
1 + n̂φ · n̂ψ

)
. (12)

Using Pψ = |ψ〉〈ψ| =
(
I2 + n̂ψ · σ

)
/2 and similarly for Pφ = |φ〉〈φ|, we can write fφ(Pψ) in the

standard form
fφ(Pψ) = |〈φ|ψ〉|2 = Tr

(
PφPψ

)
. (13)

The measure fφ we have obtained under the above requirements can be consistently interpreted
as a probability measure. We have put our requirements on a function fφ that applies to vectors
r ∈ V4 in general. It is just in order to fix some of the parameters that define fφ (i.e., c and k =

(k0, k)) that we conveniently applied fφ to some particular vectors (1, n̂) ∈ V4. These vectors belong
to V4 in spite of carrying only two independent parameters—the ones fixing n̂. Now, as for the
function fφ, it has not been completely fixed. Though we know its action on vectors of the form (1, n̂)
(see Equations (9) and (10)), we do not know its action on more general vectors r ∈ V4. This is because
we have fixed only k = n̂φ/2, while c and k0 remain yet undetermined. In order to fix them, we can
consider the vector (−1, n̂φ), which is orthogonal to |φ〉 ↔ rφ ≡ (1, n̂φ). Thus, we must consistently
require that

3a) fφ

[
(−1, n̂φ)

]
= 2c− k0 + n̂φ · k = 2c− k0 +

1
2
= 0. (14)

On account of the above equation and 2c + k0 = 1/2, we get c = 0 and k0 = 1/2. Hence, k = rφ/2
and Theorem 1 establishes that fφ is a linear function given by fφ(r) = k · r; i.e.,

fφ[(r0, r)] =
1
2
(
r0 + n̂φ · r

)
. (15)

On view of (r0, r) ↔ Rψ ≡ ρψ = ∑µ rµσµ/2 (see Equation (7)), and (1, n̂φ) ↔ Pφ ≡ ρφ =(
I2 + n̂φ · σ

)
/2 (see Equation (6)), we can also write

fφ[(r0, r)] = Tr(ρ†
φρψ). (16)

In summary, under the above assumptions, fφ(r) has reduced to be a scalar product. It can be
specified either in vector space V4, where it is given by the Euclidean scalar product, or in the space
of linear operators acting on H2, where it is given by the Hilbert–Schmidt inner product Tr(A†B).
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Of course, fφ(r) can be negative for some r ∈ V4. However, if we restrict ourselves to applying fφ(r) on
vectors (1, n̂ψ) ∈ V4, then fφ[(1, n̂ψ)] ∈ [0, 1], and in this case we may use fφ as a probability measure.
It is up to us to decide which mathematical tools we employ in order to describe our experimental
observations. The probability measure fφ is just one of these tools. As discussed in [11], it is not
exclusively connected to quantum phenomena.

Let us now briefly refer to Hall’s criticisms [14] of our derivation of Born’s rule. Hall claims that
our defining conditions for a measure fφ are satisfied by the following non-linear measure:

fφ(Pψ) =
1
2
[
1 + f (n̂φ · n̂ψ)

]
. (17)

Here, f (x) “is any non-linear function mapping the interval [−1, 1] into itself, with f (−x) = − f (x)
and f (1) = 1” [14]. The above fφ can be proved to satisfy Gleason’s assumptions ((1) and (2)) in the
2D case, thereby showing that Gleason’s theorem does not hold for qubits. If f (x) is also required to
be continuous, then fφ should allegedly satisfy our defining conditions [14]. However, our function
fφ maps vectors in V4 to the reals. For instance, these vectors may be of the form (±1, n̂ψ). On the
other hand, the subject of the above definition, Equation (17), is a function whose domain is not V4.
Instead of Hall’s notation, fφ(Pψ), one should more properly write fφ(n̂ψ) on the lhs of Equation (17).
The domain of Hall’s fφ is thus the unit sphere. In particular, one cannot tell the results of applying
this fφ to vectors such as (1, n̂ψ) and (−1, n̂ψ). Hence, one cannot claim that this fφ(Pψ) satisfies, for
example, the requirement given by Equation (14): fφ

[
(−1, n̂φ)

]
= 0.

One can try to circumvent Hall’s technical flaw and still seek to object to our derivation of Born’s
rule by arguing that qubits should not be treated as belonging to V4. Such a claim connects with the
belief that qubits are bijectively mapped to the points on the surface of the unit (Bloch/Poincaré)
sphere, so that any given qubit |ψ〉may be represented by some unit vector n̂ψ. This is wrong. Qubits
(viz., spinors) span V4 ∼ C2 3 |ψ〉 = α| ↑〉+ β| ↓〉, under variation of the complex-valued coefficients α

and β. In order to restrict spinors |ψ〉 so as to span only the unit sphere S2 :=
{

n̂ ∈ R3 : |n̂| = 1
}
⊂ R3,

we need to normalize |ψ〉 and discard a global phase. This amounts to neglecting some information that
we deem unimportant, whatever the reason. However, under different circumstances, this information
may turn out to be physically meaningful; see our closing remarks below, Section 5. An exhaustive
description of qubits should therefore be given by the elements of C2 ∼ V4.

The generalization of the above results to higher dimensional vector spaces and to mixed states is
straightforward, and has been discussed in Ref. [11]. The generalization is based on the observation
that two-dimensional Hilbert spaces are in fact general enough for dealing with the Born rule. Indeed,
this rule involves only two states and therefore effectively limits itself—in each concrete case—to
dealing with a two-dimensional subspace of the addressed vector space. This also holds in the case
of infinite-dimensional spaces with continuous basis vectors |φ(α)〉, which may be thought of as
eigenvectors of some observable with a continuous spectrum given by α. In such a case, one replaces the
probability fφ(Pψ) in Born’s formula (13) by d fφ(α)(Pψ) = |〈φ(α)|ψ〉|2dα, corresponding to measurement
results between α and α + dα. Although this procedure leads to our intended goal, it is instructive to
follow an alternative approach, in which we apply algebraic tools similar to those related to the Pauli
algebra. This puts the qubit case on the same footing as the higher-dimensional ones. We present this
approach next, restricted to systems of arbitrary finite dimension.

4. Gudder’s Theorem and the Born Rule for N-Level Systems

Let us first recall that the Pauli matrices are generators of the SU(2) group. Together with the
2× 2 unit matrix, they constitute an orthonormal basis, in terms of which we can express any operator
acting on the two-dimensional Hilbert spaceH2. When dealing with higher dimensional spacesHN ,
we can resort to the N2− 1 generators Gi = G†

i of the SU(N) group. These can be chosen so as to satisfy

Tr Gi = 0, Tr(GiGj) = Nδij. (18)
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Notice that our choice of normalization is best suited to our present purposes and differs from
the most commonly employed one, namely Tr(GiGj) = 2δij [29–32]. Any operator ρ = ρ† with
Tr ρ ≡

√
Nr0 can be expressed as

ρr =
1√
N

(
r0IN +

N2−1

∑
k=1

rkGk

)
, (19)

where rk ∈ R, for k = 0, . . . , N2 − 1. This establishes a one-to-one correspondence between
Hermitian operators ρ acting on HN and vectors r ∈ VN . Let us now choose one of these vectors,
rφ = (r0, . . . , rd) ∈ VN , where d = N2 − 1. It corresponds to a fixed state ρφ, a Hermitian operator
that acts on HN . We can represent the state ρφ in an alternative way, namely by means of Gudder’s
measure fφ, the one that is the subject matter of Gudder’s Theorem 1. To begin with, we consider
a vector r⊥ orthogonal to rφ (i.e., rφ · r⊥ = 0), and require that our measure yields a null result in this
case: fφ(r⊥) = 0. The same requirement holds for vector −r⊥, so that on view of Gudder’s theorem
we have:

fφ(r⊥) = cφr⊥ · r⊥ + kφ · r⊥ = 0, (20)

fφ(−r⊥) = cφr⊥ · r⊥ − kφ · r⊥ = 0. (21)

The above requirements imply that cφ = 0. Thus, Gudder’s measure fφ reads fφ(r) = kφ · r in
our case, with kφ ∈ VN yet to be determined. With rφ and d = N2 − 1 additional vectors s(1), . . . , s(d),
we can conform an orthogonal basis, in terms of which we can write kφ = λrφ + ∑d

j=1 λjs(j). For the
same reasons as before, we require that fφ(s(j)) = kφ · s(j) = 0 for j = 1, . . . , d. This leads us to conclude
that kφ is parallel to rφ; i.e., kφ = λrφ. If we finally require that fφ(rφ) = 1, we end up with

fφ(r) =
1

rφ · rφ
rφ · r. (22)

By choosing the normalization rφ · rφ = 1, we have fφ(r) = rφ · r. The normalization in
Equation (19) has been chosen so as to render

Tr(ρrρs) = r · s. (23)

This allows us to write
fφ(r) = rφ · r = Tr(ρφρr). (24)

It is a matter of convention which normalization we use; e.g., that of Equations (19) and (22),
or else that of Equations (6) and (12). The Born rule is contained in Equation (24) when we restrict
ourselves to suitably normalized vectors and operators. In that case, Gudder’s measure may be used
as a probability measure. The general case corresponds instead to an inner product, which can be seen
as a signed measure.

5. Closing Remarks and Discussion

According to Bohr, all quantum measurements require the involvement of a classical device.
This assertion implies the unavoidable existence of two different domains—the classical and the quantal.
That is, the quantum domain cannot be extended to embrace all physical phenomena, because these
phenomena would include measurements themselves. Moreover, if we explicitly avoid dealing with
the physical process that takes place during a measurement—that is, with possible changes suffered
by a system when submitted to measurement—and focus on the quantification of the outcomes, then
we cannot expect that this quantification has peculiar features that are exclusively ascribable to the
quantum or to the classical domain. In other words, the Born rule by itself should equally well fit
into a quantum and into a classical framework. The derivation of the Born rule presented here is in
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accordance with such a view. There is nothing in the framework we have used that can be identified as
purely quantal. In particular, spinors—or their corresponding density matrices—are an appropriate
and useful tool in both the quantum framework (e.g., spin-1/2 particles) and the classical framework
(e.g., polarized light beams).

In order to obtain the Born rule, we drew upon Gudder’s theorem—a result that is tightly
connected with a signed measure. By adding some requirements to the orthogonally-additive functions
that are the subject matter of Gudder’s theorem, we got a twofold extension of Gleason’s theorem in
which, first, qubits are included within the scope of the theorem and, second, Born’s probability rule
arises as a special case of an inner product. Qubits may be understood as spanning a four-dimensional
real vector space V4 whose elements are of the form (r0, r). The function f in Gudder’s theorem acts
on this space, and is assumed to be continuous and orthogonally additive. When dealing with vectors
of the particular form (1, n̂), we impose some additional requirements on f . These requirements
let us interpret f as a probability measure fφ, which is defined in terms of some fixed state (1, n̂φ).
When fφ acts on more general vectors (r0, r), then it acts as an inner product. As pointed out in
Ref. [11], having discussed the two-dimensional Hilbert space, we have essentially discussed all
higher-dimensional Hilbert spaces, at least with respect to Born’s rule. It is worthwhile to stress that
the key requirements leading to the linearity of fφ (i.e., fφ(r) = kφ · r) are just two: fφ(r⊥) = 0 and
fφ(−r⊥) = 0, cf. Equations (20) and (21). From them, it follows that c = 0 in Theorem 1. Hence, as a
consequence of these assumptions, fφ turns out to be an odd function: fφ(−r) = − fφ(r). Reciprocally,
if fφ is assumed to be odd, then it must be linear [12].

Concerning dimensionality, we should emphasize why we have dealt with V4 in the case of qubits,
instead of dealing with a space of lower dimensionality. Qubits are usually defined as normalized
vectors in a two-dimensional Hilbert space, or equivalently, as projectors (i.e., density operators
acting on this space). They can thus be represented as points on the 2D surface of a unit sphere
that is embedded in 3D space. There are many ways in which one can embed a 2D surface in
a higher-dimensional space. One can then ask about the physical motivation for dealing with V4.
Why do we not stay dealing with a 2D sphere? The physical motivation is given by mixed states
in the case of spin-1/2 particles and by partially polarized light in the optical case. In these cases,
we must deal with the whole Bloch ball and with the whole Poincaré ball, respectively, and not
only with their surfaces. This is because the first component of a Poincaré or a Bloch vector r ∈ V4

generally carries some physical information. For example, the intensity of polarized light is encoded
in this first component. Although it might occur that we are not interested in knowing absolute but
only relative intensity values and we consequently normalize our vectors, our formalism should
nonetheless provide us with the option of accessing all the physical information that is connected with
the phenomenon it is supposed to describe. This brings us outside the unit ball, and so we have to
consider balls of arbitrary radii—the union of which makes up V4. In the case of spin-1/2 particles,
we naturally unit-normalize the density operator due to its interpretation in terms of probability.
In that case, we usually do not need to go beyond the unit sphere. However, we could find it useful
to connect probability with the actual number of particles we expect to detect in a given experiment.
This could happen because of practical reasons, for example in order to avoid saturation of some
detectors. In cases like this, we again need to go beyond the unit sphere in V4. As an example of current
theoretical interest, we may mention the study of qubits evolving according to quantum maps that are
not completely positive, and therefore generally map the unit ball onto a set that is not contained in this
ball [33]. The point in question seems to have been better appreciated by the classical community than
by the quantum community, at least in the case of classical and quantum optics. Indeed, in classical
optics one routinely uses either the Jones or the Mueller formalism. The latter deals with vectors in V4,
and perhaps no one would object that all four components of Mueller vectors have physical meaning.
Some researchers even think that the Mueller formalism is more general and better suited than the
Jones formalism to address physically-motivated inquiries [34]. Our approach acknowledges the fact
that by dealing with 2D spinors some portion of physical information has been discarded. To take full
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account of this information, a 4D formalism is required, with the corresponding generalization in the
SU(N) case.

Finally, we should emphasize that our goals substantially differ from Gleason’s. Indeed, we are
not interested in showing that the structure of the Hilbert space naturally arises as the scenario in
which quantum mechanics should be formulated. We have instead assumed that, say, qubits can be
represented by density matrices in a Hilbert space, or else by four-dimensional vectors of a linear
space. Our aim was to expose the fundamental underlying assumptions leading to a probability rule
that has the structure of Born’s rule. By so doing, we can see the extent to which these assumptions lie
in the quantum or in the classical domain.
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